|
@@ -1,148 +1,230 @@
|
|
|
-package encoding_base32
|
|
|
-
|
|
|
-// @note(zh): Encoding utility for Base32
|
|
|
-// A secondary param can be used to supply a custom alphabet to
|
|
|
-// @link(encode) and a matching decoding table to @link(decode).
|
|
|
-// If none is supplied it just uses the standard Base32 alphabet.
|
|
|
-// Incase your specific version does not use padding, you may
|
|
|
-// truncate it from the encoded output.
|
|
|
-
|
|
|
-ENC_TABLE := [32]byte {
|
|
|
- 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
|
|
|
- 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
|
|
|
- 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
|
|
|
- 'Y', 'Z', '2', '3', '4', '5', '6', '7',
|
|
|
-}
|
|
|
-
|
|
|
-PADDING :: '='
|
|
|
-
|
|
|
-DEC_TABLE := [?]u8 {
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 26, 27, 28, 29, 30, 31, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
|
- 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
|
- 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
-}
|
|
|
-
|
|
|
-encode :: proc(data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) -> string {
|
|
|
- out_length := (len(data) + 4) / 5 * 8
|
|
|
- out := make([]byte, out_length)
|
|
|
- _encode(out, data)
|
|
|
- return string(out)
|
|
|
-}
|
|
|
-
|
|
|
-@private
|
|
|
-_encode :: proc(out, data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) {
|
|
|
- out := out
|
|
|
- data := data
|
|
|
-
|
|
|
- for len(data) > 0 {
|
|
|
- carry: byte
|
|
|
- switch len(data) {
|
|
|
- case:
|
|
|
- out[7] = ENC_TABLE[data[4] & 0x1f]
|
|
|
- carry = data[4] >> 5
|
|
|
- fallthrough
|
|
|
- case 4:
|
|
|
- out[6] = ENC_TABLE[carry | (data[3] << 3) & 0x1f]
|
|
|
- out[5] = ENC_TABLE[(data[3] >> 2) & 0x1f]
|
|
|
- carry = data[3] >> 7
|
|
|
- fallthrough
|
|
|
- case 3:
|
|
|
- out[4] = ENC_TABLE[carry | (data[2] << 1) & 0x1f]
|
|
|
- carry = (data[2] >> 4) & 0x1f
|
|
|
- fallthrough
|
|
|
- case 2:
|
|
|
- out[3] = ENC_TABLE[carry | (data[1] << 4) & 0x1f]
|
|
|
- out[2] = ENC_TABLE[(data[1] >> 1) & 0x1f]
|
|
|
- carry = (data[1] >> 6) & 0x1f
|
|
|
- fallthrough
|
|
|
- case 1:
|
|
|
- out[1] = ENC_TABLE[carry | (data[0] << 2) & 0x1f]
|
|
|
- out[0] = ENC_TABLE[data[0] >> 3]
|
|
|
- }
|
|
|
-
|
|
|
- if len(data) < 5 {
|
|
|
- out[7] = byte(PADDING)
|
|
|
- if len(data) < 4 {
|
|
|
- out[6] = byte(PADDING)
|
|
|
- out[5] = byte(PADDING)
|
|
|
- if len(data) < 3 {
|
|
|
- out[4] = byte(PADDING)
|
|
|
