|
@@ -5,76 +5,292 @@ import "intrinsics"
|
|
|
|
|
|
// Generic
|
|
|
|
|
|
-dot_vector :: proc(a, b: $T/[$N]$E) -> (c: E) {
|
|
|
+@private IS_NUMERIC :: intrinsics.type_is_numeric;
|
|
|
+@private IS_QUATERNION :: intrinsics.type_is_quaternion;
|
|
|
+@private IS_ARRAY :: intrinsics.type_is_array;
|
|
|
+
|
|
|
+
|
|
|
+vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
|
|
|
for i in 0..<N {
|
|
|
c += a[i] * b[i];
|
|
|
}
|
|
|
return;
|
|
|
}
|
|
|
-dot_quaternion128 :: proc(a, b: $T/quaternion128) -> (c: f32) {
|
|
|
+quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
|
|
|
return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
|
|
|
}
|
|
|
-dot_quaternion256 :: proc(a, b: $T/quaternion256) -> (c: f64) {
|
|
|
+quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
|
|
|
return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
|
|
|
}
|
|
|
|
|
|
-dot :: proc{dot_vector, dot_quaternion128, dot_quaternion256};
|
|
|
+dot :: proc{vector_dot, quaternion128_dot, quaternion256_dot};
|
|
|
+
|
|
|
+quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
|
|
+ return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0);
|
|
|
+}
|
|
|
+
|
|
|
|
|
|
-cross2 :: proc(a, b: $T/[2]$E) -> E {
|
|
|
+vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
|
|
|
return a[0]*b[1] - b[0]*a[1];
|
|
|
}
|
|
|
|
|
|
-cross3 :: proc(a, b: $T/[3]$E) -> (c: T) {
|
|
|
- c[0] = +(a[1]*b[2] - b[1]*a[2]);
|
|
|
- c[1] = -(a[2]*b[0] - b[2]*a[0]);
|
|
|
- c[2] = +(a[0]*b[1] - b[0]*a[1]);
|
|
|
+vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
|
|
|
+ c[0] = a[1]*b[2] - b[1]*a[2];
|
|
|
+ c[1] = a[2]*b[0] - b[2]*a[0];
|
|
|
+ c[2] = a[0]*b[1] - b[0]*a[1];
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-cross :: proc{cross2, cross3};
|
|
|
+vector_cross :: proc{vector_cross2, vector_cross3};
|
|
|
+cross :: vector_cross;
|
|
|
|
|
|
-
|
|
|
-normalize_vector :: proc(v: $T/[$N]$E) -> T {
|
|
|
+vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
|
|
|
return v / length(v);
|
|
|
}
|
|
|
-normalize_quaternion128 :: proc(q: $Q/quaternion128) -> Q {
|
|
|
- return q/abs(q);
|
|
|
-}
|
|
|
-normalize_quaternion256 :: proc(q: $Q/quaternion256) -> Q {
|
|
|
+quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
|
|
return q/abs(q);
|
|
|
}
|
|
|
-normalize :: proc{normalize_vector, normalize_quaternion128, normalize_quaternion256};
|
|
|
+normalize :: proc{vector_normalize, quaternion_normalize};
|
|
|
|
|
|
-normalize0_vector :: proc(v: $T/[$N]$E) -> T {
|
|
|
+vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
|
|
|
m := length(v);
|
|
|
return m == 0 ? 0 : v/m;
|
|
|
}
|
|
|
-normalize0_quaternion128 :: proc(q: $Q/quaternion128) -> Q {
|
|
|
- m := abs(q);
|
|
|
- return m == 0 ? 0 : q/m;
|
|
|
-}
|
|
|
-normalize0_quaternion256 :: proc(q: $Q/quaternion256) -> Q {
|
|
|
+quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
|
|
m := abs(q);
|
|
|
return m == 0 ? 0 : q/m;
|
|
|
}
|
|
|
-normalize0 :: proc{normalize0_vector, normalize0_quaternion128, normalize0_quaternion256};
|
|
|
+normalize0 :: proc{vector_normalize0, quaternion_normalize0};
|
|
|
|
|
|
|
|
|
-length :: proc(v: $T/[$N]$E) -> E {
|
|
|
+vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
|
|
|
return math.sqrt(dot(v, v));
|
|
|
}
|
|
|
|
|
|
-length2 :: proc(v: $T/[$N]$E) -> E {
|
|
|
+vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
|
|
|
return dot(v, v);
|
|
|
}
|
|
|
|
|
|
+quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
|
|
+ return abs(q);
|
|
|
+}
|
|
|
+
|
|
|
+quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
|
|
+ return dot(q, q);
|
|
|
+}
|
|
|
+
|
|
|
+length :: proc{vector_length, quaternion_length};
|
|
|
+length2 :: proc{vector_length2, quaternion_length2};
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+vector_sin :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.sin(angle[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_cos :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.cos(angle[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_tan :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.tan(angle[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+vector_asin :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.asin(x[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_acos :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.acos(x[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_atan :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.atan(x[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_atan2 :: proc(y, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.atan(y[i], x[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_pow :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.pow(x[i], y[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_expr :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.expr(x[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_sqrt :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.sqrt(x[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_abs :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = abs(x[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_sign :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.sign(v[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_floor :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.floor(v[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_ceil :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.ceil(v[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+vector_mod :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = math.mod(x[i], y[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_min :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = min(a[i], b[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_max :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = max(a[i], b[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_clamp :: proc(x, a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = clamp(x[i], a[i], b[i]);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_mix :: proc(x, y, a: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = x[i]*(1-a[i]) + y[i]*a[i];
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_step :: proc(edge, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ s[i] = x[i] < edge[i] ? 0 : 1;
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_smoothstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ e0, e1 := edge0[i], edge1[i];
|
|
|
+ t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
|
|
|
+ s[i] = t * t * (3 - 2*t);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_smootherstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ s: V;
|
|
|
+ for i in 0..<N {
|
|
|
+ e0, e1 := edge0[i], edge1[i];
|
|
|
+ t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
|
|
|
+ s[i] = t * t * t * (t * (6*t - 15) + 10);
|
|
|
+ }
|
|
|
+ return s;
|
|
|
+}
|
|
|
+
|
|
|
+vector_distance :: proc(p0, p1: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ return length(p1 - p0);
|
|
|
+}
|
|
|
+
|
|
|
+vector_reflect :: proc(i, n: $V/[$N]$E) -> V where IS_NUMERIC(E) {
