|
@@ -0,0 +1,485 @@
|
|
|
+// easing procedures and flux easing used for animations
|
|
|
+package ease
|
|
|
+
|
|
|
+import "core:math"
|
|
|
+import "core:intrinsics"
|
|
|
+import "core:time"
|
|
|
+
|
|
|
+@(private) PI_2 :: math.PI / 2
|
|
|
+
|
|
|
+// converted to odin from https://github.com/warrenm/AHEasing
|
|
|
+// with additional enum based call
|
|
|
+
|
|
|
+// Modeled after the parabola y = x^2
|
|
|
+quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return p * p
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the parabola y = -x^2 + 2x
|
|
|
+quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return -(p * (p - 2))
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise quadratic
|
|
|
+// y = (1/2)((2x)^2) ; [0, 0.5)
|
|
|
+// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
|
|
+quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ return 2 * p * p;
|
|
|
+ } else {
|
|
|
+ return (-2 * p * p) + (4 * p) - 1
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the cubic y = x^3
|
|
|
+cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return p * p * p
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the cubic y = (x - 1)^3 + 1
|
|
|
+cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ f := p - 1
|
|
|
+ return f * f * f + 1
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise cubic
|
|
|
+// y = (1/2)((2x)^3) ; [0, 0.5)
|
|
|
+// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
|
|
+cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ return 4 * p * p * p
|
|
|
+ } else {
|
|
|
+ f := (2 * p) - 2
|
|
|
+ return 0.5 * f * f * f + 1
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the quartic x^4
|
|
|
+quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return p * p * p * p
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the quartic y = 1 - (x - 1)^4
|
|
|
+quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ f := p - 1
|
|
|
+ return f * f * f * (1 - p) + 1
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise quartic
|
|
|
+// y = (1/2)((2x)^4) ; [0, 0.5)
|
|
|
+// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
|
|
+quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ return 8 * p * p * p * p
|
|
|
+ } else {
|
|
|
+ f := p - 1
|
|
|
+ return -8 * f * f * f * f + 1
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the quintic y = x^5
|
|
|
+quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return p * p * p * p * p
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the quintic y = (x - 1)^5 + 1
|
|
|
+quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ f := p - 1
|
|
|
+ return f * f * f * f * f + 1
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise quintic
|
|
|
+// y = (1/2)((2x)^5) ; [0, 0.5)
|
|
|
+// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
|
|
+quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ return 16 * p * p * p * p * p
|
|
|
+ } else {
|
|
|
+ f := (2 * p) - 2
|
|
|
+ return 0.5 * f * f * f * f * f + 1
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after quarter-cycle of sine wave
|
|
|
+sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return math.sin((p - 1) * PI_2) + 1
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after quarter-cycle of sine wave (different phase)
|
|
|
+sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return math.sin(p * PI_2)
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after half sine wave
|
|
|
+sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return 0.5 * (1 - math.cos(p * math.PI))
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after shifted quadrant IV of unit circle
|
|
|
+circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return 1 - math.sqrt(1 - (p * p))
