Browse Source

Merge pull request #3928 from Yawning/feature/aes-ni

core/crypto: Support AES-NI + PCLMUL
Jeroen van Rijn 1 year ago
parent
commit
3a75a8dd1b

+ 1 - 32
.gitignore

@@ -24,38 +24,6 @@ bld/
 ![Cc]ore/[Ll]og/
 tests/documentation/verify/
 tests/documentation/all.odin-doc
-tests/internal/test_map
-tests/internal/test_pow
-tests/internal/test_rtti
-tests/core/test_base64
-tests/core/test_cbor
-tests/core/test_core_compress
-tests/core/test_core_container
-tests/core/test_core_filepath
-tests/core/test_core_fmt
-tests/core/test_core_i18n
-tests/core/test_core_image
-tests/core/test_core_libc
-tests/core/test_core_match
-tests/core/test_core_math
-tests/core/test_core_net
-tests/core/test_core_os_exit
-tests/core/test_core_reflect
-tests/core/test_core_strings
-tests/core/test_core_time
-tests/core/test_crypto
-tests/core/test_hash
-tests/core/test_hex
-tests/core/test_hxa
-tests/core/test_json
-tests/core/test_linalg_glsl_math
-tests/core/test_noise
-tests/core/test_varint
-tests/core/test_xml
-tests/core/test_core_slice
-tests/core/test_core_thread
-tests/core/test_core_runtime
-tests/vendor/vendor_botan
 # Visual Studio 2015 cache/options directory
 .vs/
 # Visual Studio Code options directory
@@ -63,6 +31,7 @@ tests/vendor/vendor_botan
 # Uncomment if you have tasks that create the project's static files in wwwroot
 #wwwroot/
 demo
+benchmark
 
 # MSTest test Results
 [Tt]est[Rr]esult*/

+ 25 - 0
core/bytes/bytes.odin

@@ -1167,3 +1167,28 @@ fields_proc :: proc(s: []byte, f: proc(rune) -> bool, allocator := context.alloc
 
 	return subslices[:]
 }
+
+// alias returns true iff a and b have a non-zero length, and any part of
+// a overlaps with b.
+alias :: proc "contextless" (a, b: []byte) -> bool {
+	a_len, b_len := len(a), len(b)
+	if a_len == 0 || b_len == 0 {
+		return false
+	}
+
+	a_start, b_start := uintptr(raw_data(a)), uintptr(raw_data(b))
+	a_end, b_end := a_start + uintptr(a_len-1), b_start + uintptr(b_len-1)
+
+	return a_start <= b_end && b_start <= a_end
+}
+
+// alias_inexactly returns true iff a and b have a non-zero length,
+// the base pointer of a and b are NOT equal, and any part of a overlaps
+// with b (ie: `alias(a, b)` with an exception that returns false for
+// `a == b`, `b = a[:len(a)-69]` and similar conditions).
+alias_inexactly :: proc "contextless" (a, b: []byte) -> bool {
+	if raw_data(a) == raw_data(b) {
+		return false
+	}
+	return alias(a, b)
+}

+ 2 - 12
core/crypto/_aes/ct64/api.odin

@@ -7,9 +7,8 @@ STRIDE :: 4
 
 // Context is a keyed AES (ECB) instance.
 Context :: struct {
-	_sk_exp:         [120]u64,
-	_num_rounds:     int,
-	_is_initialized: bool,
+	_sk_exp:     [120]u64,
+	_num_rounds: int,
 }
 
 // init initializes a context for AES with the provided key.
@@ -18,13 +17,10 @@ init :: proc(ctx: ^Context, key: []byte) {
 
 	ctx._num_rounds = keysched(skey[:], key)
 	skey_expand(ctx._sk_exp[:], skey[:], ctx._num_rounds)
-	ctx._is_initialized = true
 }
 
 // encrypt_block sets `dst` to `AES-ECB-Encrypt(src)`.
 encrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
-	assert(ctx._is_initialized)
-
 	q: [8]u64
 	load_blockx1(&q, src)
 	_encrypt(&q, ctx._sk_exp[:], ctx._num_rounds)
@@ -33,8 +29,6 @@ encrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
 
 // encrypt_block sets `dst` to `AES-ECB-Decrypt(src)`.
 decrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
-	assert(ctx._is_initialized)
-
 	q: [8]u64
 	load_blockx1(&q, src)
 	_decrypt(&q, ctx._sk_exp[:], ctx._num_rounds)
@@ -43,8 +37,6 @@ decrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
 
 // encrypt_blocks sets `dst` to `AES-ECB-Encrypt(src[0], .. src[n])`.
 encrypt_blocks :: proc(ctx: ^Context, dst, src: [][]byte) {
-	assert(ctx._is_initialized)
-
 	q: [8]u64 = ---
 	src, dst := src, dst
 
@@ -67,8 +59,6 @@ encrypt_blocks :: proc(ctx: ^Context, dst, src: [][]byte) {
 
 // decrypt_blocks sets dst to `AES-ECB-Decrypt(src[0], .. src[n])`.
 decrypt_blocks :: proc(ctx: ^Context, dst, src: [][]byte) {
-	assert(ctx._is_initialized)
-
 	q: [8]u64 = ---
 	src, dst := src, dst
 

+ 43 - 0
core/crypto/_aes/hw_intel/api.odin

@@ -0,0 +1,43 @@
+//+build amd64
+package aes_hw_intel
+
+import "core:sys/info"
+
+// is_supporte returns true iff hardware accelerated AES
+// is supported.
+is_supported :: proc "contextless" () -> bool {
+	features, ok := info.cpu_features.?
+	if !ok {
+		return false
+	}
+
+	// Note: Everything with AES-NI and PCLMULQDQ has support for
+	// the required SSE extxtensions.
+	req_features :: info.CPU_Features{
+		.sse2,
+		.ssse3,
+		.sse41,
+		.aes,
+		.pclmulqdq,
+	}
+	return features >= req_features
+}
+
+// Context is a keyed AES (ECB) instance.
+Context :: struct {
+	// Note: The ideal thing to do is for the expanded round keys to be
+	// arrays of `__m128i`, however that implies alignment (or using AVX).
+	//
+	// All the people using e-waste processors that don't support an
+	// insturction set that has been around for over 10 years are why
+	// we can't have nice things.
+	_sk_exp_enc: [15][16]byte,
+	_sk_exp_dec: [15][16]byte,
+	_num_rounds: int,
+}
+
+// init initializes a context for AES with the provided key.
+init :: proc(ctx: ^Context, key: []byte) {
+	keysched(ctx, key)
+}
+