|
|
|
+ b := n * (2 * dot(n, i));
|
|
|
+ return i - b;
|
|
|
+}
|
|
|
+
|
|
|
+vector_refract :: proc(i, n: $V/[$N]$E, eta: E) -> V where IS_NUMERIC(E) {
|
|
|
+ dv := dot(n, i);
|
|
|
+ k := 1 - eta*eta - (1 - dv*dv);
|
|
|
+ a := i * eta;
|
|
|
+ b := n * eta*dv*math.sqrt(k);
|
|
|
+ return (a - b) * E(int(k >= 0));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
|
|
|
identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
|
|
|
for i in 0..<N do m[i][i] = E(1);
|
|
|
return m;
|
|
|
}
|
|
|
|
|
|
-transpose :: proc(a: $T/[$N][$M]$E) -> (m: [M][N]E) {
|
|
|
+transpose :: proc(a: $T/[$N][$M]$E) -> (m: T) {
|
|
|
for j in 0..<M {
|
|
|
for i in 0..<N {
|
|
|
m[j][i] = a[i][j];
|
|
@@ -83,9 +299,9 @@ transpose :: proc(a: $T/[$N][$M]$E) -> (m: [M][N]E) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-mul_matrix :: proc(a, b: $M/[$N][N]$E) -> (c: M)
|
|
|
- where !intrinsics.type_is_array(E),
|
|
|
- intrinsics.type_is_numeric(E) {
|
|
|
+matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
|
|
|
+ where !IS_ARRAY(E),
|
|
|
+ IS_NUMERIC(E) {
|
|
|
for i in 0..<N {
|
|
|
for k in 0..<N {
|
|
|
for j in 0..<N {
|
|
@@ -96,10 +312,10 @@ mul_matrix :: proc(a, b: $M/[$N][N]$E) -> (c: M)
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-mul_matrix_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
|
|
|
- where !intrinsics.type_is_array(E),
|
|
|
- intrinsics.type_is_numeric(E),
|
|
|
- I != K {
|
|
|
+matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
|
|
|
+ where !IS_ARRAY(E),
|
|
|
+ IS_NUMERIC(E),
|
|
|
+ I != K {
|
|
|
for k in 0..<K {
|
|
|
for j in 0..<J {
|
|
|
for i in 0..<I {
|
|
@@ -111,9 +327,9 @@ mul_matrix_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
|
|
|
}
|
|
|
|
|
|
|
|
|
-mul_matrix_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
|
|
|
- where !intrinsics.type_is_array(E),
|
|
|
- intrinsics.type_is_numeric(E) {
|
|
|
+matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
|
|
|
+ where !IS_ARRAY(E),
|
|
|
+ IS_NUMERIC(E) {
|
|
|
for i in 0..<I {
|
|
|
for j in 0..<J {
|
|
|
c[i] += a[i][j] * b[i];
|
|
@@ -122,7 +338,7 @@ mul_matrix_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-mul_quaternion128_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
|
|
|
+quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
|
|
|
Raw_Quaternion :: struct {xyz: [3]f32, r: f32};
|
|
|
|
|
|
q := transmute(Raw_Quaternion)q;
|
|
@@ -132,7 +348,7 @@ mul_quaternion128_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
|
|
|
return V(v + q.r*t + cross(q.xyz, t));
|
|
|
}
|
|
|
|
|
|
-mul_quaternion256_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
|
|
|
+quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
|
|
|
Raw_Quaternion :: struct {xyz: [3]f64, r: f64};
|
|
|
|
|
|
q := transmute(Raw_Quaternion)q;
|
|
@@ -141,16 +357,23 @@ mul_quaternion256_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
|
|
|
t := cross(2*q.xyz, v);
|
|
|
return V(v + q.r*t + cross(q.xyz, t));
|
|
|
}
|
|
|
-mul_quaternion_vector3 :: proc{mul_quaternion128_vector3, mul_quaternion256_vector3};
|
|
|
+quaternion_mul_vector3 :: proc{quaternion128_mul_vector3, quaternion256_mul_vector3};
|
|
|
|
|
|
mul :: proc{
|
|
|
- mul_matrix,
|
|
|
- mul_matrix_differ,
|
|
|
- mul_matrix_vector,
|
|
|
- mul_quaternion128_vector3,
|
|
|
- mul_quaternion256_vector3,
|
|
|
+ matrix_mul,
|
|
|
+ matrix_mul_differ,
|
|
|
+ matrix_mul_vector,
|
|
|
+ quaternion128_mul_vector3,
|
|
|
+ quaternion256_mul_vector3,
|
|
|
};
|
|
|
|
|
|
+vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E) {