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after shifted quadrant II of unit circle
|
|
|
+circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return math.sqrt((2 - p) * p)
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise circular function
|
|
|
+// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
|
|
|
+// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
|
|
+circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ return 0.5 * (1 - math.sqrt(1 - 4 * (p * p)))
|
|
|
+ } else {
|
|
|
+ return 0.5 * (math.sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the exponential function y = 2^(10(x - 1))
|
|
|
+exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return p == 0.0 ? p : math.pow(2, 10 * (p - 1))
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the exponential function y = -2^(-10x) + 1
|
|
|
+exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return p == 1.0 ? p : 1 - math.pow(2, -10 * p)
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise exponential
|
|
|
+// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
|
|
+// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
|
|
+exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p == 0.0 || p == 1.0 {
|
|
|
+ return p
|
|
|
+ }
|
|
|
+
|
|
|
+ if p < 0.5 {
|
|
|
+ return 0.5 * math.pow(2, (20 * p) - 10)
|
|
|
+ } else {
|
|
|
+ return -0.5 * math.pow(2, (-20 * p) + 10) + 1
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
|
|
|
+elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1))
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
|
|
|
+elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise exponentially-damped sine wave:
|
|
|
+// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
|
|
+// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
|
|
+elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1))
|
|
|
+ } else {
|
|
|
+ return 0.5 * (math.sin(-13 * PI_2 * ((2 * p - 1) + 1)) * math.pow(2, -10 * (2 * p - 1)) + 2)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
|
|
+back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return p * p * p - p * math.sin(p * math.PI)
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
|
|
+back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ f := 1 - p
|
|
|
+ return 1 - (f * f * f - f * math.sin(f * math.PI))
|
|
|
+}
|
|
|
+
|
|
|
+// Modeled after the piecewise overshooting cubic function:
|
|
|
+// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
|
|
+// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
|
|
+back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ f := 2 * p
|
|
|
+ return 0.5 * (f * f * f - f * math.sin(f * math.PI))
|
|
|
+ } else {
|
|
|
+ f := (1 - (2*p - 1))
|
|
|
+ return 0.5 * (1 - (f * f * f - f * math.sin(f * math.PI))) + 0.5
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ return 1 - bounce_out(1 - p)
|
|
|
+}
|
|
|
+
|
|
|
+bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 4/11.0 {
|
|
|
+ return (121 * p * p)/16.0
|
|
|
+ } else if p < 8/11.0 {
|
|
|
+ return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0
|
|
|
+ } else if p < 9/10.0 {
|
|
|
+ return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0
|
|
|
+ } else {
|
|
|
+ return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
|
+ if p < 0.5 {
|
|
|
+ return 0.5 * bounce_in(p*2)
|
|
|
+ } else {
|
|
|
+ return 0.5 * bounce_out(p * 2 - 1) + 0.5
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// additional enum variant
|
|
|
+
|
|
|
+Ease :: enum {
|
|
|
+ Linear,
|
|
|
+
|
|
|
+ Quadratic_In,
|
|
|
+ Quadratic_Out,
|
|
|
+ Quadratic_In_Out,
|
|
|
+
|
|
|
+ Cubic_In,
|
|
|
+ Cubic_Out,
|
|
|
+ Cubic_In_Out,
|
|
|
+
|
|
|
+ Quartic_In,
|
|
|
+ Quartic_Out,
|
|
|
+ Quartic_In_Out,
|
|
|
+
|
|
|
+ Quintic_In,
|
|
|
+ Quintic_Out,
