|
@@ -1,778 +0,0 @@
|
|
|
-import "core:fmt.odin"
|
|
|
-import "core:strconv.odin"
|
|
|
-import "core:mem.odin"
|
|
|
-import "core:bits.odin"
|
|
|
-import "core:hash.odin"
|
|
|
-import "core:math.odin"
|
|
|
-import "core:math/rand.odin"
|
|
|
-import "core:os.odin"
|
|
|
-import "core:raw.odin"
|
|
|
-import "core:sort.odin"
|
|
|
-import "core:strings.odin"
|
|
|
-import "core:types.odin"
|
|
|
-import "core:utf16.odin"
|
|
|
-import "core:utf8.odin"
|
|
|
-
|
|
|
-// File scope `when` statements
|
|
|
-when ODIN_OS == "windows" {
|
|
|
- import "core:atomics.odin"
|
|
|
- import "core:thread.odin"
|
|
|
- import win32 "core:sys/windows.odin"
|
|
|
-}
|
|
|
-
|
|
|
-@(link_name="general_stuff")
|
|
|
-general_stuff :: proc() {
|
|
|
- fmt.println("# general_stuff");
|
|
|
- { // `do` for inline statements rather than block
|
|
|
- foo :: proc() do fmt.println("Foo!");
|
|
|
- if false do foo();
|
|
|
- for false do foo();
|
|
|
- when false do foo();
|
|
|
-
|
|
|
- if false do foo();
|
|
|
- else do foo();
|
|
|
- }
|
|
|
-
|
|
|
- { // Removal of `++` and `--` (again)
|
|
|
- x: int;
|
|
|
- x += 1;
|
|
|
- x -= 1;
|
|
|
- }
|
|
|
- { // Casting syntaxes
|
|
|
- i := i32(137);
|
|
|
- ptr := &i;
|
|
|
-
|
|
|
- _ = (^f32)(ptr);
|
|
|
- // ^f32(ptr) == ^(f32(ptr))
|
|
|
- _ = cast(^f32)ptr;
|
|
|
-
|
|
|
- _ = (^f32)(ptr)^;
|
|
|
- _ = (cast(^f32)ptr)^;
|
|
|
-
|
|
|
- // Questions: Should there be two ways to do it?
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Remove *_val_of built-in procedures
|
|
|
- * size_of, align_of, offset_of
|
|
|
- * type_of, type_info_of
|
|
|
- */
|
|
|
-
|
|
|
- { // `expand_to_tuple` built-in procedure
|
|
|
- Foo :: struct {
|
|
|
- x: int,
|
|
|
- b: bool,
|
|
|
- }
|
|
|
- f := Foo{137, true};
|
|
|
- x, b := expand_to_tuple(f);
|
|
|
- fmt.println(f);
|
|
|
- fmt.println(x, b);
|
|
|
- fmt.println(expand_to_tuple(f));
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- // .. half-closed range
|
|
|
- // .. open range
|
|
|
-
|
|
|
- for in 0..2 {} // 0, 1
|
|
|
- for in 0..2 {} // 0, 1, 2
|
|
|
- }
|
|
|
-
|
|
|
- { // Multiple sized booleans
|
|
|
-
|
|
|
- x0: bool; // default
|
|
|
- x1: b8 = true;
|
|
|
- x2: b16 = false;
|
|
|
- x3: b32 = true;
|
|
|
- x4: b64 = false;
|
|
|
-
|
|
|
- fmt.printf("x1: %T = %v;\n", x1, x1);
|
|
|
- fmt.printf("x2: %T = %v;\n", x2, x2);
|
|
|
- fmt.printf("x3: %T = %v;\n", x3, x3);
|
|
|
- fmt.printf("x4: %T = %v;\n", x4, x4);
|
|
|
-
|
|
|
- // Having specific sized booleans is very useful when dealing with foreign code
|
|
|
- // and to enforce specific alignment for a boolean, especially within a struct
|
|
|
- }
|
|
|
-
|
|
|
- { // `distinct` types
|
|
|
- // Originally, all type declarations would create a distinct type unless #type_alias was present.
|
|
|
- // Now the behaviour has been reversed. All type declarations create a type alias unless `distinct` is present.