- if len(data) < 2 {
|
|
|
- out[3] = byte(PADDING)
|
|
|
- out[2] = byte(PADDING)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- break
|
|
|
- }
|
|
|
- data = data[5:]
|
|
|
- out = out[8:]
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-decode :: proc(data: string, DEC_TBL := DEC_TABLE, allocator := context.allocator) -> []byte #no_bounds_check{
|
|
|
- if len(data) == 0 {
|
|
|
- return nil
|
|
|
- }
|
|
|
-
|
|
|
- outi := 0
|
|
|
- data := data
|
|
|
-
|
|
|
- out := make([]byte, len(data) / 8 * 5, allocator)
|
|
|
- end := false
|
|
|
- for len(data) > 0 && !end {
|
|
|
- dbuf : [8]byte
|
|
|
- dlen := 8
|
|
|
-
|
|
|
- for j := 0; j < 8; {
|
|
|
- if len(data) == 0 {
|
|
|
- dlen, end = j, true
|
|
|
- break
|
|
|
- }
|
|
|
- input := data[0]
|
|
|
- data = data[1:]
|
|
|
- if input == byte(PADDING) && j >= 2 && len(data) < 8 {
|
|
|
- assert(!(len(data) + j < 8 - 1), "Corrupted input")
|
|
|
- for k := 0; k < 8-1-j; k +=1 {
|
|
|
- assert(len(data) < k || data[k] == byte(PADDING), "Corrupted input")
|
|
|
- }
|
|
|
- dlen, end = j, true
|
|
|
- assert(dlen != 1 && dlen != 3 && dlen != 6, "Corrupted input")
|
|
|
- break
|
|
|
- }
|
|
|
- dbuf[j] = DEC_TABLE[input]
|
|
|
- assert(dbuf[j] != 0xff, "Corrupted input")
|
|
|
- j += 1
|
|
|
- }
|
|
|
-
|
|
|
- switch dlen {
|
|
|
- case 8:
|
|
|
- out[outi + 4] = dbuf[6] << 5 | dbuf[7]
|
|
|
- fallthrough
|
|
|
- case 7:
|
|
|
- out[outi + 3] = dbuf[4] << 7 | dbuf[5] << 2 | dbuf[6] >> 3
|
|
|
- fallthrough
|
|
|
- case 5:
|
|
|
- out[outi + 2] = dbuf[3] << 4 | dbuf[4] >> 1
|
|
|
- fallthrough
|
|
|
- case 4:
|
|
|
- out[outi + 1] = dbuf[1] << 6 | dbuf[2] << 1 | dbuf[3] >> 4
|
|
|
- fallthrough
|
|
|
- case 2:
|
|
|
- out[outi + 0] = dbuf[0] << 3 | dbuf[1] >> 2
|
|
|
- }
|
|
|
- outi += 5
|
|
|
- }
|
|
|
- return out
|
|
|
-}
|
|
|
+// Base32 encoding/decoding implementation as specified in RFC 4648.
|
|
|
+// [[ More; https://www.rfc-editor.org/rfc/rfc4648.html ]]
|
|
|
+package encoding_base32
|
|
|
+
|
|
|
+// @note(zh): Encoding utility for Base32
|
|
|
+// A secondary param can be used to supply a custom alphabet to
|
|
|
+// @link(encode) and a matching decoding table to @link(decode).
|
|
|
+// If none is supplied it just uses the standard Base32 alphabet.
|
|
|
+// In case your specific version does not use padding, you may
|
|
|
+// truncate it from the encoded output.
|
|
|
+
|
|
|
+// Error represents errors that can occur during base32 decoding operations.