+ 281 - 0
core/crypto/_aes/hw_intel/ghash.odin

@@ -0,0 +1,281 @@
+// Copyright (c) 2017 Thomas Pornin <[email protected]>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+//   1. Redistributions of source code must retain the above copyright
+//      notice, this list of conditions and the following disclaimer.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHORS “AS IS” AND ANY EXPRESS OR
+// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
+// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+//+build amd64
+package aes_hw_intel
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:simd"
+import "core:simd/x86"
+
+@(private = "file")
+GHASH_STRIDE_HW :: 4
+@(private = "file")
+GHASH_STRIDE_BYTES_HW :: GHASH_STRIDE_HW * _aes.GHASH_BLOCK_SIZE
+
+// GHASH is defined over elements of GF(2^128) with "full little-endian"
+// representation: leftmost byte is least significant, and, within each
+// byte, leftmost _bit_ is least significant. The natural ordering in
+// x86 is "mixed little-endian": bytes are ordered from least to most
+// significant, but bits within a byte are in most-to-least significant
+// order. Going to full little-endian representation would require
+// reversing bits within each byte, which is doable but expensive.
+//
+// Instead, we go to full big-endian representation, by swapping bytes
+// around, which is done with a single _mm_shuffle_epi8() opcode (it
+// comes with SSSE3; all CPU that offer pclmulqdq also have SSSE3). We
+// can use a full big-endian representation because in a carryless
+// multiplication, we have a nice bit reversal property:
+//
+// rev_128(x) * rev_128(y) = rev_255(x * y)
+//
+// So by using full big-endian, we still get the right result, except
+// that it is right-shifted by 1 bit. The left-shift is relatively
+// inexpensive, and it can be mutualised.
+//
+// Since SSE2 opcodes do not have facilities for shitfting full 128-bit
+// values with bit precision, we have to break down values into 64-bit
+// chunks. We number chunks from 0 to 3 in left to right order.
+
+@(private = "file")
+byteswap_index := transmute(x86.__m128i)simd.i8x16{
+	// Note: simd.i8x16 is reverse order from x86._mm_set_epi8.
+	15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
+}
+
+@(private = "file", require_results, enable_target_feature = "sse2,ssse3")
+byteswap :: #force_inline proc "contextless" (x: x86.__m128i) -> x86.__m128i {
+	return x86._mm_shuffle_epi8(x, byteswap_index)
+}
+
+// From a 128-bit value kw, compute kx as the XOR of the two 64-bit
+// halves of kw (into the right half of kx; left half is unspecified),
+// and return kx.
+@(private = "file", require_results, enable_target_feature = "sse2")
+bk :: #force_inline proc "contextless" (kw: x86.__m128i) -> x86.__m128i {
+	return x86._mm_xor_si128(kw, x86._mm_shuffle_epi32(kw, 0x0e))
+}
+
+// Combine two 64-bit values (k0:k1) into a 128-bit (kw) value and
+// the XOR of the two values (kx), and return (kw, kx).
+@(private = "file", enable_target_feature = "sse2")
+pbk :: #force_inline proc "contextless" (k0, k1: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+	kw := x86._mm_unpacklo_epi64(k1, k0)
+	kx := x86._mm_xor_si128(k0, k1)
+	return kw, kx
+}
+
+// Left-shift by 1 bit a 256-bit value (in four 64-bit words).
+@(private = "file", require_results, enable_target_feature = "sse2")
+sl_256 :: #force_inline proc "contextless" (x0, x1, x2, x3: x86.__m128i) -> (x86.__m128i, x86.__m128i, x86.__m128i, x86.__m128i) {
+	x0, x1, x2, x3 := x0, x1, x2, x3
+
+	x0 = x86._mm_or_si128(x86._mm_slli_epi64(x0, 1), x86._mm_srli_epi64(x1, 63))
+	x1 = x86._mm_or_si128(x86._mm_slli_epi64(x1, 1), x86._mm_srli_epi64(x2, 63))
+	x2 = x86._mm_or_si128(x86._mm_slli_epi64(x2, 1), x86._mm_srli_epi64(x3, 63))
+	x3 = x86._mm_slli_epi64(x3, 1)
+
+	return x0, x1, x2, x3
+}
+
+// Perform reduction in GF(2^128).
+@(private = "file", require_results, enable_target_feature = "sse2")
+reduce_f128 :: #force_inline proc "contextless" (x0, x1, x2, x3: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+	x0, x1, x2 := x0, x1, x2
+
+	x1 = x86._mm_xor_si128(
+		x1,
+		x86._mm_xor_si128(
+			x86._mm_xor_si128(
+				x3,
+				x86._mm_srli_epi64(x3, 1)),
+			x86._mm_xor_si128(
+				x86._mm_srli_epi64(x3, 2),
+				x86._mm_srli_epi64(x3, 7))))
+	x2 = x86._mm_xor_si128(
+		x86._mm_xor_si128(
+			x2,
+			x86._mm_slli_epi64(x3, 63)),
+		x86._mm_xor_si128(
+			x86._mm_slli_epi64(x3, 62),
+			x86._mm_slli_epi64(x3, 57)))
+	x0 = x86._mm_xor_si128(
+		x0,
+		x86._mm_xor_si128(
+			x86._mm_xor_si128(
+				x2,
+				x86._mm_srli_epi64(x2, 1)),
+			x86._mm_xor_si128(
+				x86._mm_srli_epi64(x2, 2),
+				x86._mm_srli_epi64(x2, 7))))
+	x1 = x86._mm_xor_si128(
+		x86._mm_xor_si128(
+			x1,
+			x86._mm_slli_epi64(x2, 63)),
+		x86._mm_xor_si128(
+			x86._mm_slli_epi64(x2, 62),
+			x86._mm_slli_epi64(x2, 57)))
+
+	return x0, x1
+}
+
+// Square value kw in GF(2^128) into (dw,dx).
+@(private = "file", require_results, enable_target_feature = "sse2,pclmul")
+square_f128 :: #force_inline proc "contextless" (kw: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+	z1 := x86._mm_clmulepi64_si128(kw, kw, 0x11)
+	z3 := x86._mm_clmulepi64_si128(kw, kw, 0x00)
+	z0 := x86._mm_shuffle_epi32(z1, 0x0E)
+	z2 := x86._mm_shuffle_epi32(z3, 0x0E)
+	z0, z1, z2, z3 = sl_256(z0, z1, z2, z3)
+	z0, z1 = reduce_f128(z0, z1, z2, z3)
+	return pbk(z0, z1)
+}
+
+// ghash calculates the GHASH of data, with the key `key`, and input `dst`
+// and `data`, and stores the resulting digest in `dst`.
+//
+// Note: `dst` is both an input and an output, to support easy implementation
+// of GCM.
+@(enable_target_feature = "sse2,ssse3,pclmul")
+ghash :: proc "contextless" (dst, key, data: []byte) #no_bounds_check {
+	if len(dst) != _aes.GHASH_BLOCK_SIZE || len(key) != _aes.GHASH_BLOCK_SIZE {
+		intrinsics.trap()
+	}
+
+	// Note: BearSSL opts to copy the remainder into a zero-filled
+	// 64-byte buffer.  We do something slightly more simple.
+
+	// Load key and dst (h and y).
+	yw := intrinsics.unaligned_load((^x86.__m128i)(raw_data(dst)))
+	h1w := intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+	yw = byteswap(yw)
+	h1w = byteswap(h1w)
+	h1x := bk(h1w)
+
+	// Process 4 blocks at a time
+	buf := data
+	l := len(buf)
+	if l >= GHASH_STRIDE_BYTES_HW {
+		// Compute h2 = h^2
+		h2w, h2x := square_f128(h1w)
+
+		// Compute h3 = h^3 = h*(h^2)
+		t1 := x86._mm_clmulepi64_si128(h1w, h2w, 0x11)
+		t3 := x86._mm_clmulepi64_si128(h1w, h2w, 0x00)
+		t2 := x86._mm_xor_si128(
+			x86._mm_clmulepi64_si128(h1x, h2x, 0x00),
+			x86._mm_xor_si128(t1, t3))
+		t0 := x86._mm_shuffle_epi32(t1, 0x0E)
+		t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
+		t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
+		t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
+		t0, t1 = reduce_f128(t0, t1, t2, t3)
+		h3w, h3x := pbk(t0, t1)
+
+		// Compute h4 = h^4 = (h^2)^2
+		h4w, h4x := square_f128(h2w)
+
+		for l >= GHASH_STRIDE_BYTES_HW {
+			aw0 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf)))
+			aw1 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[16:])))
+			aw2 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[32:])))
+			aw3 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[48:])))
+			aw0 = byteswap(aw0)
+			aw1 = byteswap(aw1)
+			aw2 = byteswap(aw2)
+			aw3 = byteswap(aw3)
+			buf, l = buf[GHASH_STRIDE_BYTES_HW:], l - GHASH_STRIDE_BYTES_HW
+
+			aw0 = x86._mm_xor_si128(aw0, yw)
+			ax1 := bk(aw1)
+			ax2 := bk(aw2)
+			ax3 := bk(aw3)
+			ax0 := bk(aw0)
+
+			t1 = x86._mm_xor_si128(
+				x86._mm_xor_si128(
+					x86._mm_clmulepi64_si128(aw0, h4w, 0x11),
+					x86._mm_clmulepi64_si128(aw1, h3w, 0x11)),
+				x86._mm_xor_si128(
+					x86._mm_clmulepi64_si128(aw2, h2w, 0x11),
+					x86._mm_clmulepi64_si128(aw3, h1w, 0x11)))
+			t3 = x86._mm_xor_si128(
+				x86._mm_xor_si128(
+					x86._mm_clmulepi64_si128(aw0, h4w, 0x00),
+					x86._mm_clmulepi64_si128(aw1, h3w, 0x00)),
+				x86._mm_xor_si128(
+					x86._mm_clmulepi64_si128(aw2, h2w, 0x00),
+					x86._mm_clmulepi64_si128(aw3, h1w, 0x00)))
+			t2 = x86._mm_xor_si128(
+				x86._mm_xor_si128(
+					x86._mm_clmulepi64_si128(ax0, h4x, 0x00),
+					x86._mm_clmulepi64_si128(ax1, h3x, 0x00)),
+				x86._mm_xor_si128(
+					x86._mm_clmulepi64_si128(ax2, h2x, 0x00),
+					x86._mm_clmulepi64_si128(ax3, h1x, 0x00)))
+			t2 = x86._mm_xor_si128(t2, x86._mm_xor_si128(t1, t3))
+			t0 = x86._mm_shuffle_epi32(t1, 0x0E)
+			t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
+			t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
+			t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
+			t0, t1 = reduce_f128(t0, t1, t2, t3)
+			yw = x86._mm_unpacklo_epi64(t1, t0)
+		}
+	}
+
+	// Process 1 block at a time
+	src: []byte
+	for l > 0 {
+		if l >= _aes.GHASH_BLOCK_SIZE {
+			src = buf
+			buf = buf[_aes.GHASH_BLOCK_SIZE:]
+			l -= _aes.GHASH_BLOCK_SIZE
+		} else {
+			tmp: [_aes.GHASH_BLOCK_SIZE]byte
+			copy(tmp[:], buf)
+			src = tmp[:]
+			l = 0
+		}
+
+		aw := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
+		aw = byteswap(aw)
+
+		aw = x86._mm_xor_si128(aw, yw)
+		ax := bk(aw)
+
+		t1 := x86._mm_clmulepi64_si128(aw, h1w, 0x11)
+		t3 := x86._mm_clmulepi64_si128(aw, h1w, 0x00)
+		t2 := x86._mm_clmulepi64_si128(ax, h1x, 0x00)
+		t2 = x86._mm_xor_si128(t2, x86._mm_xor_si128(t1, t3))
+		t0 := x86._mm_shuffle_epi32(t1, 0x0E)
+		t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
+		t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
+		t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
+		t0, t1 = reduce_f128(t0, t1, t2, t3)
+		yw = x86._mm_unpacklo_epi64(t1, t0)
+	}
+
+	// Write back the hash (dst, aka y)
+	yw = byteswap(yw)
+	intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), yw)
+}