|
|
|
- // If the type expression is `struct`, `union`, `enum`, or `proc`, the types will always been distinct.
|
|
|
-
|
|
|
- Int32 :: i32;
|
|
|
- #assert(Int32 == i32);
|
|
|
-
|
|
|
- My_Int32 :: distinct i32;
|
|
|
- #assert(My_Int32 != i32);
|
|
|
-
|
|
|
- My_Struct :: struct{x: int};
|
|
|
- #assert(My_Struct != struct{x: int});
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-default_struct_values :: proc() {
|
|
|
- fmt.println("# default_struct_values");
|
|
|
- {
|
|
|
- Vector3 :: struct {
|
|
|
- x: f32,
|
|
|
- y: f32,
|
|
|
- z: f32,
|
|
|
- }
|
|
|
- v: Vector3;
|
|
|
- fmt.println(v);
|
|
|
- }
|
|
|
- {
|
|
|
- // Default values must be constants
|
|
|
- Vector3 :: struct {
|
|
|
- x: f32 = 1,
|
|
|
- y: f32 = 4,
|
|
|
- z: f32 = 9,
|
|
|
- }
|
|
|
- v: Vector3;
|
|
|
- fmt.println(v);
|
|
|
-
|
|
|
- v = Vector3{};
|
|
|
- fmt.println(v);
|
|
|
-
|
|
|
- // Uses the same semantics as a default values in a procedure
|
|
|
- v = Vector3{137};
|
|
|
- fmt.println(v);
|
|
|
-
|
|
|
- v = Vector3{z = 137};
|
|
|
- fmt.println(v);
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- Vector3 :: struct {
|
|
|
- x := 1.0,
|
|
|
- y := 4.0,
|
|
|
- z := 9.0,
|
|
|
- }
|
|
|
- stack_default: Vector3;
|
|
|
- stack_literal := Vector3{};
|
|
|
- heap_one := new(Vector3); defer free(heap_one);
|
|
|
- heap_two := new_clone(Vector3{}); defer free(heap_two);
|
|
|
-
|
|
|
- fmt.println("stack_default - ", stack_default);
|
|
|
- fmt.println("stack_literal - ", stack_literal);
|
|
|
- fmt.println("heap_one - ", heap_one^);
|
|
|
- fmt.println("heap_two - ", heap_two^);
|
|
|
-
|
|
|
-
|
|
|
- N :: 4;
|
|
|
- stack_array: [N]Vector3;
|
|
|
- heap_array := new([N]Vector3); defer free(heap_array);
|
|
|
- heap_slice := make([]Vector3, N); defer free(heap_slice);
|
|
|
- fmt.println("stack_array[1] - ", stack_array[1]);
|
|
|
- fmt.println("heap_array[1] - ", heap_array[1]);
|
|
|
- fmt.println("heap_slice[1] - ", heap_slice[1]);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-union_type :: proc() {
|
|
|
- fmt.println("\n# union_type");
|
|
|
- {
|
|
|
- val: union{int, bool};
|
|
|
- val = 137;
|
|
|
- if i, ok := val.(int); ok {
|
|
|
- fmt.println(i);
|
|
|
- }
|
|
|
- val = true;
|
|
|
- fmt.println(val);
|
|
|
-
|
|
|
- val = nil;
|
|
|
-
|
|
|
- switch v in val {
|
|
|
- case int: fmt.println("int", v);
|
|
|
- case bool: fmt.println("bool", v);
|
|
|
- case: fmt.println("nil");
|
|
|
- }
|
|
|
- }
|
|
|
- {
|
|
|
- // There is a duality between `any` and `union`
|
|
|
- // An `any` has a pointer to the data and allows for any type (open)
|
|
|
- // A `union` has as binary blob to store the data and allows only certain types (closed)
|
|
|
- // The following code is with `any` but has the same syntax
|
|
|
- val: any;
|
|
|
- val = 137;
|
|
|
- if i, ok := val.(int); ok {
|
|
|
- fmt.println(i);
|
|
|
- }
|
|
|
- val = true;
|
|
|
- fmt.println(val);
|
|
|
-
|
|
|
- val = nil;
|
|
|
-
|
|
|
- switch v in val {
|
|
|
- case int: fmt.println("int", v);
|
|
|
- case bool: fmt.println("bool", v);
|
|
|
- case: fmt.println("nil");
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- Vector3 :: struct {x, y, z: f32};
|
|
|
- Quaternion :: struct {x, y, z: f32, w: f32 = 1};
|
|
|
-
|
|
|
- // More realistic examples
|
|
|
- {
|
|
|
- // NOTE(bill): For the above basic examples, you may not have any
|
|
|
- // particular use for it. However, my main use for them is not for these
|
|
|
- // simple cases. My main use is for hierarchical types. Many prefer
|
|
|
- // subtyping, embedding the base data into the derived types. Below is
|
|
|
- // an example of this for a basic game Entity.