|
|
|
+ return &v[0];
|
|
|
+}
|
|
|
+matrix_to_ptr :: proc(m: ^$A/[$I][$J]$E) -> ^E where IS_NUMERIC(E) {
|
|
|
+ return &m[0][0];
|
|
|
+}
|
|
|
+
|
|
|
|
|
|
// Specific
|
|
|
|
|
@@ -199,6 +422,11 @@ VECTOR3_Y_AXIS :: Vector3{0, 1, 0};
|
|
|
VECTOR3_Z_AXIS :: Vector3{0, 0, 1};
|
|
|
|
|
|
|
|
|
+
|
|
|
+vector2_orthogonal :: proc(v: Vector2) -> Vector2 {
|
|
|
+ return {-v.y, v.x};
|
|
|
+}
|
|
|
+
|
|
|
vector3_orthogonal :: proc(v: Vector3) -> Vector3 {
|
|
|
x := abs(v.x);
|
|
|
y := abs(v.y);
|
|
@@ -206,20 +434,442 @@ vector3_orthogonal :: proc(v: Vector3) -> Vector3 {
|
|
|
|
|
|
other: Vector3 = x < y ? (x < z ? {1, 0, 0} : {0, 0, 1}) : (y < z ? {0, 1, 0} : {0, 0, 1});
|
|
|
|
|
|
- return normalize(cross3(v, other));
|
|
|
+ return normalize(cross(v, other));
|
|
|
}
|
|
|
|
|
|
-vector3_reflect :: proc(i, n: Vector3) -> Vector3 {
|
|
|
- b := n * 2 * dot(n, i);
|
|
|
- return i - b;
|
|
|
+
|
|
|
+vector4_srgb_to_linear :: proc(col: Vector4) -> Vector4 {
|
|
|
+ r := math.pow(col.x, 2.2);
|
|
|
+ g := math.pow(col.y, 2.2);
|
|
|
+ b := math.pow(col.z, 2.2);
|
|
|
+ a := col.w;
|
|
|
+ return {r, g, b, a};
|
|
|
}
|
|
|
|
|
|
-vector3_refract :: proc(i, n: Vector3, eta: Float) -> Vector3 {
|
|
|
- dv := dot(n, i);
|
|
|
- k := 1 - eta*eta - (1 - dv*dv);
|
|
|
- a := i * eta;
|
|
|
- b := n * eta*dv*math.sqrt(k);
|
|
|
- return (a - b) * Float(int(k >= 0));
|
|
|
+vector4_linear_to_srgb :: proc(col: Vector4) -> Vector4 {
|
|
|
+ a :: 2.51;
|
|
|
+ b :: 0.03;
|
|
|
+ c :: 2.43;
|
|
|
+ d :: 0.59;
|
|
|
+ e :: 0.14;
|
|
|
+
|
|
|
+ x := col.x;
|
|
|
+ y := col.y;
|
|
|
+ z := col.z;
|
|
|
+
|
|
|
+ x = (x * (a * x + b)) / (x * (c * x + d) + e);
|
|
|
+ y = (y * (a * y + b)) / (y * (c * y + d) + e);
|
|
|
+ z = (z * (a * z + b)) / (z * (c * z + d) + e);
|
|
|
+
|
|
|
+ x = math.pow(clamp(x, 0, 1), 1.0 / 2.2);
|
|
|
+ y = math.pow(clamp(y, 0, 1), 1.0 / 2.2);
|
|
|
+ z = math.pow(clamp(z, 0, 1), 1.0 / 2.2);
|
|
|
+
|
|
|
+ return {x, y, z, col.w};
|
|
|
+}
|
|
|
+
|
|
|
+vector4_hsl_to_rgb :: proc(h, s, l: Float, a: Float = 1) -> Vector4 {
|
|
|
+ hue_to_rgb :: proc(p, q, t0: Float) -> Float {
|
|
|
+ t := math.mod(t0, 1.0);
|
|
|
+ switch {
|
|
|
+ case t < 1.0/6.0: return p + (q - p) * 6.0 * t;
|
|
|
+ case t < 1.0/2.0: return q;
|
|
|
+ case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t);
|
|
|
+ }
|
|
|
+ return p;
|
|
|
+ }
|
|
|
+
|
|
|
+ r, g, b: Float;
|
|
|
+ if s == 0 {
|
|
|
+ r = l;
|
|
|
+ g = l;
|
|
|
+ b = l;
|
|
|
+ } else {
|
|
|
+ q := l < 0.5 ? l * (1+s) : l+s - l*s;
|
|
|
+ p := 2*l - q;
|
|
|
+ r = hue_to_rgb(p, q, h + 1.0/3.0);
|
|
|
+ g = hue_to_rgb(p, q, h);
|
|
|
+ b = hue_to_rgb(p, q, h - 1.0/3.0);
|
|
|
+ }
|
|
|
+ return {r, g, b, a};
|
|
|
+}
|
|
|
+
|
|
|
+vector4_rgb_to_hsl :: proc(col: Vector4) -> Vector4 {
|
|
|
+ r := col.x;
|
|
|
+ g := col.y;
|
|
|
+ b := col.z;
|
|
|
+ a := col.w;
|
|
|
+ v_min := min(r, g, b);
|
|
|
+ v_max := max(r, g, b);
|
|
|
+ h, s, l: Float;
|
|
|
+ h = 0.0;
|
|
|
+ s = 0.0;
|
|
|
+ l = (v_min + v_max) * 0.5;
|
|
|
+
|
|
|
+ if v_max != v_min {
|
|
|
+ d: = v_max - v_min;
|
|
|
+ s = l > 0.5 ? d / (2.0 - v_max - v_min) : d / (v_max + v_min);
|
|
|
+ switch {
|
|
|
+ case v_max == r:
|
|
|
+ h = (g - b) / d + (g < b ? 6.0 : 0.0);
|
|
|
+ case v_max == g:
|
|
|
+ h = (b - r) / d + 2.0;
|
|
|
+ case v_max == b:
|
|
|
+ h = (r - g) / d + 4.0;
|
|
|
+ }
|
|
|
+
|
|
|
+ h *= 1.0/6.0;
|
|
|
+ }
|
|
|
+
|
|
|
+ return {h, s, l, a};
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+quaternion_angle_axis :: proc(angle_radians: Float, axis: Vector3) -> Quaternion {