+ 178 - 0
core/crypto/_aes/hw_intel/hw_intel_keysched.odin

@@ -0,0 +1,178 @@
+// Copyright (c) 2017 Thomas Pornin <[email protected]>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+//   1. Redistributions of source code must retain the above copyright
+//      notice, this list of conditions and the following disclaimer.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHORS “AS IS” AND ANY EXPRESS OR
+// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
+// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+//+build amd64
+package aes_hw_intel
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:mem"
+import "core:simd/x86"
+
+// Intel AES-NI based implementation.  Inspiration taken from BearSSL.
+//
+// Note: This assumes that the SROA optimization pass is enabled to be
+// anything resembling performat otherwise, LLVM will not elide a massive
+// number of redundant loads/stores it generates for every intrinsic call.
+
+@(private = "file", require_results, enable_target_feature = "sse2")
+expand_step128 :: #force_inline proc(k1, k2: x86.__m128i) -> x86.__m128i {
+	k1, k2 := k1, k2
+
+	k2 = x86._mm_shuffle_epi32(k2, 0xff)
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	return x86._mm_xor_si128(k1, k2)
+}
+
+@(private = "file", require_results, enable_target_feature = "sse,sse2")
+expand_step192a :: #force_inline proc (k1_, k2_: ^x86.__m128i, k3: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+	k1, k2, k3 := k1_^, k2_^, k3
+
+	k3 = x86._mm_shuffle_epi32(k3, 0x55)
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, k3)
+
+	tmp := k2
+	k2 = x86._mm_xor_si128(k2, x86._mm_slli_si128(k2, 0x04))
+	k2 = x86._mm_xor_si128(k2, x86._mm_shuffle_epi32(k1, 0xff))
+
+	k1_, k2_ := k1_, k2_
+	k1_^, k2_^ = k1, k2
+
+	r1 := transmute(x86.__m128i)(x86._mm_shuffle_ps(transmute(x86.__m128)(tmp), transmute(x86.__m128)(k1), 0x44))
+	r2 := transmute(x86.__m128i)(x86._mm_shuffle_ps(transmute(x86.__m128)(k1), transmute(x86.__m128)(k2), 0x4e))
+
+	return r1, r2
+}
+
+@(private = "file", require_results, enable_target_feature = "sse2")
+expand_step192b :: #force_inline proc (k1_, k2_: ^x86.__m128i, k3: x86.__m128i) -> x86.__m128i {
+	k1, k2, k3 := k1_^, k2_^, k3
+
+	k3 = x86._mm_shuffle_epi32(k3, 0x55)
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, k3)
+
+	k2 = x86._mm_xor_si128(k2, x86._mm_slli_si128(k2, 0x04))
+	k2 = x86._mm_xor_si128(k2, x86._mm_shuffle_epi32(k1, 0xff))
+
+	k1_, k2_ := k1_, k2_
+	k1_^, k2_^ = k1, k2
+
+	return k1
+}
+
+@(private = "file", require_results, enable_target_feature = "sse2")
+expand_step256b :: #force_inline proc(k1, k2: x86.__m128i) -> x86.__m128i {
+	k1, k2 := k1, k2
+
+	k2 = x86._mm_shuffle_epi32(k2, 0xaa)
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+	return x86._mm_xor_si128(k1, k2)
+}
+
+@(private = "file", enable_target_feature = "aes")
+derive_dec_keys :: proc(ctx: ^Context, sks: ^[15]x86.__m128i, num_rounds: int) {
+	intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[0]), sks[num_rounds])
+	for i in 1 ..< num_rounds {
+		tmp := x86._mm_aesimc_si128(sks[i])
+		intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[num_rounds - i]), tmp)
+	}
+	intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[num_rounds]), sks[0])
+}
+
+@(private, enable_target_feature = "sse,sse2,aes")
+keysched :: proc(ctx: ^Context, key: []byte) {
+	sks: [15]x86.__m128i = ---
+
+	// Compute the encryption keys.
+	num_rounds, key_len := 0, len(key)
+	switch key_len {
+	case _aes.KEY_SIZE_128:
+		sks[0] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+		sks[1] = expand_step128(sks[0], x86._mm_aeskeygenassist_si128(sks[0], 0x01))
+		sks[2] = expand_step128(sks[1], x86._mm_aeskeygenassist_si128(sks[1], 0x02))
+		sks[3] = expand_step128(sks[2], x86._mm_aeskeygenassist_si128(sks[2], 0x04))
+		sks[4] = expand_step128(sks[3], x86._mm_aeskeygenassist_si128(sks[3], 0x08))
+		sks[5] = expand_step128(sks[4], x86._mm_aeskeygenassist_si128(sks[4], 0x10))
+		sks[6] = expand_step128(sks[5], x86._mm_aeskeygenassist_si128(sks[5], 0x20))
+		sks[7] = expand_step128(sks[6], x86._mm_aeskeygenassist_si128(sks[6], 0x40))
+		sks[8] = expand_step128(sks[7], x86._mm_aeskeygenassist_si128(sks[7], 0x80))
+		sks[9] = expand_step128(sks[8], x86._mm_aeskeygenassist_si128(sks[8], 0x1b))
+		sks[10] = expand_step128(sks[9], x86._mm_aeskeygenassist_si128(sks[9], 0x36))
+		num_rounds = _aes.ROUNDS_128
+	case _aes.KEY_SIZE_192:
+		k0 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+		k1 := x86.__m128i{
+			intrinsics.unaligned_load((^i64)(raw_data(key[16:]))),
+			0,
+		}
+		sks[0] = k0
+		sks[1], sks[2] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x01))
+		sks[3] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x02))
+		sks[4], sks[5] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x04))
+		sks[6] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x08))
+		sks[7], sks[8] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x10))
+		sks[9] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x20))
+		sks[10], sks[11] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x40))
+		sks[12] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x80))
+		num_rounds = _aes.ROUNDS_192
+	case _aes.KEY_SIZE_256:
+		sks[0] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+		sks[1] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key[16:])))
+		sks[2] = expand_step128(sks[0], x86._mm_aeskeygenassist_si128(sks[1], 0x01))
+		sks[3] = expand_step256b(sks[1], x86._mm_aeskeygenassist_si128(sks[2], 0x01))
+		sks[4] = expand_step128(sks[2], x86._mm_aeskeygenassist_si128(sks[3], 0x02))
+		sks[5] = expand_step256b(sks[3], x86._mm_aeskeygenassist_si128(sks[4], 0x02))
+		sks[6] = expand_step128(sks[4], x86._mm_aeskeygenassist_si128(sks[5], 0x04))
+		sks[7] = expand_step256b(sks[5], x86._mm_aeskeygenassist_si128(sks[6], 0x04))
+		sks[8] = expand_step128(sks[6], x86._mm_aeskeygenassist_si128(sks[7], 0x08))
+		sks[9] = expand_step256b(sks[7], x86._mm_aeskeygenassist_si128(sks[8], 0x08))
+		sks[10] = expand_step128(sks[8], x86._mm_aeskeygenassist_si128(sks[9], 0x10))
+		sks[11] = expand_step256b(sks[9], x86._mm_aeskeygenassist_si128(sks[10], 0x10))
+		sks[12] = expand_step128(sks[10], x86._mm_aeskeygenassist_si128(sks[11], 0x20))
+		sks[13] = expand_step256b(sks[11], x86._mm_aeskeygenassist_si128(sks[12], 0x20))
+		sks[14] = expand_step128(sks[12], x86._mm_aeskeygenassist_si128(sks[13], 0x40))
+		num_rounds = _aes.ROUNDS_256
+	case:
+		panic("crypto/aes: invalid AES key size")
+	}
+	for i in 0 ..= num_rounds {
+		intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_enc[i]), sks[i])
+	}
+
+	// Compute the decryption keys.  GCM and CTR do not need this, however
+	// ECB, CBC, OCB3, etc do.
+	derive_dec_keys(ctx, &sks, num_rounds)
+
+	ctx._num_rounds = num_rounds
+
+	mem.zero_explicit(&sks, size_of(sks))
+}