|
|
|
-
|
|
|
- Entity :: struct {
|
|
|
- id: u64,
|
|
|
- name: string,
|
|
|
- position: Vector3,
|
|
|
- orientation: Quaternion,
|
|
|
-
|
|
|
- derived: any,
|
|
|
- }
|
|
|
-
|
|
|
- Frog :: struct {
|
|
|
- using entity: Entity,
|
|
|
- jump_height: f32,
|
|
|
- }
|
|
|
-
|
|
|
- Monster :: struct {
|
|
|
- using entity: Entity,
|
|
|
- is_robot: bool,
|
|
|
- is_zombie: bool,
|
|
|
- }
|
|
|
-
|
|
|
- // See `parametric_polymorphism` procedure for details
|
|
|
- new_entity :: proc(T: type) -> ^Entity {
|
|
|
- t := new(T);
|
|
|
- t.derived = t^;
|
|
|
- return t;
|
|
|
- }
|
|
|
-
|
|
|
- entity := new_entity(Monster);
|
|
|
-
|
|
|
- switch e in entity.derived {
|
|
|
- case Frog:
|
|
|
- fmt.println("Ribbit");
|
|
|
- case Monster:
|
|
|
- if e.is_robot do fmt.println("Robotic");
|
|
|
- if e.is_zombie do fmt.println("Grrrr!");
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- // NOTE(bill): A union can be used to achieve something similar. Instead
|
|
|
- // of embedding the base data into the derived types, the derived data
|
|
|
- // in embedded into the base type. Below is the same example of the
|
|
|
- // basic game Entity but using an union.
|
|
|
-
|
|
|
- Entity :: struct {
|
|
|
- id: u64,
|
|
|
- name: string,
|
|
|
- position: Vector3,
|
|
|
- orientation: Quaternion,
|
|
|
-
|
|
|
- derived: union {Frog, Monster},
|
|
|
- }
|
|
|
-
|
|
|
- Frog :: struct {
|
|
|
- using entity: ^Entity,
|
|
|
- jump_height: f32,
|
|
|
- }
|
|
|
-
|
|
|
- Monster :: struct {
|
|
|
- using entity: ^Entity,
|
|
|
- is_robot: bool,
|
|
|
- is_zombie: bool,
|
|
|
- }
|
|
|
-
|
|
|
- // See `parametric_polymorphism` procedure for details
|
|
|
- new_entity :: proc(T: type) -> ^Entity {
|
|
|
- t := new(Entity);
|
|
|
- t.derived = T{entity = t};
|
|
|
- return t;
|
|
|
- }
|
|
|
-
|
|
|
- entity := new_entity(Monster);
|
|
|
-
|
|
|
- switch e in entity.derived {
|
|
|
- case Frog:
|
|
|
- fmt.println("Ribbit");
|
|
|
- case Monster:
|
|
|
- if e.is_robot do fmt.println("Robotic");
|
|
|
- if e.is_zombie do fmt.println("Grrrr!");
|
|
|
- }
|
|
|
-
|
|
|
- // NOTE(bill): As you can see, the usage code has not changed, only its
|
|
|
- // memory layout. Both approaches have their own advantages but they can
|
|
|
- // be used together to achieve different results. The subtyping approach
|
|
|
- // can allow for a greater control of the memory layout and memory
|
|
|
- // allocation, e.g. storing the derivatives together. However, this is
|
|
|
- // also its disadvantage. You must either preallocate arrays for each
|
|
|
- // derivative separation (which can be easily missed) or preallocate a
|
|
|
- // bunch of "raw" memory; determining the maximum size of the derived
|
|
|
- // types would require the aid of metaprogramming. Unions solve this
|
|
|
- // particular problem as the data is stored with the base data.
