|
@@ -612,7 +612,7 @@ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.alloc
|
|
|
/* Fast comba? */
|
|
|
// err = s_mp_sqr_comba(a, c);
|
|
|
} else {
|
|
|
- err = _private_int_sqr(dest, src);
|
|
|
+ err = #force_inline _private_int_sqr(dest, src);
|
|
|
}
|
|
|
} else {
|
|
|
/*
|
|
@@ -647,9 +647,9 @@ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.alloc
|
|
|
* have less than MP_WARRAY digits and the number of
|
|
|
* digits won't affect carry propagation
|
|
|
*/
|
|
|
- err = _private_int_mul_comba(dest, src, multiplier, digits);
|
|
|
+ err = #force_inline _private_int_mul_comba(dest, src, multiplier, digits);
|
|
|
} else {
|
|
|
- err = _private_int_mul(dest, src, multiplier, digits);
|
|
|
+ err = #force_inline _private_int_mul(dest, src, multiplier, digits);
|
|
|
}
|
|
|
}
|
|
|
neg := src.sign != multiplier.sign;
|
|
@@ -659,6 +659,14 @@ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.alloc
|
|
|
|
|
|
internal_mul :: proc { internal_int_mul, internal_int_mul_digit, };
|
|
|
|
|
|
+internal_sqr :: proc (dest, src: ^Int) -> (res: Error) {
|
|
|
+ /*
|
|
|
+ We call `internal_mul` and not e.g. `_private_int_sqr` because the former
|
|
|
+ will dispatch to the optimal implementation depending on the source.
|
|
|
+ */
|
|
|
+ return #force_inline internal_mul(dest, src, src);
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
divmod.
|
|
|
Both the quotient and remainder are optional and may be passed a nil.
|
|
@@ -838,7 +846,7 @@ internal_mulmod :: proc { internal_int_mulmod, };
|
|
|
remainder = (number * number) % modulus.
|
|
|
*/
|
|
|
internal_int_sqrmod :: proc(remainder, number, modulus: ^Int) -> (err: Error) {
|
|
|
- if err = #force_inline internal_mul(remainder, number, number); err != nil { return err; }
|
|
|
+ if err = #force_inline internal_sqr(remainder, number); err != nil { return err; }
|
|
|
return #force_inline internal_mod(remainder, remainder, modulus);
|
|
|
}
|
|
|
internal_sqrmod :: proc { internal_int_sqrmod, };
|
|
@@ -1069,10 +1077,10 @@ internal_int_compare_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (comparis
|
|
|
case a.digit[0] < b: return -1;
|
|
|
case a.digit[0] == b: return 0;
|
|
|
case a.digit[0] > b: return +1;
|
|
|
- /*
|
|
|
- Unreachable.
|
|
|
- Just here because Odin complains about a missing return value at the bottom of the proc otherwise.
|
|
|
- */
|
|
|
+ /*
|
|
|
+ Unreachable.
|
|
|
+ Just here because Odin complains about a missing return value at the bottom of the proc otherwise.
|
|
|
+ */
|
|
|
case: return;
|
|
|
}
|
|
|
}
|
|
@@ -1111,882 +1119,510 @@ internal_compare_magnitude :: proc { internal_int_compare_magnitude, };
|
|
|
internal_cmp_mag :: internal_compare_magnitude;
|
|
|
|
|
|
|
|
|
-internal_int_zero_unused :: #force_inline proc(dest: ^Int, old_used := -1) {
|
|
|
- /*
|
|
|
- If we don't pass the number of previously used DIGITs, we zero all remaining ones.
|
|
|
- */
|
|
|
- zero_count: int;
|
|
|
- if old_used == -1 {
|
|
|
- zero_count = len(dest.digit) - dest.used;
|
|
|
- } else {
|
|
|
- zero_count = old_used - dest.used;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- Zero remainder.