+ 0 - 1
core/crypto/aes/aes.odin

@@ -6,7 +6,6 @@ See:
 - https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
 - https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
 */
-
 package aes
 
 import "core:crypto/_aes"

+ 17 - 15
core/crypto/aes/aes_ctr.odin

@@ -1,5 +1,6 @@
 package aes
 
+import "core:bytes"
 import "core:crypto/_aes/ct64"
 import "core:encoding/endian"
 import "core:math/bits"
@@ -37,14 +38,15 @@ init_ctr :: proc(ctx: ^Context_CTR, key, iv: []byte, impl := Implementation.Hard
 xor_bytes_ctr :: proc(ctx: ^Context_CTR, dst, src: []byte) {
 	assert(ctx._is_initialized)
 
-	// TODO: Enforcing that dst and src alias exactly or not at all
-	// is a good idea, though odd aliasing should be extremely uncommon.
-
 	src, dst := src, dst
 	if dst_len := len(dst); dst_len < len(src) {
 		src = src[:dst_len]
 	}
 
+	if bytes.alias_inexactly(dst, src) {
+		panic("crypto/aes: dst and src alias inexactly")
+	}
+
 	for remaining := len(src); remaining > 0; {
 		// Process multiple blocks at once
 		if ctx._off == BLOCK_SIZE {
@@ -123,8 +125,8 @@ reset_ctr :: proc "contextless" (ctx: ^Context_CTR) {
 	ctx._is_initialized = false
 }
 
-@(private)
-ctr_blocks :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) {
+@(private = "file")
+ctr_blocks :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) #no_bounds_check {
 	// Use the optimized hardware implementation if available.
 	if _, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
 		ctr_blocks_hw(ctx, dst, src, nr_blocks)
@@ -183,17 +185,17 @@ xor_blocks :: #force_inline proc "contextless" (dst, src: []byte, blocks: [][]by
 	// performance of this implementation matters to where that
 	// optimization would be worth it, use chacha20poly1305, or a
 	// CPU that isn't e-waste.
-	if src != nil {
-		#no_bounds_check {
-			for i in 0 ..< len(blocks) {
-				off := i * BLOCK_SIZE
-				for j in 0 ..< BLOCK_SIZE {
-					blocks[i][j] ~= src[off + j]
+	#no_bounds_check {
+		if src != nil {
+				for i in 0 ..< len(blocks) {
+					off := i * BLOCK_SIZE
+					for j in 0 ..< BLOCK_SIZE {
+						blocks[i][j] ~= src[off + j]
+					}
 				}
-			}
 		}
-	}
-	for i in 0 ..< len(blocks) {
-		copy(dst[i * BLOCK_SIZE:], blocks[i])
+		for i in 0 ..< len(blocks) {
+			copy(dst[i * BLOCK_SIZE:], blocks[i])
+		}
 	}
 }

+ 151 - 0
core/crypto/aes/aes_ctr_hw_intel.odin

@@ -0,0 +1,151 @@
+//+build amd64
+package aes
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:math/bits"
+import "core:mem"
+import "core:simd/x86"
+
+@(private)
+CTR_STRIDE_HW :: 4
+@(private)
+CTR_STRIDE_BYTES_HW :: CTR_STRIDE_HW * BLOCK_SIZE
+
+@(private, enable_target_feature = "sse2,aes")
+ctr_blocks_hw :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) #no_bounds_check {
+	hw_ctx := ctx._impl.(Context_Impl_Hardware)
+
+	sks: [15]x86.__m128i = ---
+	for i in 0 ..= hw_ctx._num_rounds {
+		sks[i] = intrinsics.unaligned_load((^x86.__m128i)(&hw_ctx._sk_exp_enc[i]))
+	}
+
+	hw_inc_ctr := #force_inline proc "contextless" (hi, lo: u64) -> (x86.__m128i, u64, u64) {
+		ret := x86.__m128i{
+			i64(intrinsics.byte_swap(hi)),
+			i64(intrinsics.byte_swap(lo)),
+		}
+
+		hi, lo := hi, lo
+		carry: u64
+
+		lo, carry = bits.add_u64(lo, 1, 0)
+		hi, _ = bits.add_u64(hi, 0, carry)
+		return ret, hi, lo
+	}
+
+	// The latency of AESENC depends on mfg and microarchitecture:
+	// - 7 -> up to Broadwell
+	// - 4 -> AMD and Skylake - Cascade Lake
+	// - 3 -> Ice Lake and newer
+	//
+	// This implementation does 4 blocks at once, since performance
+	// should be "adequate" across most CPUs.
+
+	src, dst := src, dst
+	nr_blocks := nr_blocks
+	ctr_hi, ctr_lo := ctx._ctr_hi, ctx._ctr_lo
+
+	blks: [CTR_STRIDE_HW]x86.__m128i = ---
+	for nr_blocks >= CTR_STRIDE_HW {
+		#unroll for i in 0..< CTR_STRIDE_HW {
+			blks[i], ctr_hi, ctr_lo = hw_inc_ctr(ctr_hi, ctr_lo)
+		}
+
+		#unroll for i in 0 ..< CTR_STRIDE_HW {
+			blks[i] = x86._mm_xor_si128(blks[i], sks[0])
+		}
+		#unroll for i in 1 ..= 9 {
+			#unroll for j in 0 ..< CTR_STRIDE_HW {
+				blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+			}
+		}
+		switch hw_ctx._num_rounds {
+		case _aes.ROUNDS_128:
+			#unroll for i in 0 ..< CTR_STRIDE_HW {
+				blks[i] = x86._mm_aesenclast_si128(blks[i], sks[10])
+			}
+		case _aes.ROUNDS_192:
+			#unroll for i in 10 ..= 11 {
+				#unroll for j in 0 ..< CTR_STRIDE_HW {
+					blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+				}
+			}
+			#unroll for i in 0 ..< CTR_STRIDE_HW {
+				blks[i] = x86._mm_aesenclast_si128(blks[i], sks[12])
+			}
+		case _aes.ROUNDS_256:
+			#unroll for i in 10 ..= 13 {
+				#unroll for j in 0 ..< CTR_STRIDE_HW {
+					blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+				}
+			}
+			#unroll for i in 0 ..< CTR_STRIDE_HW {
+				blks[i] = x86._mm_aesenclast_si128(blks[i], sks[14])
+			}
+		}
+
+		xor_blocks_hw(dst, src, blks[:])
+
+		if src != nil {
+			src = src[CTR_STRIDE_BYTES_HW:]
+		}
+		dst = dst[CTR_STRIDE_BYTES_HW:]
+		nr_blocks -= CTR_STRIDE_HW
+	}
+
+	// Handle the remainder.
+	for nr_blocks > 0 {
+		blks[0], ctr_hi, ctr_lo = hw_inc_ctr(ctr_hi, ctr_lo)
+
+		blks[0] = x86._mm_xor_si128(blks[0], sks[0])
+		#unroll for i in 1 ..= 9 {
+			blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+		}
+		switch hw_ctx._num_rounds {
+		case _aes.ROUNDS_128:
+			blks[0] = x86._mm_aesenclast_si128(blks[0], sks[10])
+		case _aes.ROUNDS_192:
+			#unroll for i in 10 ..= 11 {
+				blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+			}
+			blks[0] = x86._mm_aesenclast_si128(blks[0], sks[12])
+		case _aes.ROUNDS_256:
+			#unroll for i in 10 ..= 13 {
+				blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+			}
+			blks[0] = x86._mm_aesenclast_si128(blks[0], sks[14])
+		}
+
+		xor_blocks_hw(dst, src, blks[:1])
+
+		if src != nil {
+			src = src[BLOCK_SIZE:]
+		}
+		dst = dst[BLOCK_SIZE:]
+		nr_blocks -= 1
+	}
+
+	// Write back the counter.
+	ctx._ctr_hi, ctx._ctr_lo = ctr_hi, ctr_lo
+
+	mem.zero_explicit(&blks, size_of(blks))
+	mem.zero_explicit(&sks, size_of(sks))
+}
+
+@(private, enable_target_feature = "sse2")
+xor_blocks_hw :: proc(dst, src: []byte, blocks: []x86.__m128i) {
+	#no_bounds_check {
+		if src != nil {
+				for i in 0 ..< len(blocks) {
+					off := i * BLOCK_SIZE
+					tmp := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src[off:])))
+					blocks[i] = x86._mm_xor_si128(blocks[i], tmp)
+				}
+		}
+		for i in 0 ..< len(blocks) {
+			intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst[i * BLOCK_SIZE:])), blocks[i])
+		}
+	}
+}