|
|
|
- // Therefore, it is possible to preallocate, e.g. [100]Entity.
|
|
|
-
|
|
|
- // It should be noted that the union approach can have the same memory
|
|
|
- // layout as the any and with the same type restrictions by using a
|
|
|
- // pointer type for the derivatives.
|
|
|
-
|
|
|
- /*
|
|
|
- Entity :: struct {
|
|
|
- ..
|
|
|
- derived: union{^Frog, ^Monster},
|
|
|
- }
|
|
|
-
|
|
|
- Frog :: struct {
|
|
|
- using entity: Entity,
|
|
|
- ..
|
|
|
- }
|
|
|
- Monster :: struct {
|
|
|
- using entity: Entity,
|
|
|
- ..
|
|
|
-
|
|
|
- }
|
|
|
- new_entity :: proc(T: type) -> ^Entity {
|
|
|
- t := new(T);
|
|
|
- t.derived = t;
|
|
|
- return t;
|
|
|
- }
|
|
|
- */
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-parametric_polymorphism :: proc() {
|
|
|
- fmt.println("# parametric_polymorphism");
|
|
|
-
|
|
|
- print_value :: proc(value: $T) {
|
|
|
- fmt.printf("print_value: %T %v\n", value, value);
|
|
|
- }
|
|
|
-
|
|
|
- v1: int = 1;
|
|
|
- v2: f32 = 2.1;
|
|
|
- v3: f64 = 3.14;
|
|
|
- v4: string = "message";
|
|
|
-
|
|
|
- print_value(v1);
|
|
|
- print_value(v2);
|
|
|
- print_value(v3);
|
|
|
- print_value(v4);
|
|
|
-
|
|
|
- fmt.println();
|
|
|
-
|
|
|
- add :: proc(p, q: $T) -> T {
|
|
|
- x: T = p + q;
|
|
|
- return x;
|
|
|
- }
|
|
|
-
|
|
|
- a := add(3, 4);
|
|
|
- fmt.printf("a: %T = %v\n", a, a);
|
|
|
-
|
|
|
- b := add(3.2, 4.3);
|
|
|
- fmt.printf("b: %T = %v\n", b, b);
|
|
|
-
|
|
|
- // This is how `new` is implemented
|
|
|
- alloc_type :: proc(T: type) -> ^T {
|
|
|
- t := cast(^T)alloc(size_of(T), align_of(T));
|
|
|
- t^ = T{}; // Use default initialization value
|
|
|
- return t;
|
|
|
- }
|
|
|
-
|
|
|
- copy_slice :: proc(dst, src: []$T) -> int {
|
|
|
- return mem.copy(&dst[0], &src[0], n*size_of(T));
|
|
|
- }
|
|
|
-
|
|
|
- double_params :: proc(a: $A, b: $B) -> A {
|
|
|
- return a + A(b);
|
|
|
- }
|
|
|
-
|
|
|
- fmt.println(double_params(12, 1.345));
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- { // Polymorphic Types and Type Specialization
|
|
|
- Table_Slot :: struct(Key, Value: type) {
|
|
|
- occupied: bool,
|
|
|
- hash: u32,
|
|
|
- key: Key,
|
|
|
- value: Value,
|
|
|
- }
|
|
|
- TABLE_SIZE_MIN :: 32;
|
|
|
- Table :: struct(Key, Value: type) {
|
|
|
- count: int,
|
|
|
- allocator: Allocator,
|
|
|
- slots: []Table_Slot(Key, Value),
|
|
|
- }
|
|
|
-
|
|
|
- // Only allow types that are specializations of a (polymorphic) slice
|
|
|
- make_slice :: proc(T: type/[]$E, len: int) -> T {
|
|
|
- return make(T, len);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // Only allow types that are specializations of `Table`
|
|
|
- allocate :: proc(table: ^$T/Table, capacity: int) {
|
|
|
- c := context;
|
|
|
- if table.allocator.procedure != nil do c.allocator = table.allocator;
|
|
|
-
|
|
|
- context <- c {
|
|
|
- table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN));
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- expand :: proc(table: ^$T/Table) {
|
|
|
- c := context;
|
|
|
- if table.allocator.procedure != nil do c.allocator = table.allocator;
|
|
|
-
|
|
|