|
|
|
- */
|
|
|
- if zero_count > 0 && dest.used < len(dest.digit) {
|
|
|
- mem.zero_slice(dest.digit[dest.used:][:zero_count]);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-internal_zero_unused :: proc { internal_int_zero_unused, };
|
|
|
-
|
|
|
+/*
|
|
|
+ ========================= Logs, powers and roots ============================
|
|
|
+*/
|
|
|
|
|
|
/*
|
|
|
- ========================== End of low-level routines ==========================
|
|
|
+ Returns log_base(a).
|
|
|
+ Assumes `a` to not be `nil` and have been iniialized.
|
|
|
+*/
|
|
|
+internal_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {
|
|
|
+ if base < 2 || DIGIT(base) > _DIGIT_MAX { return -1, .Invalid_Argument; }
|
|
|
|
|
|
- ============================= Private procedures =============================
|
|
|
+ if internal_is_negative(a) { return -1, .Math_Domain_Error; }
|
|
|
+ if internal_is_zero(a) { return -1, .Math_Domain_Error; }
|
|
|
|
|
|
- Private procedures used by the above low-level routines follow.
|
|
|
+ /*
|
|
|
+ Fast path for bases that are a power of two.
|
|
|
+ */
|
|
|
+ if platform_int_is_power_of_two(int(base)) { return private_log_power_of_two(a, base); }
|
|
|
|
|
|
- Don't call these yourself unless you really know what you're doing.
|
|
|
- They include implementations that are optimimal for certain ranges of input only.
|
|
|
+ /*
|
|
|
+ Fast path for `Int`s that fit within a single `DIGIT`.
|
|
|
+ */
|
|
|
+ if a.used == 1 { return internal_log(a.digit[0], DIGIT(base)); }
|
|
|
|
|
|
- These aren't exported for the same reasons.
|
|
|
-*/
|
|
|
+ return private_int_log(a, base);
|
|
|
|
|
|
+}
|
|
|
|
|
|
/*
|
|
|
- Multiplies |a| * |b| and only computes upto digs digits of result.
|
|
|
- HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
|
|
- many digits of output are created.
|
|
|
+ Returns log_base(a), where `a` is a DIGIT.
|
|
|
*/
|
|
|
-_private_int_mul :: proc(dest, a, b: ^Int, digits: int) -> (err: Error) {
|
|
|
+internal_digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {
|
|
|
/*
|
|
|
- Can we use the fast multiplier?
|
|
|
+ If the number is smaller than the base, it fits within a fraction.
|
|
|
+ Therefore, we return 0.
|
|
|
*/
|
|
|
- if digits < _WARRAY && min(a.used, b.used) < _MAX_COMBA {
|
|
|
- return _private_int_mul_comba(dest, a, b, digits);
|
|
|
- }
|
|
|
+ if a < base { return 0, nil; }
|
|
|
|
|
|
/*
|
|
|
- Set up temporary output `Int`, which we'll swap for `dest` when done.
|
|
|
+ If a number equals the base, the log is 1.
|
|
|
*/
|
|
|
+ if a == base { return 1, nil; }
|
|
|
|
|
|
- t := &Int{};
|
|
|
-
|
|
|
- if err = grow(t, max(digits, _DEFAULT_DIGIT_COUNT)); err != nil { return err; }
|
|
|
- t.used = digits;
|
|
|
+ N := _WORD(a);
|
|
|
+ bracket_low := _WORD(1);
|
|
|
+ bracket_high := _WORD(base);
|
|
|
+ high := 1;
|
|
|
+ low := 0;
|
|
|
|
|
|
- /*
|
|
|
- Compute the digits of the product directly.
|
|
|
- */
|
|
|
- pa := a.used;
|
|
|
- for ix := 0; ix < pa; ix += 1 {
|
|
|
- /*
|
|
|
- Limit ourselves to `digits` DIGITs of output.
|
|
|
- */
|
|
|
- pb := min(b.used, digits - ix);
|
|
|
- carry := _WORD(0);
|
|
|
- iy := 0;
|
|
|
-
|
|
|
- /*
|
|
|
- Compute the column of the output and propagate the carry.
|
|
|
- */
|
|
|
- #no_bounds_check for iy = 0; iy < pb; iy += 1 {
|
|
|
- /*
|
|
|
- Compute the column as a _WORD.