|
|
|
+ t := angle_radians*0.5;
|
|
|
+ w := math.cos(t);
|
|
|
+ v := normalize(axis) * math.sin(t);
|
|
|
+ return quaternion(w, v.x, v.y, v.z);
|
|
|
+}
|
|
|
+
|
|
|
+quaternion_from_euler_angles :: proc(pitch, yaw, roll: Float) -> Quaternion {
|
|
|
+ p := quaternion_angle_axis(pitch, {1, 0, 0});
|
|
|
+ y := quaternion_angle_axis(yaw, {0, 1, 0});
|
|
|
+ r := quaternion_angle_axis(roll, {0, 0, 1});
|
|
|
+ return (y * p) * r;
|
|
|
+}
|
|
|
+
|
|
|
+euler_angles_from_quaternion :: proc(q: Quaternion) -> (roll, pitch, yaw: Float) {
|
|
|
+ // roll (x-axis rotation)
|
|
|
+ sinr_cosp: Float = 2 * (real(q)*imag(q) + jmag(q)*kmag(q));
|
|
|
+ cosr_cosp: Float = 1 - 2 * (imag(q)*imag(q) + jmag(q)*jmag(q));
|
|
|
+ roll = Float(math.atan2(sinr_cosp, cosr_cosp));
|
|
|
+
|
|
|
+ // pitch (y-axis rotation)
|
|
|
+ sinp: Float = 2 * (real(q)*kmag(q) - kmag(q)*imag(q));
|
|
|
+ if abs(sinp) >= 1 {
|
|
|
+ pitch = Float(math.copy_sign(math.TAU * 0.25, sinp));
|
|
|
+ } else {
|
|
|
+ pitch = Float(math.asin(sinp));
|
|
|
+ }
|
|
|
+
|
|
|
+ // yaw (z-axis rotation)
|
|
|
+ siny_cosp: Float = 2 * (real(q)*kmag(q) + imag(q)*jmag(q));
|
|
|
+ cosy_cosp: Float = 1 - 2 * (jmag(q)*jmag(q) + kmag(q)*kmag(q));
|
|
|
+ yaw = Float(math.atan2(siny_cosp, cosy_cosp));
|
|
|
+
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+quaternion_nlerp :: proc(a, b: Quaternion, t: Float) -> Quaternion {
|
|
|
+ c := a + (b-a)*quaternion(t, 0, 0, 0);
|
|
|
+ return normalize(c);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+quaternion_slerp :: proc(x, y: Quaternion, t: Float) -> Quaternion {
|
|
|
+ EPSILON :: size_of(Float) == 4 ? 1e-7 : 1e-15;
|
|
|
+
|
|
|
+ a, b := x, y;
|
|
|
+ cos_angle := dot(a, b);
|
|
|
+ if cos_angle < 0 {
|
|
|
+ b = -b;
|
|
|
+ cos_angle = -cos_angle;
|
|
|
+ }
|
|
|
+ if cos_angle > 1 - EPSILON {
|
|
|
+ return a + (b-a)*quaternion(t, 0, 0, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ angle := math.acos(cos_angle);
|
|
|
+ sin_angle := math.sin(angle);
|
|
|
+ factor_a, factor_b: Quaternion;
|
|
|
+ factor_a = quaternion(math.sin((1-t) * angle) / sin_angle, 0, 0, 0);
|
|
|
+ factor_b = quaternion(math.sin(t * angle) / sin_angle, 0, 0, 0);
|
|
|
+
|
|
|
+ return factor_a * a + factor_b * b;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+quaternion_from_matrix4 :: proc(m: Matrix4) -> Quaternion {
|
|
|
+ four_x_squared_minus_1, four_y_squared_minus_1,
|
|
|
+ four_z_squared_minus_1, four_w_squared_minus_1,
|
|
|
+ four_biggest_squared_minus_1: Float;
|
|
|
+
|
|
|
+ /* xyzw */
|
|
|
+ /* 0123 */
|
|
|
+ biggest_index := 3;
|
|
|
+ biggest_value, mult: Float;
|
|
|
+
|
|
|
+ four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
|
|
|
+ four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
|
|
|
+ four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
|
|
|
+ four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
|
|
|
+
|
|
|
+ four_biggest_squared_minus_1 = four_w_squared_minus_1;
|
|
|
+ if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
|
|
|
+ four_biggest_squared_minus_1 = four_x_squared_minus_1;
|
|
|
+ biggest_index = 0;
|
|
|
+ }
|
|
|
+ if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
|
|
|
+ four_biggest_squared_minus_1 = four_y_squared_minus_1;
|
|
|
+ biggest_index = 1;
|
|
|
+ }
|
|
|
+ if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
|
|
|
+ four_biggest_squared_minus_1 = four_z_squared_minus_1;
|
|
|
+ biggest_index = 2;
|
|
|
+ }
|
|
|
+
|
|
|