- context <- c {
|
|
|
- old_slots := table.slots;
|
|
|
-
|
|
|
- cap := max(2*len(table.slots), TABLE_SIZE_MIN);
|
|
|
- allocate(table, cap);
|
|
|
-
|
|
|
- for s in old_slots do if s.occupied {
|
|
|
- put(table, s.key, s.value);
|
|
|
- }
|
|
|
-
|
|
|
- free(old_slots);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Polymorphic determination of a polymorphic struct
|
|
|
- // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
|
|
|
- put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
|
|
|
- hash := get_hash(key); // Ad-hoc method which would fail in a different scope
|
|
|
- index := find_index(table, key, hash);
|
|
|
- if index < 0 {
|
|
|
- if f64(table.count) >= 0.75*f64(len(table.slots)) {
|
|
|
- expand(table);
|
|
|
- }
|
|
|
- assert(table.count <= len(table.slots));
|
|
|
-
|
|
|
- hash := get_hash(key);
|
|
|
- index = int(hash % u32(len(table.slots)));
|
|
|
-
|
|
|
- for table.slots[index].occupied {
|
|
|
- if index += 1; index >= len(table.slots) {
|
|
|
- index = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- table.count += 1;
|
|
|
- }
|
|
|
-
|
|
|
- slot := &table.slots[index];
|
|
|
- slot.occupied = true;
|
|
|
- slot.hash = hash;
|
|
|
- slot.key = key;
|
|
|
- slot.value = value;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
|
|
|
- find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
|
|
|
- hash := get_hash(key);
|
|
|
- index := find_index(table, key, hash);
|
|
|
- if index < 0 {
|
|
|
- return Value{}, false;
|
|
|
- }
|
|
|
- return table.slots[index].value, true;
|
|
|
- }
|
|
|
-
|
|
|
- find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
|
|
|
- if len(table.slots) <= 0 do return -1;
|
|
|
-
|
|
|
- index := int(hash % u32(len(table.slots)));
|
|
|
- for table.slots[index].occupied {
|
|
|
- if table.slots[index].hash == hash {
|
|
|
- if table.slots[index].key == key {
|
|
|
- return index;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if index += 1; index >= len(table.slots) {
|
|
|
- index = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- get_hash :: proc(s: string) -> u32 { // fnv32a
|
|
|
- h: u32 = 0x811c9dc5;
|
|
|
- for i in 0..len(s) {
|
|
|
- h = (h ~ u32(s[i])) * 0x01000193;
|
|
|
- }
|
|
|
- return h;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- table: Table(string, int);
|
|
|
-
|
|
|
- for i in 0..36 do put(&table, "Hellope", i);
|
|
|
- for i in 0..42 do put(&table, "World!", i);
|
|
|
-
|
|
|
- found, _ := find(&table, "Hellope");
|
|
|
- fmt.printf("`found` is %v\n", found);
|
|
|
-
|
|
|
- found, _ = find(&table, "World!");
|
|
|
- fmt.printf("`found` is %v\n", found);
|
|
|
-
|
|
|
- // I would not personally design a hash table like this in production
|
|
|
- // but this is a nice basic example
|
|
|
- // A better approach would either use a `u64` or equivalent for the key
|
|
|
- // and let the user specify the hashing function or make the user store
|
|
|
- // the hashing procedure with the table
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-prefix_table := [?]string{
|
|
|
- "White",
|
|
|
- "Red",
|
|
|
- "Green",
|
|
|
- "Blue",
|
|