|
|
|
- */
|
|
|
- column := _WORD(t.digit[ix + iy]) + _WORD(a.digit[ix]) * _WORD(b.digit[iy]) + carry;
|
|
|
+ for bracket_high < N {
|
|
|
+ low = high;
|
|
|
+ bracket_low = bracket_high;
|
|
|
+ high <<= 1;
|
|
|
+ bracket_high *= bracket_high;
|
|
|
+ }
|
|
|
|
|
|
- /*
|
|
|
- The new column is the lower part of the result.
|
|
|
- */
|
|
|
- t.digit[ix + iy] = DIGIT(column & _WORD(_MASK));
|
|
|
+ for high - low > 1 {
|
|
|
+ mid := (low + high) >> 1;
|
|
|
+ bracket_mid := bracket_low * #force_inline internal_small_pow(_WORD(base), _WORD(mid - low));
|
|
|
|
|
|
- /*
|
|
|
- Get the carry word from the result.
|
|
|
- */
|
|
|
- carry = column >> _DIGIT_BITS;
|
|
|
+ if N < bracket_mid {
|
|
|
+ high = mid;
|
|
|
+ bracket_high = bracket_mid;
|
|
|
}
|
|
|
- /*
|
|
|
- Set carry if it is placed below digits
|
|
|
- */
|
|
|
- if ix + iy < digits {
|
|
|
- t.digit[ix + pb] = DIGIT(carry);
|
|
|
+ if N > bracket_mid {
|
|
|
+ low = mid;
|
|
|
+ bracket_low = bracket_mid;
|
|
|
+ }
|
|
|
+ if N == bracket_mid {
|
|
|
+ return mid, nil;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- swap(dest, t);
|
|
|
- destroy(t);
|
|
|
- return clamp(dest);
|
|
|
+ if bracket_high == N {
|
|
|
+ return high, nil;
|
|
|
+ } else {
|
|
|
+ return low, nil;
|
|
|
+ }
|
|
|
}
|
|
|
+internal_log :: proc { internal_int_log, internal_digit_log, };
|
|
|
|
|
|
/*
|
|
|
- Fast (comba) multiplier
|
|
|
-
|
|
|
- This is the fast column-array [comba] multiplier. It is
|
|
|
- designed to compute the columns of the product first
|
|
|
- then handle the carries afterwards. This has the effect
|
|
|
- of making the nested loops that compute the columns very
|
|
|
- simple and schedulable on super-scalar processors.
|
|
|
-
|
|
|
- This has been modified to produce a variable number of
|
|
|
- digits of output so if say only a half-product is required
|
|
|
- you don't have to compute the upper half (a feature
|
|
|
- required for fast Barrett reduction).
|
|
|
-
|
|
|
- Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
+ Calculate dest = base^power using a square-multiply algorithm.
|
|
|
+ Assumes `dest` and `base` not to be `nil` and to have been initialized.
|
|
|
*/
|
|
|
-_private_int_mul_comba :: proc(dest, a, b: ^Int, digits: int) -> (err: Error) {
|
|
|
- /*
|
|
|
- Set up array.
|
|
|
- */
|
|
|
- W: [_WARRAY]DIGIT = ---;
|
|
|
-
|
|
|
- /*
|
|
|
- Grow the destination as required.
|
|
|
- */
|
|
|
- if err = grow(dest, digits); err != nil { return err; }
|
|
|
-
|
|
|
- /*
|
|
|
- Number of output digits to produce.
|
|
|
- */
|
|
|
- pa := min(digits, a.used + b.used);
|
|
|
-
|
|
|
+internal_int_pow :: proc(dest, base: ^Int, power: int) -> (err: Error) {
|
|
|
+ power := power;
|
|
|
/*
|
|
|
- Clear the carry
|
|
|
+ Early outs.
|
|
|
*/
|
|
|
- _W := _WORD(0);
|
|
|
-
|
|
|
- ix: int;
|
|
|
- for ix = 0; ix < pa; ix += 1 {
|
|
|
- tx, ty, iy, iz: int;
|
|
|
-
|
|
|
+ if #force_inline internal_is_zero(base) {
|
|
|
/*
|
|
|
- Get offsets into the two bignums.