|
|
|
+ Quintic_In_Out,
|
|
|
+
|
|
|
+ Sine_In,
|
|
|
+ Sine_Out,
|
|
|
+ Sine_In_Out,
|
|
|
+
|
|
|
+ Circular_In,
|
|
|
+ Circular_Out,
|
|
|
+ Circular_In_Out,
|
|
|
+
|
|
|
+ Exponential_In,
|
|
|
+ Exponential_Out,
|
|
|
+ Exponential_In_Out,
|
|
|
+
|
|
|
+ Elastic_In,
|
|
|
+ Elastic_Out,
|
|
|
+ Elastic_In_Out,
|
|
|
+
|
|
|
+ Back_In,
|
|
|
+ Back_Out,
|
|
|
+ Back_In_Out,
|
|
|
+
|
|
|
+ Bounce_In,
|
|
|
+ Bounce_Out,
|
|
|
+ Bounce_In_Out,
|
|
|
+}
|
|
|
+
|
|
|
+ease :: proc "contextless" (type: Ease, p: $T) -> T
|
|
|
+ where intrinsics.type_is_float(T) {
|
|
|
+ switch type {
|
|
|
+ case .Linear: return p
|
|
|
+
|
|
|
+ case .Quadratic_In: return quadratic_in(p)
|
|
|
+ case .Quadratic_Out: return quadratic_out(p)
|
|
|
+ case .Quadratic_In_Out: return quadratic_in_out(p)
|
|
|
+
|
|
|
+ case .Cubic_In: return cubic_in(p)
|
|
|
+ case .Cubic_Out: return cubic_out(p)
|
|
|
+ case .Cubic_In_Out: return cubic_in_out(p)
|
|
|
+
|
|
|
+ case .Quartic_In: return quartic_in(p)
|
|
|
+ case .Quartic_Out: return quartic_out(p)
|
|
|
+ case .Quartic_In_Out: return quartic_in_out(p)
|
|
|
+
|
|
|
+ case .Quintic_In: return quintic_in(p)
|
|
|
+ case .Quintic_Out: return quintic_out(p)
|
|
|
+ case .Quintic_In_Out: return quintic_in_out(p)
|
|
|
+
|
|
|
+ case .Sine_In: return sine_in(p)
|
|
|
+ case .Sine_Out: return sine_out(p)
|
|
|
+ case .Sine_In_Out: return sine_in_out(p)
|
|
|
+
|
|
|
+ case .Circular_In: return circular_in(p)
|
|
|
+ case .Circular_Out: return circular_out(p)
|
|
|
+ case .Circular_In_Out: return circular_in_out(p)
|
|
|
+
|
|
|
+ case .Exponential_In: return exponential_in(p)
|
|
|
+ case .Exponential_Out: return exponential_out(p)
|
|
|
+ case .Exponential_In_Out: return exponential_in_out(p)
|
|
|
+
|
|
|
+ case .Elastic_In: return elastic_in(p)
|
|
|
+ case .Elastic_Out: return elastic_out(p)
|
|
|
+ case .Elastic_In_Out: return elastic_in_out(p)
|
|
|
+
|
|
|
+ case .Back_In: return back_in(p)
|
|
|
+ case .Back_Out: return back_out(p)
|
|
|
+ case .Back_In_Out: return back_in_out(p)
|
|
|
+
|
|
|
+ case .Bounce_In: return bounce_in(p)
|
|
|
+ case .Bounce_Out: return bounce_out(p)
|
|
|
+ case .Bounce_In_Out: return bounce_in_out(p)
|
|
|
+ }
|
|
|
+
|
|
|
+ // in case type was invalid
|
|
|
+ return 0
|
|
|
+}
|
|
|
+
|
|
|
+Flux_Map :: struct($T: typeid) {
|
|
|
+ values: map[^T]Flux_Tween(T),
|
|
|
+}
|
|
|
+
|
|
|
+Flux_Tween :: struct($T: typeid) {
|
|
|
+ value: ^T,
|
|
|
+ start: T,
|
|
|
+ diff: T,
|
|
|
+ goal: T,
|
|
|
+
|
|
|
+ delay: f64, // in seconds
|
|
|
+ delay_delta: f64,
|
|
|
+ duration: time.Duration,
|
|
|
+
|
|
|
+ progress: f64,
|
|
|
+ rate: f64,
|
|
|
+ type: Ease,
|
|
|
+
|
|
|
+ inited: bool,
|
|
|
+
|
|
|
+ // callbacks, data can be set, will be pushed to callback
|
|
|
+ data: rawptr, // by default gets set to value input
|
|
|
+ on_start: proc(flux: ^Flux_Map(T), data: rawptr),
|
|
|
+ on_update: proc(flux: ^Flux_Map(T), data: rawptr),
|
|
|
+ on_complete: proc(flux: ^Flux_Map(T), data: rawptr),
|
|
|
+}
|
|
|
+
|
|
|
+// init flux map to a float type and a wanted cap
|
|
|
+flux_init :: proc($T: typeid, cap := 8) -> Flux_Map(T) where intrinsics.type_is_float(T) {
|
|
|
+ return {
|
|
|
+ make(map[^T]Flux_Tween(T), cap),
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// delete map content
|
|
|
+flux_destroy :: proc(flux: Flux_Map($T)) where intrinsics.type_is_float(T) {
|
|
|
+ delete(flux.values)
|
|
|
+}
|
|
|
+
|
|
|
+// clear map content, stops all animations
|
|
|
+flux_clear :: proc(flux: ^Flux_Map($T)) where intrinsics.type_is_float(T) {
|
|
|
+ clear(&flux.values)
|
|
|
+}
|
|
|
+
|
|
|
+// append / overwrite existing tween value to parameters
|
|
|
+// rest is initialized in flux_tween_init, inside update