+ biggest_value = math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5;
|
|
|
+ mult = 0.25 / biggest_value;
|
|
|
+
|
|
|
+
|
|
|
+ switch biggest_index {
|
|
|
+ case 0:
|
|
|
+ return quaternion(
|
|
|
+ biggest_value,
|
|
|
+ (m[0][1] + m[1][0]) * mult,
|
|
|
+ (m[2][0] + m[0][2]) * mult,
|
|
|
+ (m[1][2] - m[2][1]) * mult,
|
|
|
+ );
|
|
|
+ case 1:
|
|
|
+ return quaternion(
|
|
|
+ (m[0][1] + m[1][0]) * mult,
|
|
|
+ biggest_value,
|
|
|
+ (m[1][2] + m[2][1]) * mult,
|
|
|
+ (m[2][0] - m[0][2]) * mult,
|
|
|
+ );
|
|
|
+ case 2:
|
|
|
+ return quaternion(
|
|
|
+ (m[2][0] + m[0][2]) * mult,
|
|
|
+ (m[1][2] + m[2][1]) * mult,
|
|
|
+ biggest_value,
|
|
|
+ (m[0][1] - m[1][0]) * mult,
|
|
|
+ );
|
|
|
+ case 3:
|
|
|
+ return quaternion(
|
|
|
+ (m[1][2] - m[2][1]) * mult,
|
|
|
+ (m[2][0] - m[0][2]) * mult,
|
|
|
+ (m[0][1] - m[1][0]) * mult,
|
|
|
+ biggest_value,
|
|
|
+ );
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+quaternion_between_two_vector3 :: proc(from, to: Vector3) -> Quaternion {
|
|
|
+ EPSILON :: size_of(Float) == 4 ? 1e-7 : 1e-15;
|
|
|
+
|
|
|
+ x := normalize(from);
|
|
|
+ y := normalize(to);
|
|
|
+
|
|
|
+ cos_theta := dot(x, y);
|
|
|
+ if abs(cos_theta + 1) < 2*EPSILON {
|
|
|
+ v := vector3_orthogonal(x);
|
|
|
+ return quaternion(0, v.x, v.y, v.z);
|
|
|
+ }
|
|
|
+ v := cross(x, y);
|
|
|
+ w := cos_theta + 1;
|
|
|
+ return Quaternion(normalize(quaternion(w, v.x, v.y, v.z)));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+matrix2_inverse_transpose :: proc(m: Matrix2) -> Matrix2 {
|
|
|
+ c: Matrix2;
|
|
|
+ d := m[0][0]*m[1][1] - m[1][0]*m[0][1];
|
|
|
+ id := 1.0/d;
|
|
|
+ c[0][0] = +m[1][1] * id;
|
|
|
+ c[0][1] = -m[0][1] * id;
|
|
|
+ c[1][0] = -m[1][0] * id;
|
|
|
+ c[1][1] = +m[0][0] * id;
|
|
|
+ return c;
|
|
|
+}
|
|
|
+matrix2_determinant :: proc(m: Matrix2) -> Float {
|
|
|
+ return m[0][0]*m[1][1] - m[1][0]*m[0][1];
|
|
|
+}
|
|
|
+
|
|
|
+matrix2_adjoint :: proc(m: Matrix2) -> Matrix2 {
|
|
|
+ c: Matrix2;
|
|
|
+ c[0][0] = +m[1][1];
|
|
|
+ c[0][1] = -m[1][0];
|
|
|
+ c[1][0] = -m[0][1];
|
|
|
+ c[1][1] = +m[0][0];
|
|
|
+ return c;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+matrix3_from_quaternion :: proc(q: Quaternion) -> Matrix3 {
|
|
|
+ xx := imag(q) * imag(q);
|
|
|
+ xy := imag(q) * jmag(q);
|
|
|
+ xz := imag(q) * kmag(q);
|
|
|
+ xw := imag(q) * real(q);
|
|
|
+ yy := jmag(q) * jmag(q);
|
|
|
+ yz := jmag(q) * kmag(q);
|
|
|
+ yw := jmag(q) * real(q);
|
|
|
+ zz := kmag(q) * kmag(q);
|
|
|
+ zw := kmag(q) * real(q);
|
|
|
+
|
|
|
+ m: Matrix3;
|
|
|
+ m[0][0] = 1 - 2 * (yy + zz);
|
|
|
+ m[1][0] = 2 * (xy - zw);
|
|
|
+ m[2][0] = 2 * (xz + yw);
|
|
|
+
|
|
|
+ m[0][1] = 2 * (xy + zw);
|
|
|
+ m[1][1] = 1 - 2 * (xx + zz);
|
|
|
+ m[2][1] = 2 * (yz - xw);
|
|
|
+
|
|
|
+ m[0][2] = 2 * (xz - yw);
|
|
|
+ m[1][2] = 2 * (yz + xw);
|
|
|
+ m[2][2] = 1 - 2 * (xx + yy);
|
|
|
+
|
|
|
+ return m;
|
|
|
+}
|
|
|
+
|
|
|
+matrix3_inverse :: proc(m: Matrix3) -> Matrix3 {
|
|
|
+ return transpose(matrix3_inverse_transpose(m));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+matrix3_determinant :: proc(m: Matrix3) -> Float {
|
|
|
+ a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
|
|
|
+ b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
|
|
|
+ c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
|
|
|
+ return a + b + c;
|
|
|
+}
|
|
|
+
|
|
|
+matrix3_adjoint :: proc(m: Matrix3) -> Matrix3 {
|
|
|
+ adjoint: Matrix3;
|
|
|
+ adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]);
|
|
|
+ adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]);
|
|
|
+ adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]);
|
|
|
+ adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]);
|
|
|
+ adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]);
|
|
|
+ adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]);
|
|
|
+ adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]);
|
|
|
+ adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]);
|
|
|
+ adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]);
|
|
|
+ return adjoint;
|
|
|
+}
|
|
|
+
|
|
|
+matrix3_inverse_transpose :: proc(m: Matrix3) -> Matrix3 {
|
|
|
+ inverse_transpose: Matrix3;
|
|
|
+
|
|
|
+ adjoint := matrix3_adjoint(m);
|
|
|
+ determinant := matrix3_determinant(m);
|
|
|
+ inv_determinant := 1.0 / determinant;
|
|
|
+ for i in 0..<3 {
|
|
|
+ for j in 0..<3 {
|
|
|
+ inverse_transpose[i][j] = adjoint[i][j] * inv_determinant;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return inverse_transpose;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+matrix3_scale :: proc(s: Vector3) -> Matrix3 {
|
|
|
+ m: Matrix3;
|
|
|
+ m[0][0] = s[0];
|
|
|
+ m[1][1] = s[1];
|
|
|
+ m[2][2] = s[2];
|
|
|
+ return m;
|
|
|
+}
|
|
|
+
|
|
|
+matrix4_from_quaternion :: proc(q: Quaternion) -> Matrix4 {
|
|
|
+ m := identity(Matrix4);
|
|
|
+
|
|
|
+ xx := imag(q) * imag(q);
|
|
|
+ xy := imag(q) * jmag(q);
|
|
|
+ xz := imag(q) * kmag(q);
|
|
|
+ xw := imag(q) * real(q);
|
|
|
+ yy := jmag(q) * jmag(q);
|
|
|
+ yz := jmag(q) * kmag(q);
|
|
|
+ yw := jmag(q) * real(q);
|
|
|
+ zz := kmag(q) * kmag(q);
|
|
|
+ zw := kmag(q) * real(q);
|
|
|
+
|
|
|
+ m[0][0] = 1 - 2 * (yy + zz);
|
|
|
+ m[1][0] = 2 * (xy - zw);
|
|
|
+ m[2][0] = 2 * (xz + yw);
|
|
|
+
|
|
|
+ m[0][1] = 2 * (xy + zw);
|
|
|
+ m[1][1] = 1 - 2 * (xx + zz);
|
|
|
+ m[2][1] = 2 * (yz - xw);
|
|
|
+
|
|
|
+ m[0][2] = 2 * (xz - yw);
|
|
|
+ m[1][2] = 2 * (yz + xw);
|
|
|
+ m[2][2] = 1 - 2 * (xx + yy);
|
|
|
+
|
|
|
+ return m;
|
|
|
+}
|
|
|
+
|
|
|
+matrix4_from_trs :: proc(t: Vector3, r: Quaternion, s: Vector3) -> Matrix4 {
|
|
|
+ translation := matrix4_translate(t);
|
|
|
+ rotation := matrix4_from_quaternion(r);
|
|
|
+ scale := matrix4_scale(s);
|
|
|
+ return mul(translation, mul(rotation, scale));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+matrix4_inverse :: proc(m: Matrix4) -> Matrix4 {
|
|
|
+ return transpose(matrix4_inverse_transpose(m));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+matrix4_minor :: proc(m: Matrix4, c, r: int) -> Float {
|
|
|
+ cut_down: Matrix3;
|
|
|
+ for i in 0..<3 {
|
|
|
+ col := i < c ? i : i+1;
|
|
|
+ for j in 0..<3 {
|
|
|
+ row := j < r ? j : j+1;
|
|
|
+ cut_down[i][j] = m[col][row];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return matrix3_determinant(cut_down);
|
|
|
+}
|
|
|
+
|
|
|
+matrix4_cofactor :: proc(m: Matrix4, c, r: int) -> Float {
|
|
|
+ sign := (c + r) % 2 == 0 ? Float(1) : Float(-1);
|
|
|
+ minor := matrix4_minor(m, c, r);
|
|
|
+ return sign * minor;
|
|
|
+}
|
|
|
+
|
|
|
+matrix4_adjoint :: proc(m: Matrix4) -> Matrix4 {
|
|
|
+ adjoint: Matrix4;
|
|
|
+ for i in 0..<4 {
|
|
|
+ for j in 0..<4 {
|
|
|
+ adjoint[i][j] = matrix4_cofactor(m, i, j);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return adjoint;
|
|
|
+}
|
|
|
+
|
|
|
+matrix4_determinant :: proc(m: Matrix4) -> Float {
|
|
|
+ adjoint := matrix4_adjoint(m);
|
|
|
+ determinant: Float = 0;
|
|
|
+ for i in 0..<4 {
|
|
|
+ determinant += m[i][0] * adjoint[i][0];
|
|
|
+ }
|
|
|