|
|
|
+ A zero base is a special case.
|
|
|
*/
|
|
|
- ty = min(b.used - 1, ix);
|
|
|
- tx = ix - ty;
|
|
|
-
|
|
|
- /*
|
|
|
- This is the number of times the loop will iterate, essentially.
|
|
|
- while (tx++ < a->used && ty-- >= 0) { ... }
|
|
|
- */
|
|
|
-
|
|
|
- iy = min(a.used - tx, ty + 1);
|
|
|
+ if power < 0 {
|
|
|
+ if err = zero(dest); err != nil { return err; }
|
|
|
+ return .Math_Domain_Error;
|
|
|
+ }
|
|
|
+ if power == 0 { return set(dest, 1); }
|
|
|
+ if power > 0 { return zero(dest); }
|
|
|
|
|
|
+ }
|
|
|
+ if power < 0 {
|
|
|
/*
|
|
|
- Execute loop.
|
|
|
+ Fraction, so we'll return zero.
|
|
|
*/
|
|
|
- #no_bounds_check for iz = 0; iz < iy; iz += 1 {
|
|
|
- _W += _WORD(a.digit[tx + iz]) * _WORD(b.digit[ty - iz]);
|
|
|
- }
|
|
|
-
|
|
|
+ return zero(dest);
|
|
|
+ }
|
|
|
+ switch(power) {
|
|
|
+ case 0:
|
|
|
/*
|
|
|
- Store term.
|
|
|
+ Any base to the power zero is one.
|
|
|
*/
|
|
|
- W[ix] = DIGIT(_W) & _MASK;
|
|
|
-
|
|
|
+ return one(dest);
|
|
|
+ case 1:
|
|
|
/*
|
|
|
- Make next carry.
|
|
|
+ Any base to the power one is itself.
|
|
|
*/
|
|
|
- _W = _W >> _WORD(_DIGIT_BITS);
|
|
|
+ return copy(dest, base);
|
|
|
+ case 2:
|
|
|
+ return #force_inline internal_sqr(dest, base);
|
|
|
}
|
|
|
|
|
|
- /*
|
|
|
- Setup dest.
|
|
|
- */
|
|
|
- old_used := dest.used;
|
|
|
- dest.used = pa;
|
|
|
-
|
|
|
- /*
|
|
|
- Now extract the previous digit [below the carry].
|
|
|
- */
|
|
|
- copy_slice(dest.digit[0:], W[:pa]);
|
|
|
-
|
|
|
- /*
|
|
|
- Clear unused digits [that existed in the old copy of dest].
|
|
|
- */
|
|
|
- zero_unused(dest, old_used);
|
|
|
-
|
|
|
- /*
|
|
|
- Adjust dest.used based on leading zeroes.
|
|
|
- */
|
|
|
-
|
|
|
- return clamp(dest);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- Low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
|
|
|
-*/
|
|
|
-_private_int_sqr :: proc(dest, src: ^Int) -> (err: Error) {
|
|
|
- pa := src.used;
|
|
|
+ g := &Int{};
|
|
|
+ if err = copy(g, base); err != nil { return err; }
|
|
|
|
|
|
- t := &Int{}; ix, iy: int;
|
|
|
/*
|
|
|
- Grow `t` to maximum needed size, or `_DEFAULT_DIGIT_COUNT`, whichever is bigger.
|
|
|
+ Set initial result.
|
|
|
*/
|
|
|
- if err = grow(t, max((2 * pa) + 1, _DEFAULT_DIGIT_COUNT)); err != nil { return err; }
|
|
|
- t.used = (2 * pa) + 1;
|
|
|
-
|
|
|
- #no_bounds_check for ix = 0; ix < pa; ix += 1 {
|
|
|
- carry := DIGIT(0);
|
|
|
- /*
|
|
|
- First calculate the digit at 2*ix; calculate double precision result.