|
- "Octarine",
|
|
|
- "Black",
|
|
|
-};
|
|
|
-
|
|
|
-threading_example :: proc() {
|
|
|
- when ODIN_OS == "windows" {
|
|
|
- fmt.println("# threading_example");
|
|
|
-
|
|
|
- unordered_remove :: proc(array: ^[dynamic]$T, index: int, loc := #caller_location) {
|
|
|
- __bounds_check_error_loc(loc, index, len(array));
|
|
|
- array[index] = array[len(array)-1];
|
|
|
- pop(array);
|
|
|
- }
|
|
|
- ordered_remove :: proc(array: ^[dynamic]$T, index: int, loc := #caller_location) {
|
|
|
- __bounds_check_error_loc(loc, index, len(array));
|
|
|
- copy(array[index..], array[index+1..]);
|
|
|
- pop(array);
|
|
|
- }
|
|
|
-
|
|
|
- worker_proc :: proc(t: ^thread.Thread) -> int {
|
|
|
- for iteration in 1..5 {
|
|
|
- fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
|
|
|
- fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
|
|
|
- // win32.sleep(1);
|
|
|
- }
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- threads := make([dynamic]^thread.Thread, 0, len(prefix_table));
|
|
|
- defer free(threads);
|
|
|
-
|
|
|
- for in prefix_table {
|
|
|
- if t := thread.create(worker_proc); t != nil {
|
|
|
- t.init_context = context;
|
|
|
- t.use_init_context = true;
|
|
|
- t.user_index = len(threads);
|
|
|
- append(&threads, t);
|
|
|
- thread.start(t);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for len(threads) > 0 {
|
|
|
- for i := 0; i < len(threads); /**/ {
|
|
|
- if t := threads[i]; thread.is_done(t) {
|
|
|
- fmt.printf("Thread %d is done\n", t.user_index);
|
|
|
- thread.destroy(t);
|
|
|
-
|
|
|
- ordered_remove(&threads, i);
|
|
|
- } else {
|
|
|
- i += 1;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-array_programming :: proc() {
|
|
|
- fmt.println("# array_programming");
|
|
|
- {
|
|
|
- a := [3]f32{1, 2, 3};
|
|
|
- b := [3]f32{5, 6, 7};
|
|
|
- c := a * b;
|
|
|
- d := a + b;
|
|
|
- e := 1 + (c - d) / 2;
|
|
|
- fmt.printf("%.1f\n", e); // [0.5, 3.0, 6.5]
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- a := [3]f32{1, 2, 3};
|
|
|
- b := swizzle(a, 2, 1, 0);
|
|
|
- assert(b == [3]f32{3, 2, 1});
|
|
|
-
|
|
|
- c := swizzle(a, 0, 0);
|
|
|
- assert(c == [2]f32{1, 1});
|
|
|
- assert(c == 1);
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- Vector3 :: distinct [3]f32;
|
|
|
- a := Vector3{1, 2, 3};
|
|
|
- b := Vector3{5, 6, 7};
|
|
|
- c := (a * b)/2 + 1;
|
|
|
- d := c.x + c.y + c.z;
|
|
|
- fmt.printf("%.1f\n", d); // 22.0
|
|
|
-
|
|
|
- cross :: proc(a, b: Vector3) -> Vector3 {
|
|
|
- i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
|
|
|
- j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
|
|
|
- return i - j;
|
|
|
- }
|
|
|
-
|
|
|
- blah :: proc(a: Vector3) -> f32 {
|
|
|
- return a.x + a.y + a.z;
|
|
|
- }
|
|
|
-
|
|
|
- x := cross(a, b);
|
|
|
- fmt.println(x);
|
|
|
- fmt.println(blah(x));
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-using println in import "core:fmt.odin"
|
|
|
-
|
|
|
-using_in :: proc() {
|
|
|
- fmt.println("# using in");
|
|
|
- using print in fmt;
|
|
|
-
|
|
|
- println("Hellope1");
|
|
|
- print("Hellope2\n");
|
|
|
-
|
|
|
- Foo :: struct {