+ return determinant;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+matrix4_inverse_transpose :: proc(m: Matrix4) -> Matrix4 {
|
|
|
+ adjoint := matrix4_adjoint(m);
|
|
|
+ determinant: Float = 0;
|
|
|
+ for i in 0..<4 {
|
|
|
+ determinant += m[i][0] * adjoint[i][0];
|
|
|
+ }
|
|
|
+ inv_determinant := 1.0 / determinant;
|
|
|
+ inverse_transpose: Matrix4;
|
|
|
+ for i in 0..<4 {
|
|
|
+ for j in 0..<4 {
|
|
|
+ inverse_transpose[i][j] = adjoint[i][j] * inv_determinant;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return inverse_transpose;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -261,16 +911,15 @@ matrix4_rotate :: proc(v: Vector3, angle_radians: Float) -> Matrix4 {
|
|
|
return rot;
|
|
|
}
|
|
|
|
|
|
-scale_matrix4 :: matrix4_scale;
|
|
|
-matrix4_scale :: proc(m: Matrix4, v: Vector3) -> Matrix4 {
|
|
|
- mm := m;
|
|
|
- mm[0][0] *= v[0];
|
|
|
- mm[1][1] *= v[1];
|
|
|
- mm[2][2] *= v[2];
|
|
|
- return mm;
|
|
|
+matrix4_scale :: proc(v: Vector3) -> Matrix4 {
|
|
|
+ m: Matrix4;
|
|
|
+ m[0][0] = v[0];
|
|
|
+ m[1][1] = v[1];
|
|
|
+ m[2][2] = v[2];
|
|
|
+ m[3][3] = 1;
|
|
|
+ return m;
|
|
|
}
|
|
|
|
|
|
-look_at :: matrix4_look_at;
|
|
|
matrix4_look_at :: proc(eye, centre, up: Vector3) -> Matrix4 {
|
|
|
f := normalize(centre - eye);
|
|
|
s := normalize(cross(f, up));
|
|
@@ -284,7 +933,6 @@ matrix4_look_at :: proc(eye, centre, up: Vector3) -> Matrix4 {
|
|
|
}
|
|
|
|
|
|
|
|
|
-perspective :: matrix4_perspective;
|
|
|
matrix4_perspective :: proc(fovy, aspect, near, far: Float) -> (m: Matrix4) {
|
|
|
tan_half_fovy := math.tan(0.5 * fovy);
|
|
|
m[0][0] = 1 / (aspect*tan_half_fovy);
|
|
@@ -308,41 +956,12 @@ matrix_ortho3d :: proc(left, right, bottom, top, near, far: Float) -> (m: Matrix
|
|
|
}
|
|
|
|
|
|
|
|
|
-axis_angle :: quaternion_angle_axis;
|
|
|
-angle_axis :: quaternion_angle_axis;
|
|
|
-quaternion_angle_axis :: proc(angle_radians: Float, axis: Vector3) -> Quaternion {
|
|
|
- t := angle_radians*0.5;
|
|
|
- w := math.cos(t);
|
|
|
- v := normalize(axis) * math.sin(t);
|
|
|
- return quaternion(w, v.x, v.y, v.z);
|
|
|
-}
|
|
|
-
|
|
|
-euler_angles :: quaternion_from_euler_angles;
|
|
|
-quaternion_from_euler_angles :: proc(pitch, yaw, roll: Float) -> Quaternion {
|
|
|
- p := quaternion_angle_axis(pitch, {1, 0, 0});
|
|
|
- y := quaternion_angle_axis(yaw, {0, 1, 0});
|
|
|
- r := quaternion_angle_axis(roll, {0, 0, 1});
|
|
|
- return (y * p) * r;
|
|
|
-}
|
|
|
-
|
|
|
-euler_angles_from_quaternion :: proc(q: Quaternion) -> (roll, pitch, yaw: Float) {
|
|
|
- // roll (x-axis rotation)
|
|
|
- sinr_cosp: Float = 2 * (real(q)*imag(q) + jmag(q)*kmag(q));
|
|
|
- cosr_cosp: Float = 1 - 2 * (imag(q)*imag(q) + jmag(q)*jmag(q));
|
|
|
- roll = Float(math.atan2(sinr_cosp, cosr_cosp));
|
|
|
-
|
|
|
- // pitch (y-axis rotation)
|
|
|
- sinp: Float = 2 * (real(q)*kmag(q) - kmag(q)*imag(q));
|
|
|
- if abs(sinp) >= 1 {
|
|
|
- pitch = Float(math.copy_sign(math.TAU * 0.25, sinp));
|
|
|
- } else {
|
|
|
- pitch = Float(math.asin(sinp));
|
|
|
- }
|
|
|
-
|
|
|
- // yaw (z-axis rotation)
|
|
|
- siny_cosp: Float = 2 * (real(q)*kmag(q) + imag(q)*jmag(q));
|
|
|
- cosy_cosp: Float = 1 - 2 * (jmag(q)*jmag(q) + kmag(q)*kmag(q));
|
|
|
- yaw = Float(math.atan2(siny_cosp, cosy_cosp));
|
|
|
-
|
|
|
+matrix4_infinite_perspective :: proc(fovy, aspect, near: Float) -> (m: Matrix4) {
|
|
|
+ tan_half_fovy := math.tan(0.5 * fovy);
|
|
|
+ m[0][0] = 1 / (aspect*tan_half_fovy);
|
|
|
+ m[1][1] = 1 / (tan_half_fovy);
|
|
|
+ m[2][2] = -1;
|
|
|
+ m[2][3] = -1;
|
|
|
+ m[3][2] = -2*near;
|
|
|
return;
|
|
|
}
|