|
|
|
+// As per RFC 4648:
|
|
|
+// - Section 3.3: Invalid character handling
|
|
|
+// - Section 3.2: Padding requirements
|
|
|
+// - Section 6: Base32 encoding specifics (including block size requirements)
|
|
|
+Error :: enum {
|
|
|
+ None,
|
|
|
+ Invalid_Character, // Input contains characters outside the specified alphabet
|
|
|
+ Invalid_Length, // Input length is not valid for base32 (must be a multiple of 8 with proper padding)
|
|
|
+ Malformed_Input, // Input has improper structure (wrong padding position or incomplete groups)
|
|
|
+}
|
|
|
+
|
|
|
+Validate_Proc :: #type proc(c: byte) -> bool
|
|
|
+
|
|
|
+@private
|
|
|
+_validate_default :: proc(c: byte) -> bool {
|
|
|
+ return (c >= 'A' && c <= 'Z') || (c >= '2' && c <= '7')
|
|
|
+}
|
|
|
+
|
|
|
+@(rodata)
|
|
|
+ENC_TABLE := [32]byte {
|
|
|
+ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
|
|
|
+ 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
|
|
|
+ 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
|
|
|
+ 'Y', 'Z', '2', '3', '4', '5', '6', '7',
|
|
|
+}
|
|
|
+
|
|
|
+PADDING :: '='
|
|
|
+
|
|
|
+@(rodata)
|
|
|
+DEC_TABLE := [256]u8 {
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 26, 27, 28, 29, 30, 31, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
|
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
|
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
+}
|
|
|
+
|
|
|
+encode :: proc(data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) -> string {
|
|
|
+ out_length := (len(data) + 4) / 5 * 8
|
|
|
+ out := make([]byte, out_length, allocator)
|
|
|
+ _encode(out, data, ENC_TBL)
|
|
|
+ return string(out[:])
|
|
|
+}
|
|
|
+
|
|
|
+@private
|
|
|
+_encode :: proc(out, data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) {
|
|
|
+ out := out
|
|
|
+ data := data
|
|
|
+
|
|
|
+ for len(data) > 0 {
|
|
|
+ carry: byte
|
|
|
+ switch len(data) {
|
|
|
+ case:
|
|
|
+ out[7] = ENC_TBL[data[4] & 0x1f]
|
|
|
+ carry = data[4] >> 5
|
|
|
+ fallthrough
|
|
|
+ case 4:
|
|
|
+ out[6] = ENC_TBL[carry | (data[3] << 3) & 0x1f]
|
|
|
+ out[5] = ENC_TBL[(data[3] >> 2) & 0x1f]
|
|
|
+ carry = data[3] >> 7
|
|
|
+ fallthrough
|
|
|
+ case 3:
|
|
|
+ out[4] = ENC_TBL[carry | (data[2] << 1) & 0x1f]
|
|
|
+ carry = (data[2] >> 4) & 0x1f
|
|
|
+ fallthrough
|
|
|
+ case 2:
|
|
|
+ out[3] = ENC_TBL[carry | (data[1] << 4) & 0x1f]
|
|
|
+ out[2] = ENC_TBL[(data[1] >> 1) & 0x1f]
|
|
|
+ carry = (data[1] >> 6) & 0x1f
|
|
|
+ fallthrough
|
|
|
+ case 1:
|
|
|
+ out[1] = ENC_TBL[carry | (data[0] << 2) & 0x1f]
|
|
|
+ out[0] = ENC_TBL[data[0] >> 3]
|
|
|
+ }
|
|
|
+
|
|
|
+ if len(data) < 5 {
|
|
|
+ out[7] = byte(PADDING)
|
|
|
+ if len(data) < 4 {
|
|
|
+ out[6] = byte(PADDING)
|
|
|
+ out[5] = byte(PADDING)
|
|
|
+ if len(data) < 3 {
|
|
|
+ out[4] = byte(PADDING)
|
|
|
+ if len(data) < 2 {
|
|
|
+ out[3] = byte(PADDING)
|
|
|
+ out[2] = byte(PADDING)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break
|
|
|
+ }
|
|
|
+ data = data[5:]
|
|
|
+ out = out[8:]
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(optimization_mode="favor_size")
|
|
|
+decode :: proc(
|
|
|
+ data: string,
|
|
|
+ DEC_TBL := DEC_TABLE,
|
|
|
+ validate: Validate_Proc = _validate_default,
|
|
|