+ 58 - 0
core/crypto/aes/aes_ecb_hw_intel.odin

@@ -0,0 +1,58 @@
+//+build amd64
+package aes
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:simd/x86"
+
+@(private, enable_target_feature = "sse2,aes")
+encrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
+	blk := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
+
+	blk = x86._mm_xor_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[0])))
+	#unroll for i in 1 ..= 9 {
+		blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
+	}
+	switch ctx._num_rounds {
+	case _aes.ROUNDS_128:
+		blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[10])))
+	case _aes.ROUNDS_192:
+		#unroll for i in 10 ..= 11 {
+			blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
+		}
+		blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[12])))
+	case _aes.ROUNDS_256:
+		#unroll for i in 10 ..= 13 {
+			blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
+		}
+		blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[14])))
+	}
+
+	intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), blk)
+}
+
+@(private, enable_target_feature = "sse2,aes")
+decrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
+	blk := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
+
+	blk = x86._mm_xor_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[0])))
+	#unroll for i in 1 ..= 9 {
+		blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
+	}
+	switch ctx._num_rounds {
+	case _aes.ROUNDS_128:
+		blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[10])))
+	case _aes.ROUNDS_192:
+		#unroll for i in 10 ..= 11 {
+			blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
+		}
+		blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[12])))
+	case _aes.ROUNDS_256:
+		#unroll for i in 10 ..= 13 {
+			blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
+		}
+		blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[14])))
+	}
+
+	intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), blk)
+}

+ 45 - 29
core/crypto/aes/aes_gcm.odin

@@ -1,13 +1,16 @@
 package aes
 
+import "core:bytes"
 import "core:crypto"
 import "core:crypto/_aes"
 import "core:crypto/_aes/ct64"
 import "core:encoding/endian"
 import "core:mem"
 
-// GCM_NONCE_SIZE is the size of the GCM nonce in bytes.
+// GCM_NONCE_SIZE is the default size of the GCM nonce in bytes.
 GCM_NONCE_SIZE :: 12
+// GCM_NONCE_SIZE_MAX is the maximum size of the GCM nonce in bytes.
+GCM_NONCE_SIZE_MAX :: 0x2000000000000000 // floor((2^64 - 1) / 8) bits
 // GCM_TAG_SIZE is the size of a GCM tag in bytes.
 GCM_TAG_SIZE :: _aes.GHASH_TAG_SIZE
 
@@ -39,6 +42,9 @@ seal_gcm :: proc(ctx: ^Context_GCM, dst, tag, nonce, aad, plaintext: []byte) {
 	if len(dst) != len(plaintext) {
 		panic("crypto/aes: invalid destination ciphertext size")
 	}
+	if bytes.alias_inexactly(dst, plaintext) {
+		panic("crypto/aes: dst and plaintext alias inexactly")
+	}
 
 	if impl, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
 		gcm_seal_hw(&impl, dst, tag, nonce, aad, plaintext)
@@ -47,17 +53,19 @@ seal_gcm :: proc(ctx: ^Context_GCM, dst, tag, nonce, aad, plaintext: []byte) {
 
 	h: [_aes.GHASH_KEY_SIZE]byte
 	j0: [_aes.GHASH_BLOCK_SIZE]byte
+	j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
 	s: [_aes.GHASH_TAG_SIZE]byte
-	init_ghash_ct64(ctx, &h, &j0, nonce)
+	init_ghash_ct64(ctx, &h, &j0, &j0_enc, nonce)
 
 	// Note: Our GHASH implementation handles appending padding.
 	ct64.ghash(s[:], h[:], aad)
-	gctr_ct64(ctx, dst, &s, plaintext, &h, nonce, true)
-	final_ghash_ct64(&s, &h, &j0, len(aad), len(plaintext))
+	gctr_ct64(ctx, dst, &s, plaintext, &h, &j0, true)
+	final_ghash_ct64(&s, &h, &j0_enc, len(aad), len(plaintext))
 	copy(tag, s[:])
 
 	mem.zero_explicit(&h, len(h))
 	mem.zero_explicit(&j0, len(j0))
+	mem.zero_explicit(&j0_enc, len(j0_enc))
 }
 
 // open_gcm authenticates the aad and ciphertext, and decrypts the ciphertext,
@@ -73,6 +81,9 @@ open_gcm :: proc(ctx: ^Context_GCM, dst, nonce, aad, ciphertext, tag: []byte) ->
 	if len(dst) != len(ciphertext) {
 		panic("crypto/aes: invalid destination plaintext size")
 	}
+	if bytes.alias_inexactly(dst, ciphertext) {
+		panic("crypto/aes: dst and ciphertext alias inexactly")
+	}
 
 	if impl, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
 		return gcm_open_hw(&impl, dst, nonce, aad, ciphertext, tag)
@@ -80,12 +91,13 @@ open_gcm :: proc(ctx: ^Context_GCM, dst, nonce, aad, ciphertext, tag: []byte) ->
 
 	h: [_aes.GHASH_KEY_SIZE]byte
 	j0: [_aes.GHASH_BLOCK_SIZE]byte
+	j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
 	s: [_aes.GHASH_TAG_SIZE]byte
-	init_ghash_ct64(ctx, &h, &j0, nonce)
+	init_ghash_ct64(ctx, &h, &j0, &j0_enc, nonce)
 
 	ct64.ghash(s[:], h[:], aad)
-	gctr_ct64(ctx, dst, &s, ciphertext, &h, nonce, false)
-	final_ghash_ct64(&s, &h, &j0, len(aad), len(ciphertext))
+	gctr_ct64(ctx, dst, &s, ciphertext, &h, &j0, false)
+	final_ghash_ct64(&s, &h, &j0_enc, len(aad), len(ciphertext))
 
 	ok := crypto.compare_constant_time(s[:], tag) == 1
 	if !ok {
@@ -94,6 +106,7 @@ open_gcm :: proc(ctx: ^Context_GCM, dst, nonce, aad, ciphertext, tag: []byte) ->
 
 	mem.zero_explicit(&h, len(h))
 	mem.zero_explicit(&j0, len(j0))
+	mem.zero_explicit(&j0_enc, len(j0_enc))
 	mem.zero_explicit(&s, len(s))
 
 	return ok
@@ -106,19 +119,14 @@ reset_gcm :: proc "contextless" (ctx: ^Context_GCM) {
 	ctx._is_initialized = false
 }
 
-@(private)
+@(private = "file")
 gcm_validate_common_slice_sizes :: proc(tag, nonce, aad, text: []byte) {
 	if len(tag) != GCM_TAG_SIZE {
 		panic("crypto/aes: invalid GCM tag size")
 	}
 
-	// The specification supports nonces in the range [1, 2^64) bits
-	// however per NIST SP 800-38D 5.2.1.1:
-	//
-	// > For IVs, it is recommended that implementations restrict support
-	// > to the length of 96 bits, to promote interoperability, efficiency,
-	// > and simplicity of design.
-	if len(nonce) != GCM_NONCE_SIZE {
+	// The specification supports nonces in the range [1, 2^64) bits.
+	if l := len(nonce); l == 0 || u64(l) >= GCM_NONCE_SIZE_MAX {
 		panic("crypto/aes: invalid GCM nonce size")
 	}
 
@@ -135,6 +143,7 @@ init_ghash_ct64 :: proc(
 	ctx: ^Context_GCM,
 	h: ^[_aes.GHASH_KEY_SIZE]byte,
 	j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
+	j0_enc: ^[_aes.GHASH_BLOCK_SIZE]byte,
 	nonce: []byte,
 ) {
 	impl := &ctx._impl.(ct64.Context)
@@ -142,12 +151,25 @@ init_ghash_ct64 :: proc(
 	// 1. Let H = CIPH(k, 0^128)
 	ct64.encrypt_block(impl, h[:], h[:])
 
+	// Define a block, J0, as follows:
+	if l := len(nonce); l == GCM_NONCE_SIZE {
+		// if len(IV) = 96, then let J0 = IV || 0^31 || 1
+		copy(j0[:], nonce)
+		j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
+	} else {
+		// If len(IV) != 96, then let s = 128 ceil(len(IV)/128) - len(IV),
+		// and let J0 = GHASHH(IV || 0^(s+64) || ceil(len(IV))^64).
+		ct64.ghash(j0[:], h[:], nonce)
+
+		tmp: [_aes.GHASH_BLOCK_SIZE]byte
+		endian.unchecked_put_u64be(tmp[8:], u64(l) * 8)
+		ct64.ghash(j0[:], h[:], tmp[:])
+	}
+
 	// ECB encrypt j0, so that we can just XOR with the tag.  In theory
 	// this could be processed along with the final GCTR block, to
 	// potentially save a call to AES-ECB, but... just use AES-NI.
-	copy(j0[:], nonce)
-	j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
-	ct64.encrypt_block(impl, j0[:], j0[:])
+	ct64.encrypt_block(impl, j0_enc[:], j0[:])
 }
 