|
|
|
+// return value can be used to set callbacks
|
|
|
+flux_to :: proc(
|
|
|
+ flux: ^Flux_Map($T),
|
|
|
+ value: ^f32,
|
|
|
+ goal: f32,
|
|
|
+ type: Ease = .Quadratic_Out,
|
|
|
+ duration: time.Duration = time.Second,
|
|
|
+ delay: f64 = 0,
|
|
|
+) -> (tween: ^Flux_Tween(T)) where intrinsics.type_is_float(T) {
|
|
|
+ if res, ok := &flux.values[value]; ok {
|
|
|
+ tween = res
|
|
|
+ } else {
|
|
|
+ flux.values[value] = {}
|
|
|
+ tween = &flux.values[value]
|
|
|
+ }
|
|
|
+
|
|
|
+ tween^ = {
|
|
|
+ value = value,
|
|
|
+ goal = goal,
|
|
|
+ duration = duration,
|
|
|
+ delay = delay,
|
|
|
+ type = type,
|
|
|
+ data = value,
|
|
|
+ }
|
|
|
+
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// init internal properties
|
|
|
+flux_tween_init :: proc(tween: ^Flux_Tween($T), duration: time.Duration) where intrinsics.type_is_float(T) {
|
|
|
+ tween.inited = true
|
|
|
+ tween.start = tween.value^
|
|
|
+ tween.diff = tween.goal - tween.value^
|
|
|
+ s := time.duration_seconds(duration)
|
|
|
+ tween.rate = duration > 0 ? 1.0 / s : 0
|
|
|
+ tween.progress = duration > 0 ? 0 : 1
|
|
|
+}
|
|
|
+
|
|
|
+// update all tweens, wait for their delay if one exists
|
|
|
+// calls callbacks in all stages, when they're filled
|
|
|
+// deletes tween from the map after completion
|
|
|
+flux_update :: proc(flux: ^Flux_Map($T), dt: f64) where intrinsics.type_is_float(T) {
|
|
|
+ size := len(flux.values)
|
|
|
+ dt := dt
|
|
|
+
|
|
|
+ for key, tween in &flux.values {
|
|
|
+ delay_remainder := f64(0)
|
|
|
+
|
|
|
+ if tween.delay > 0 {
|
|
|
+ // Update delay
|
|
|
+ tween.delay -= dt
|
|
|
+
|
|
|
+ if tween.delay < 0 {
|
|
|
+ // We finished the delay, but in doing so consumed part of this frame's `dt` budget.
|
|
|
+ // Keep track of it so we can apply it to this tween without affecting others.
|
|
|
+ delay_remainder = tween.delay
|
|
|
+ // We're done with this delay.
|
|
|
+ tween.delay = 0
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // We either had no delay, or the delay has been consumed.
|
|
|
+ if !tween.inited {
|
|
|
+ flux_tween_init(&tween, tween.duration)
|
|
|
+
|
|
|
+ if tween.on_start != nil {
|
|
|
+ tween.on_start(flux, tween.data)
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // If part of the `dt` budget was consumed this frame, then `delay_remainder` will be
|
|
|
+ // that remainder, a negative value. Adding it to `dt` applies what's left of the `dt`
|
|
|
+ // to the tween so it advances properly, instead of too much or little.
|
|
|
+ tween.progress += tween.rate * (dt + delay_remainder)
|
|
|
+ x := tween.progress >= 1 ? 1 : ease(tween.type, tween.progress)
|
|
|
+ tween.value^ = tween.start + tween.diff * T(x)
|
|
|
+
|
|
|
+ if tween.on_update != nil {
|
|
|
+ tween.on_update(flux, tween.data)
|
|
|
+ }
|
|
|
+
|
|
|
+ if tween.progress >= 1 {
|
|
|
+ delete_key(&flux.values, key)
|
|
|
+
|
|
|
+ if tween.on_complete != nil {
|
|
|
+ tween.on_complete(flux, tween.data)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// stop a specific key inside the map
|
|
|
+// returns true when it successfully removed the key
|
|
|
+flux_stop :: proc(flux: ^Flux_Map($T), key: ^f32) -> bool where intrinsics.type_is_float(T) {
|
|
|
+ if key in flux {
|
|
|
+ delete_key(flux, key)
|
|
|
+ return true
|
|
|
+ }
|
|
|
+
|
|
|
+ return false
|
|
|
+}
|
|
|
+
|
|
|
+// returns the amount of time left for the tween animation, if the key exists in the map
|
|
|
+// returns 0 if the tween doesnt exist on the map
|
|
|
+flux_tween_time_left :: proc(flux: Flux_Map($T), key: ^T) -> f64 {
|
|
|
+ if tween, ok := flux.values[key]; ok {
|
|
|
+ return ((1 - tween.progress) * tween.rate) + tween.delay
|
|
|
+ } else {
|
|
|
+ return 0
|
|
|
+ }
|
|
|
+}
|