|
|
|
- x, y: int,
|
|
|
- b: bool,
|
|
|
- }
|
|
|
- f: Foo;
|
|
|
- f.x, f.y = 123, 321;
|
|
|
- println(f);
|
|
|
- using x, y in f;
|
|
|
- x, y = 456, 654;
|
|
|
- println(f);
|
|
|
-}
|
|
|
-
|
|
|
-named_proc_return_parameters :: proc() {
|
|
|
- fmt.println("# named proc return parameters");
|
|
|
-
|
|
|
- foo0 :: proc() -> int {
|
|
|
- return 123;
|
|
|
- }
|
|
|
- foo1 :: proc() -> (a: int) {
|
|
|
- a = 123;
|
|
|
- return;
|
|
|
- }
|
|
|
- foo2 :: proc() -> (a, b: int) {
|
|
|
- // Named return values act like variables within the scope
|
|
|
- a = 321;
|
|
|
- b = 567;
|
|
|
- return b, a;
|
|
|
- }
|
|
|
- fmt.println("foo0 =", foo0()); // 123
|
|
|
- fmt.println("foo1 =", foo1()); // 123
|
|
|
- fmt.println("foo2 =", foo2()); // 567 321
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-enum_export :: proc() {
|
|
|
- fmt.println("# enum #export");
|
|
|
-
|
|
|
- Foo :: enum #export {A, B, C};
|
|
|
-
|
|
|
- f0 := A;
|
|
|
- f1 := B;
|
|
|
- f2 := C;
|
|
|
- fmt.println(f0, f1, f2);
|
|
|
-}
|
|
|
-
|
|
|
-explicit_procedure_overloading :: proc() {
|
|
|
- fmt.println("# explicit procedure overloading");
|
|
|
-
|
|
|
- add_ints :: proc(a, b: int) -> int {
|
|
|
- x := a + b;
|
|
|
- fmt.println("add_ints", x);
|
|
|
- return x;
|
|
|
- }
|
|
|
- add_floats :: proc(a, b: f32) -> f32 {
|
|
|
- x := a + b;
|
|
|
- fmt.println("add_floats", x);
|
|
|
- return x;
|
|
|
- }
|
|
|
- add_numbers :: proc(a: int, b: f32, c: u8) -> int {
|
|
|
- x := int(a) + int(b) + int(c);
|
|
|
- fmt.println("add_numbers", x);
|
|
|
- return x;
|
|
|
- }
|
|
|
-
|
|
|
- add :: proc[add_ints, add_floats, add_numbers];
|
|
|
-
|
|
|
- add(int(1), int(2));
|
|
|
- add(f32(1), f32(2));
|
|
|
- add(int(1), f32(2), u8(3));
|
|
|
-
|
|
|
- add(1, 2); // untyped ints coerce to int tighter than f32
|
|
|
- add(1.0, 2.0); // untyped floats coerce to f32 tighter than int
|
|
|
- add(1, 2, 3); // three parameters
|
|
|
-
|
|
|
- // Ambiguous answers
|
|
|
- // add(1.0, 2);
|
|
|
- // add(1, 2.0);
|
|
|
-}
|
|
|
-
|
|
|
-complete_switch :: proc() {
|
|
|
- fmt.println("# complete_switch");
|
|
|
- { // enum
|
|
|
- Foo :: enum #export {
|
|
|
- A,
|
|
|
- B,
|
|
|
- C,
|
|
|
- D,
|
|
|
- }
|
|
|
-
|
|
|
- b := Foo.B;
|
|
|
- f := Foo.A;
|
|
|
- #complete switch f {
|
|
|
- case A: fmt.println("A");
|
|
|
- case B: fmt.println("B");
|
|
|
- case C: fmt.println("C");
|
|
|
- case D: fmt.println("D");
|
|
|
- case: fmt.println("?");
|
|
|
- }
|
|
|
- }
|
|
|
- { // union
|
|
|
- Foo :: union {int, bool};
|
|
|
- f: Foo = 123;
|
|
|
- #complete switch in f {
|
|
|
- case int: fmt.println("int");
|
|
|
- case bool: fmt.println("bool");
|
|
|
- case:
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-main :: proc() {
|
|
|
- when true {
|
|
|
- general_stuff();
|
|
|
- default_struct_values();
|
|
|
- union_type();
|
|
|
- parametric_polymorphism();
|
|
|
- threading_example();
|
|
|
- array_programming();
|
|
|
- using_in();
|
|
|
- named_proc_return_parameters();
|
|
|
- enum_export();
|
|
|
- explicit_procedure_overloading();
|
|
|
- complete_switch();
|
|
|
- }
|
|
|
-}
|