 @(private = "file")
@@ -175,33 +197,27 @@ gctr_ct64 :: proc(
 	s: ^[_aes.GHASH_BLOCK_SIZE]byte,
 	src: []byte,
 	h: ^[_aes.GHASH_KEY_SIZE]byte,
-	nonce: []byte,
+	nonce: ^[_aes.GHASH_BLOCK_SIZE]byte,
 	is_seal: bool,
-) {
+) #no_bounds_check {
 	ct64_inc_ctr32 := #force_inline proc "contextless" (dst: []byte, ctr: u32) -> u32 {
 		endian.unchecked_put_u32be(dst[12:], ctr)
 		return ctr + 1
 	}
 
-	// 2. Define a block J_0 as follows:
-	//    if len(IV) = 96, then let J0 = IV || 0^31 || 1
-	//
-	// Note: We only support 96 bit IVs.
+	// Setup the counter blocks.
 	tmp, tmp2: [ct64.STRIDE][BLOCK_SIZE]byte = ---, ---
 	ctrs, blks: [ct64.STRIDE][]byte = ---, ---
-	ctr: u32 = 2
+	ctr := endian.unchecked_get_u32be(nonce[GCM_NONCE_SIZE:]) + 1
 	for i in 0 ..< ct64.STRIDE {
 		// Setup scratch space for the keystream.
 		blks[i] = tmp2[i][:]
 
 		// Pre-copy the IV to all the counter blocks.
 		ctrs[i] = tmp[i][:]
-		copy(ctrs[i], nonce)
+		copy(ctrs[i], nonce[:GCM_NONCE_SIZE])
 	}
 
-	// We stitch the GCTR and GHASH operations together, so that only
-	// one pass over the ciphertext is required.
-
 	impl := &ctx._impl.(ct64.Context)
 	src, dst := src, dst
 

+ 243 - 0
core/crypto/aes/aes_gcm_hw_intel.odin

@@ -0,0 +1,243 @@
+//+build amd64
+package aes
+
+import "base:intrinsics"
+import "core:crypto"
+import "core:crypto/_aes"
+import "core:crypto/_aes/hw_intel"
+import "core:encoding/endian"
+import "core:mem"
+import "core:simd/x86"
+
+@(private)
+gcm_seal_hw :: proc(ctx: ^Context_Impl_Hardware, dst, tag, nonce, aad, plaintext: []byte) {
+	h: [_aes.GHASH_KEY_SIZE]byte
+	j0: [_aes.GHASH_BLOCK_SIZE]byte
+	j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
+	s: [_aes.GHASH_TAG_SIZE]byte
+	init_ghash_hw(ctx, &h, &j0, &j0_enc, nonce)
+
+	// Note: Our GHASH implementation handles appending padding.
+	hw_intel.ghash(s[:], h[:], aad)
+	gctr_hw(ctx, dst, &s, plaintext, &h, &j0, true)
+	final_ghash_hw(&s, &h, &j0_enc, len(aad), len(plaintext))
+	copy(tag, s[:])
+
+	mem.zero_explicit(&h, len(h))
+	mem.zero_explicit(&j0, len(j0))
+	mem.zero_explicit(&j0_enc, len(j0_enc))
+}
+
+@(private)
+gcm_open_hw :: proc(ctx: ^Context_Impl_Hardware, dst, nonce, aad, ciphertext, tag: []byte) -> bool {
+	h: [_aes.GHASH_KEY_SIZE]byte
+	j0: [_aes.GHASH_BLOCK_SIZE]byte
+	j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
+	s: [_aes.GHASH_TAG_SIZE]byte
+	init_ghash_hw(ctx, &h, &j0, &j0_enc, nonce)
+
+	hw_intel.ghash(s[:], h[:], aad)
+	gctr_hw(ctx, dst, &s, ciphertext, &h, &j0, false)
+	final_ghash_hw(&s, &h, &j0_enc, len(aad), len(ciphertext))
+
+	ok := crypto.compare_constant_time(s[:], tag) == 1
+	if !ok {
+		mem.zero_explicit(raw_data(dst), len(dst))
+	}
+
+	mem.zero_explicit(&h, len(h))
+	mem.zero_explicit(&j0, len(j0))
+	mem.zero_explicit(&j0_enc, len(j0_enc))
+	mem.zero_explicit(&s, len(s))
+
+	return ok
+}
+
+@(private = "file")
+init_ghash_hw :: proc(
+	ctx: ^Context_Impl_Hardware,
+	h: ^[_aes.GHASH_KEY_SIZE]byte,
+	j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
+	j0_enc: ^[_aes.GHASH_BLOCK_SIZE]byte,
+	nonce: []byte,
+) {
+	// 1. Let H = CIPH(k, 0^128)
+	encrypt_block_hw(ctx, h[:], h[:])
+
+	// Define a block, J0, as follows:
+	if l := len(nonce); l == GCM_NONCE_SIZE {
+		// if len(IV) = 96, then let J0 = IV || 0^31 || 1
+		copy(j0[:], nonce)
+		j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
+	} else {
+		// If len(IV) != 96, then let s = 128 ceil(len(IV)/128) - len(IV),
+		// and let J0 = GHASHH(IV || 0^(s+64) || ceil(len(IV))^64).
+		hw_intel.ghash(j0[:], h[:], nonce)
+
+		tmp: [_aes.GHASH_BLOCK_SIZE]byte
+		endian.unchecked_put_u64be(tmp[8:], u64(l) * 8)
+		hw_intel.ghash(j0[:], h[:], tmp[:])
+	}
+
+	// ECB encrypt j0, so that we can just XOR with the tag.
+	encrypt_block_hw(ctx, j0_enc[:], j0[:])
+}
+
+@(private = "file", enable_target_feature = "sse2")
+final_ghash_hw :: proc(
+	s: ^[_aes.GHASH_BLOCK_SIZE]byte,
+	h: ^[_aes.GHASH_KEY_SIZE]byte,
+	j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
+	a_len: int,
+	t_len: int,
+) {
+	blk: [_aes.GHASH_BLOCK_SIZE]byte
+	endian.unchecked_put_u64be(blk[0:], u64(a_len) * 8)
+	endian.unchecked_put_u64be(blk[8:], u64(t_len) * 8)
+
+	hw_intel.ghash(s[:], h[:], blk[:])
+	j0_vec := intrinsics.unaligned_load((^x86.__m128i)(j0))
+	s_vec := intrinsics.unaligned_load((^x86.__m128i)(s))
+	s_vec = x86._mm_xor_si128(s_vec, j0_vec)
+	intrinsics.unaligned_store((^x86.__m128i)(s), s_vec)
+}
+
+@(private = "file", enable_target_feature = "sse2,sse4.1,aes")
+gctr_hw :: proc(
+	ctx: ^Context_Impl_Hardware,
+	dst: []byte,
+	s: ^[_aes.GHASH_BLOCK_SIZE]byte,
+	src: []byte,
+	h: ^[_aes.GHASH_KEY_SIZE]byte,
+	nonce: ^[_aes.GHASH_BLOCK_SIZE]byte,
+	is_seal: bool,
+) #no_bounds_check {
+	sks: [15]x86.__m128i = ---
+	for i in 0 ..= ctx._num_rounds {
+		sks[i] = intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i]))
+	}
+
+	// Setup the counter block
+	ctr_blk := intrinsics.unaligned_load((^x86.__m128i)(nonce))
+	ctr := endian.unchecked_get_u32be(nonce[GCM_NONCE_SIZE:]) + 1
+
+	src, dst := src, dst
+
+	// Note: Instead of doing GHASH and CTR separately, it is more
+	// performant to interleave (stitch) the two operations together.
+	// This results in an unreadable mess, so we opt for simplicity
+	// as performance is adequate.
+
+	blks: [CTR_STRIDE_HW]x86.__m128i = ---
+	nr_blocks := len(src) / BLOCK_SIZE
+	for nr_blocks >= CTR_STRIDE_HW {
+		if !is_seal {
+			hw_intel.ghash(s[:], h[:], src[:CTR_STRIDE_BYTES_HW])
+		}
+
+		#unroll for i in 0 ..< CTR_STRIDE_HW {
+			blks[i], ctr = hw_inc_ctr32(&ctr_blk, ctr)
+		}
+
+		#unroll for i in 0 ..< CTR_STRIDE_HW {
+			blks[i] = x86._mm_xor_si128(blks[i], sks[0])
+		}
+		#unroll for i in 1 ..= 9 {
+			#unroll for j in 0 ..< CTR_STRIDE_HW {
+				blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+			}
+		}
+		switch ctx._num_rounds {
+		case _aes.ROUNDS_128:
+			#unroll for i in 0 ..< CTR_STRIDE_HW {
+				blks[i] = x86._mm_aesenclast_si128(blks[i], sks[10])
+			}
+		case _aes.ROUNDS_192:
+			#unroll for i in 10 ..= 11 {
+				#unroll for j in 0 ..< CTR_STRIDE_HW {
+					blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+				}
+			}
+			#unroll for i in 0 ..< CTR_STRIDE_HW {
+				blks[i] = x86._mm_aesenclast_si128(blks[i], sks[12])
+			}
+		case _aes.ROUNDS_256:
+			#unroll for i in 10 ..= 13 {
+				#unroll for j in 0 ..< CTR_STRIDE_HW {
+					blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+				}
+			}
+			#unroll for i in 0 ..< CTR_STRIDE_HW {
+				blks[i] = x86._mm_aesenclast_si128(blks[i], sks[14])
+			}
+		}
+
+		xor_blocks_hw(dst, src, blks[:])
+
+		if is_seal {
+			hw_intel.ghash(s[:], h[:], dst[:CTR_STRIDE_BYTES_HW])
+		}
+
+		src = src[CTR_STRIDE_BYTES_HW:]
+		dst = dst[CTR_STRIDE_BYTES_HW:]
+		nr_blocks -= CTR_STRIDE_HW
+	}
+
+	// Handle the remainder.
+	for n := len(src); n > 0; {
+		l := min(n, BLOCK_SIZE)
+		if !is_seal {
+			hw_intel.ghash(s[:], h[:], src[:l])
+		}
+
+		blks[0], ctr = hw_inc_ctr32(&ctr_blk, ctr)
+
+		blks[0] = x86._mm_xor_si128(blks[0], sks[0])
+		#unroll for i in 1 ..= 9 {
+			blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+		}
+		switch ctx._num_rounds {
+		case _aes.ROUNDS_128:
+			blks[0] = x86._mm_aesenclast_si128(blks[0], sks[10])
+		case _aes.ROUNDS_192:
+			#unroll for i in 10 ..= 11 {
+				blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+			}
+			blks[0] = x86._mm_aesenclast_si128(blks[0], sks[12])
+		case _aes.ROUNDS_256:
+			#unroll for i in 10 ..= 13 {
+				blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+			}
+			blks[0] = x86._mm_aesenclast_si128(blks[0], sks[14])
+		}
+
+		if l == BLOCK_SIZE {
+			xor_blocks_hw(dst, src, blks[:1])
+		} else {
+			blk: [BLOCK_SIZE]byte
+			copy(blk[:], src)
+			xor_blocks_hw(blk[:], blk[:], blks[:1])
+			copy(dst, blk[:l])
+		}
+		if is_seal {
+			hw_intel.ghash(s[:], h[:], dst[:l])
+		}
+
+		dst = dst[l:]
+		src = src[l:]
+		n -= l
+	}
+
+	mem.zero_explicit(&blks, size_of(blks))
+	mem.zero_explicit(&sks, size_of(sks))
+}
+
+// BUG: Sticking this in gctr_hw (like the other implementations) crashes
+// the compiler.
+//
+// src/check_expr.cpp(7892): Assertion Failure: `c->curr_proc_decl->entity`
+@(private = "file", enable_target_feature = "sse4.1")
+hw_inc_ctr32 :: #force_inline proc "contextless" (src: ^x86.__m128i, ctr: u32) -> (x86.__m128i, u32) {
+	ret := x86._mm_insert_epi32(src^, i32(intrinsics.byte_swap(ctr)), 3)
+	return ret, ctr + 1
+}