+ allocator := context.allocator) -> (out: []byte, err: Error) {
|
|
|
+ if len(data) == 0 {
|
|
|
+ return nil, .None
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check minimum length requirement first
|
|
|
+ if len(data) < 2 {
|
|
|
+ return nil, .Invalid_Length
|
|
|
+ }
|
|
|
+
|
|
|
+ // Validate characters using provided validation function
|
|
|
+ for i := 0; i < len(data); i += 1 {
|
|
|
+ c := data[i]
|
|
|
+ if c == byte(PADDING) {
|
|
|
+ break
|
|
|
+ }
|
|
|
+ if !validate(c) {
|
|
|
+ return nil, .Invalid_Character
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Validate padding and length
|
|
|
+ data_len := len(data)
|
|
|
+ padding_count := 0
|
|
|
+ for i := data_len - 1; i >= 0; i -= 1 {
|
|
|
+ if data[i] != byte(PADDING) {
|
|
|
+ break
|
|
|
+ }
|
|
|
+ padding_count += 1
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check for proper padding and length combinations
|
|
|
+ if padding_count > 0 {
|
|
|
+ // Verify no padding in the middle
|
|
|
+ for i := 0; i < data_len - padding_count; i += 1 {
|
|
|
+ if data[i] == byte(PADDING) {
|
|
|
+ return nil, .Malformed_Input
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ content_len := data_len - padding_count
|
|
|
+ mod8 := content_len % 8
|
|
|
+ required_padding: int
|
|
|
+ switch mod8 {
|
|
|
+ case 2: required_padding = 6 // 2 chars need 6 padding chars
|
|
|
+ case 4: required_padding = 4 // 4 chars need 4 padding chars
|
|
|
+ case 5: required_padding = 3 // 5 chars need 3 padding chars
|
|
|
+ case 7: required_padding = 1 // 7 chars need 1 padding char
|
|
|
+ case: required_padding = 0
|
|
|
+ }
|
|
|
+
|
|
|
+ if required_padding > 0 {
|
|
|
+ if padding_count != required_padding {
|
|
|
+ return nil, .Malformed_Input
|
|
|
+ }
|
|
|
+ } else if mod8 != 0 {
|
|
|
+ return nil, .Malformed_Input
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // No padding - must be multiple of 8
|
|
|
+ if data_len % 8 != 0 {
|
|
|
+ return nil, .Malformed_Input
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Calculate decoded length: 5 bytes for every 8 input chars
|
|
|
+ input_chars := data_len - padding_count
|
|
|
+ out_len := input_chars * 5 / 8
|
|
|
+ out = make([]byte, out_len, allocator)
|
|
|
+ defer if err != .None {
|
|
|
+ delete(out)
|
|
|
+ }
|
|
|
+
|
|
|
+ // Process input in 8-byte blocks
|
|
|
+ outi := 0
|
|
|
+ for i := 0; i < input_chars; i += 8 {
|
|
|
+ buf: [8]byte
|
|
|
+ block_size := min(8, input_chars - i)
|
|
|
+
|
|
|
+ // Decode block
|
|
|
+ for j := 0; j < block_size; j += 1 {
|
|
|
+ buf[j] = DEC_TBL[data[i + j]]
|
|
|
+ }
|
|
|
+
|
|
|
+ // Convert to output bytes based on block size
|
|
|
+ bytes_to_write := block_size * 5 / 8
|
|
|
+ switch block_size {
|
|
|
+ case 8:
|
|
|
+ out[outi + 4] = (buf[6] << 5) | buf[7]
|
|
|
+ fallthrough
|
|
|
+ case 7:
|
|
|
+ out[outi + 3] = (buf[4] << 7) | (buf[5] << 2) | (buf[6] >> 3)
|
|
|
+ fallthrough
|
|
|
+ case 5:
|
|
|
+ out[outi + 2] = (buf[3] << 4) | (buf[4] >> 1)
|
|
|
+ fallthrough
|
|
|
+ case 4:
|
|
|
+ out[outi + 1] = (buf[1] << 6) | (buf[2] << 1) | (buf[3] >> 4)
|
|
|
+ fallthrough
|
|
|
+ case 2:
|
|
|
+ out[outi] = (buf[0] << 3) | (buf[1] >> 2)
|
|
|
+ }
|
|
|
+ outi += bytes_to_write
|
|
|
+ }
|
|
|
+
|
|
|
+ return
|
|
|
+}
|