+ 1 - 0
core/crypto/aes/aes_impl_hw_gen.odin

@@ -1,3 +1,4 @@
+//+build !amd64
 package aes
 
 @(private = "file")

+ 18 - 0
core/crypto/aes/aes_impl_hw_intel.odin

@@ -0,0 +1,18 @@
+//+build amd64
+package aes
+
+import "core:crypto/_aes/hw_intel"
+
+// is_hardware_accelerated returns true iff hardware accelerated AES
+// is supported.
+is_hardware_accelerated :: proc "contextless" () -> bool {
+	return hw_intel.is_supported()
+}
+
+@(private)
+Context_Impl_Hardware :: hw_intel.Context
+
+@(private, enable_target_feature = "sse2,aes")
+init_impl_hw :: proc(ctx: ^Context_Impl_Hardware, key: []byte) {
+	hw_intel.init(ctx, key)
+}

+ 5 - 3
core/crypto/chacha20/chacha20.odin

@@ -7,6 +7,7 @@ See:
 */
 package chacha20
 
+import "core:bytes"
 import "core:encoding/endian"
 import "core:math/bits"
 import "core:mem"
@@ -121,14 +122,15 @@ seek :: proc(ctx: ^Context, block_nr: u64) {
 xor_bytes :: proc(ctx: ^Context, dst, src: []byte) {
 	assert(ctx._is_initialized)
 
-	// TODO: Enforcing that dst and src alias exactly or not at all
-	// is a good idea, though odd aliasing should be extremely uncommon.
-
 	src, dst := src, dst
 	if dst_len := len(dst); dst_len < len(src) {
 		src = src[:dst_len]
 	}
 
+	if bytes.alias_inexactly(dst, src) {
+		panic("crypto/chacha20: dst and src alias inexactly")
+	}
+
 	for remaining := len(src); remaining > 0; {
 		// Process multiple blocks at once
 		if ctx._off == _BLOCK_SIZE {

+ 5 - 1
core/crypto/crypto.odin

@@ -60,7 +60,11 @@ rand_bytes :: proc (dst: []byte) {
 	_rand_bytes(dst)
 }
 
-
+// random_generator returns a `runtime.Random_Generator` backed by the
+// system entropy source.
+//
+// Support for the system entropy source can be checked with the
+// `HAS_RAND_BYTES` boolean constant.
 random_generator :: proc() -> runtime.Random_Generator {
 	return {
 		procedure = proc(data: rawptr, mode: runtime.Random_Generator_Mode, p: []byte) {

+ 8 - 8
core/simd/x86/aes.odin

@@ -2,33 +2,33 @@
 package simd_x86
 
 @(require_results, enable_target_feature = "aes")
-_mm_aesdec :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
+_mm_aesdec_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
 	return aesdec(a, b)
 }
 
 @(require_results, enable_target_feature = "aes")
-_mm_aesdeclast :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
+_mm_aesdeclast_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
 	return aesdeclast(a, b)
 }
 
 @(require_results, enable_target_feature = "aes")
-_mm_aesenc :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
+_mm_aesenc_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
 	return aesenc(a, b)
 }
 
 @(require_results, enable_target_feature = "aes")
-_mm_aesenclast :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
+_mm_aesenclast_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
 	return aesenclast(a, b)
 }
 
 @(require_results, enable_target_feature = "aes")
-_mm_aesimc :: #force_inline proc "c" (a: __m128i) -> __m128i {
+_mm_aesimc_si128 :: #force_inline proc "c" (a: __m128i) -> __m128i {
 	return aesimc(a)
 }
 
 @(require_results, enable_target_feature = "aes")
-_mm_aeskeygenassist :: #force_inline proc "c" (a: __m128i, $IMM8: u8) -> __m128i {
-	return aeskeygenassist(a, u8(IMM8))
+_mm_aeskeygenassist_si128 :: #force_inline proc "c" (a: __m128i, $IMM8: u8) -> __m128i {
+	return aeskeygenassist(a, IMM8)
 }
 
 
@@ -45,5 +45,5 @@ foreign _ {
 	@(link_name = "llvm.x86.aesni.aesimc")
 	aesimc :: proc(a: __m128i) -> __m128i ---
 	@(link_name = "llvm.x86.aesni.aeskeygenassist")
-	aeskeygenassist :: proc(a: __m128i, imm8: u8) -> __m128i ---
+	aeskeygenassist :: proc(a: __m128i, #const imm8: u8) -> __m128i ---
 }

+ 19 - 14
core/simd/x86/sse2.odin

@@ -144,19 +144,26 @@ _mm_subs_epu16 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
 _mm_slli_si128_impl :: #force_inline proc "c" (a: __m128i, $IMM8: u32) -> __m128i {
 	shift :: IMM8 & 0xff
 
+	// This needs to emit behavior identical to PSLLDQ which is as follows:
+	//
+	// TEMP := COUNT
+	// IF (TEMP > 15) THEN TEMP := 16; FI
+	// DEST := DEST << (TEMP * 8)
+	// DEST[MAXVL-1:128] (Unmodified)
+
 	return transmute(__m128i)simd.shuffle(
-		transmute(i8x16)a,
 		i8x16(0),
-		0  when shift > 15 else (16 - shift + 0),
-		1  when shift > 15 else (16 - shift + 1),
-		2  when shift > 15 else (16 - shift + 2),
-		3  when shift > 15 else (16 - shift + 3),
-		4  when shift > 15 else (16 - shift + 4),
-		5  when shift > 15 else (16 - shift + 5),
-		6  when shift > 15 else (16 - shift + 6),
-		7  when shift > 15 else (16 - shift + 7),
-		8  when shift > 15 else (16 - shift + 8),
-		9  when shift > 15 else (16 - shift + 9),
+		transmute(i8x16)a,
+		0 when shift > 15 else (16 - shift + 0),
+		1 when shift > 15 else (16 - shift + 1),
+		2 when shift > 15 else (16 - shift + 2),
+		3 when shift > 15 else (16 - shift + 3),
+		4 when shift > 15 else (16 - shift + 4),
+		5 when shift > 15 else (16 - shift + 5),
+		6 when shift > 15 else (16 - shift + 6),
+		7 when shift > 15 else (16 - shift + 7),
+		8 when shift > 15 else (16 - shift + 8),
+		9 when shift > 15 else (16 - shift + 9),
 		10 when shift > 15 else (16 - shift + 10),
 		11 when shift > 15 else (16 - shift + 11),
 		12 when shift > 15 else (16 - shift + 12),
@@ -435,7 +442,7 @@ _mm_store_si128 :: #force_inline proc "c" (mem_addr: ^__m128i, a: __m128i) {
 }
 @(enable_target_feature="sse2")
 _mm_storeu_si128 :: #force_inline proc "c" (mem_addr: ^__m128i, a: __m128i) {
-	storeudq(mem_addr, a)
+	intrinsics.unaligned_store(mem_addr, a)
 }
 @(enable_target_feature="sse2")
 _mm_storel_epi64 :: #force_inline proc "c" (mem_addr: ^__m128i, a: __m128i) {
@@ -1178,8 +1185,6 @@ foreign _ {
 	cvttsd2si  :: proc(a: __m128d) -> i32 ---
 	@(link_name="llvm.x86.sse2.cvttps2dq")
 	cvttps2dq  :: proc(a: __m128) -> i32x4 ---
-	@(link_name="llvm.x86.sse2.storeu.dq")
-	storeudq   :: proc(mem_addr: rawptr, a: __m128i) ---
 	@(link_name="llvm.x86.sse2.storeu.pd")
 	storeupd   :: proc(mem_addr: rawptr, a: __m128d) ---
 

+ 56 - 0
tests/benchmark/crypto/benchmark_crypto.odin

@@ -28,6 +28,32 @@ benchmark_crypto :: proc(t: ^testing.T) {
 		strings.builder_destroy(&str)
 	}
 
+	{
+		name := "AES256-CTR 64 bytes"
+		options := &time.Benchmark_Options {
+			rounds = 1_000,
+			bytes = 64,
+			setup = _setup_sized_buf,
+			bench = _benchmark_aes256_ctr,
+			teardown = _teardown_sized_buf,
+		}
+
+		err := time.benchmark(options, context.allocator)
+		testing.expect(t, err == nil, name)
+		benchmark_print(&str, name, options)
+
+		name = "AES256-CTR 1024 bytes"
+		options.bytes = 1024
+		err = time.benchmark(options, context.allocator)
+		testing.expect(t, err == nil, name)
+		benchmark_print(&str, name, options)
+
+		name = "AES256-CTR 65536 bytes"
+		options.bytes = 65536
+		err = time.benchmark(options, context.allocator)
+		testing.expect(t, err == nil, name)
+		benchmark_print(&str, name, options)
+	}
 	{
 		name := "ChaCha20 64 bytes"
 		options := &time.Benchmark_Options {
@@ -323,6 +349,36 @@ _benchmark_chacha20poly1305 :: proc(
 	return nil
 }
 
+@(private)
+_benchmark_aes256_ctr :: proc(
+	options: ^time.Benchmark_Options,
+	allocator := context.allocator,
+) -> (
+	err: time.Benchmark_Error,
+) {
+	buf := options.input
+	key := [aes.KEY_SIZE_256]byte {
+		0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
+		0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
+		0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
+		0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
+	}
+	nonce := [aes.CTR_IV_SIZE]byte {
+		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+	}
+
+	ctx: aes.Context_CTR = ---
+	aes.init_ctr(&ctx, key[:], nonce[:])
+
+	for _ in 0 ..= options.rounds {
+		aes.xor_bytes_ctr(&ctx, buf, buf)
+	}
+	options.count = options.rounds
+	options.processed = options.rounds * options.bytes
+	return nil
+}
+
 _benchmark_aes256_gcm :: proc(
 	options: ^time.Benchmark_Options,
 	allocator := context.allocator,

+ 5 - 7
tests/core/crypto/test_core_crypto_aes.odin

@@ -12,8 +12,6 @@ import "core:crypto/sha2"
 test_aes :: proc(t: ^testing.T) {
 	runtime.DEFAULT_TEMP_ALLOCATOR_TEMP_GUARD()
 
-	log.info("Testing AES")
-
 	impls := make([dynamic]aes.Implementation, 0, 2)
 	defer delete(impls)
 	append(&impls, aes.Implementation.Portable)
@@ -29,7 +27,7 @@ test_aes :: proc(t: ^testing.T) {
 }
 
 test_aes_ecb :: proc(t: ^testing.T, impl: aes.Implementation) {
-	log.infof("Testing AES-ECB/%v", impl)
+	log.debugf("Testing AES-ECB/%v", impl)
 
 	test_vectors := []struct {
 		key: string,
@@ -136,7 +134,7 @@ test_aes_ecb :: proc(t: ^testing.T, impl: aes.Implementation) {
 }
 
 test_aes_ctr :: proc(t: ^testing.T, impl: aes.Implementation) {
-	log.infof("Testing AES-CTR/%v", impl)
+	log.debugf("Testing AES-CTR/%v", impl)
 
 	test_vectors := []struct {
 		key: string,
@@ -200,7 +198,7 @@ test_aes_ctr :: proc(t: ^testing.T, impl: aes.Implementation) {
 	ctx: aes.Context_CTR
 	key: [aes.KEY_SIZE_256]byte
 	nonce: [aes.CTR_IV_SIZE]byte
-	aes.init_ctr(&ctx, key[:], nonce[:])
+	aes.init_ctr(&ctx, key[:], nonce[:], impl)
 
 	h_ctx: sha2.Context_512
 	sha2.init_512_256(&h_ctx)
@@ -226,7 +224,7 @@ test_aes_ctr :: proc(t: ^testing.T, impl: aes.Implementation) {
 }
 
 test_aes_gcm :: proc(t: ^testing.T, impl: aes.Implementation) {
-	log.infof("Testing AES-GCM/%v", impl)
+	log.debugf("Testing AES-GCM/%v", impl)
 
 	// NIST did a reorg of their site, so the source of the test vectors
 	// is only available from an archive.  The commented out tests are
@@ -431,7 +429,7 @@ test_aes_gcm :: proc(t: ^testing.T, impl: aes.Implementation) {
 		testing.expectf(
 			t,
 			ok && dst_str == v.plaintext,
-			"AES-GCM/%v: Expected: (%s, true) for open(%s, %s, %s, %s, %s), but got (%s, %s) instead",
+			"AES-GCM/%v: Expected: (%s, true) for open(%s, %s, %s, %s, %s), but got (%s, %v) instead",
 			impl,
 			v.plaintext,
 			v.key,

+ 3 - 3
tests/core/crypto/test_core_crypto_ecc25519.odin

@@ -58,9 +58,9 @@ test_sqrt_ratio_m1 :: proc(t: ^testing.T) {
 		v_bytes, _ := hex.decode(transmute([]byte)(v.v), context.temp_allocator)
 		r_bytes, _ := hex.decode(transmute([]byte)(v.r), context.temp_allocator)
 
-		u_ := transmute(^[32]byte)(raw_data(u_bytes))
-		v_ := transmute(^[32]byte)(raw_data(v_bytes))
-		r_ := transmute(^[32]byte)(raw_data(r_bytes))
+		u_ := (^[32]byte)(raw_data(u_bytes))
+		v_ := (^[32]byte)(raw_data(v_bytes))
+		r_ := (^[32]byte)(raw_data(r_bytes))
 
 		u, vee, r: field.Tight_Field_Element
 		field.fe_from_bytes(&u, u_)

+ 1 - 1
tests/core/crypto/test_core_crypto_kdf.odin

@@ -161,7 +161,7 @@ test_pbkdf2 :: proc(t: ^testing.T) {
 		testing.expectf(
 			t,
 			dst_str == v.dk,
-			"HMAC-%s: Expected: %s for input of (%s, %s, %d), but got %s instead",
+			"PBKDF2-%s: Expected: %s for input of (%s, %s, %d), but got %s instead",
 			algo_name,
 			v.dk,
 			v.password,