|
|
|
- */
|
|
|
- r := _WORD(t.digit[ix+ix]) + (_WORD(src.digit[ix]) * _WORD(src.digit[ix]));
|
|
|
+ if err = set(dest, 1); err != nil { return err; }
|
|
|
|
|
|
+ loop: for power > 0 {
|
|
|
/*
|
|
|
- Store lower part in result.
|
|
|
+ If the bit is set, multiply.
|
|
|
*/
|
|
|
- t.digit[ix+ix] = DIGIT(r & _WORD(_MASK));
|
|
|
- /*
|
|
|
- Get the carry.
|
|
|
- */
|
|
|
- carry = DIGIT(r >> _DIGIT_BITS);
|
|
|
-
|
|
|
- #no_bounds_check for iy = ix + 1; iy < pa; iy += 1 {
|
|
|
- /*
|
|
|
- First calculate the product.
|
|
|
- */
|
|
|
- r = _WORD(src.digit[ix]) * _WORD(src.digit[iy]);
|
|
|
-
|
|
|
- /* Now calculate the double precision result. Nóte we use
|
|
|
- * addition instead of *2 since it's easier to optimize
|
|
|
- */
|
|
|
- r = _WORD(t.digit[ix+iy]) + r + r + _WORD(carry);
|
|
|
-
|
|
|
- /*
|
|
|
- Store lower part.
|
|
|
- */
|
|
|
- t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
|
|
|
-
|
|
|
- /*
|
|
|
- Get carry.
|
|
|
- */
|
|
|
- carry = DIGIT(r >> _DIGIT_BITS);
|
|
|
+ if power & 1 != 0 {
|
|
|
+ if err = mul(dest, g, dest); err != nil {
|
|
|
+ break loop;
|
|
|
+ }
|
|
|
}
|
|
|
/*
|
|
|
- Propagate upwards.
|
|
|
+ Square.
|
|
|
*/
|
|
|
- #no_bounds_check for carry != 0 {
|
|
|
- r = _WORD(t.digit[ix+iy]) + _WORD(carry);
|
|
|
- t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
|
|
|
- carry = DIGIT(r >> _WORD(_DIGIT_BITS));
|
|
|
- iy += 1;
|
|
|
+ if power > 1 {
|
|
|
+ if err = #force_inline internal_sqr(g, g); err != nil {
|
|
|
+ break loop;
|
|
|
+ }
|
|
|
}
|
|
|
+
|
|
|
+ /* shift to next bit */
|
|
|
+ power >>= 1;
|
|
|
}
|
|
|
|
|
|
- err = clamp(t);
|
|
|
- swap(dest, t);
|
|
|
- destroy(t);
|
|
|
+ destroy(g);
|
|
|
return err;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- Divide by three (based on routine from MPI and the GMP manual).
|
|
|
+ Calculate `dest = base^power`.
|
|
|
+ Assumes `dest` not to be `nil` and to have been initialized.
|
|
|
*/
|
|
|
-_private_int_div_3 :: proc(quotient, numerator: ^Int) -> (remainder: DIGIT, err: Error) {
|
|
|
- /*
|
|
|
- b = 2^_DIGIT_BITS / 3
|
|
|
- */
|
|
|
- b := _WORD(1) << _WORD(_DIGIT_BITS) / _WORD(3);
|
|
|
-
|
|
|
- q := &Int{};
|
|
|
- if err = grow(q, numerator.used); err != nil { return 0, err; }
|
|
|
- q.used = numerator.used;
|
|
|
- q.sign = numerator.sign;
|
|
|
+internal_int_pow_int :: proc(dest: ^Int, base, power: int) -> (err: Error) {
|
|
|
+ base_t := &Int{};
|
|
|
+ defer destroy(base_t);
|
|
|
|
|
|
- w, t: _WORD;
|
|
|
- #no_bounds_check for ix := numerator.used; ix >= 0; ix -= 1 {
|
|
|
- w = (w << _WORD(_DIGIT_BITS)) | _WORD(numerator.digit[ix]);
|
|
|
- if w >= 3 {
|
|
|
- /*
|
|
|
- Multiply w by [1/3].
|
|
|
- */
|
|
|
- t = (w * b) >> _WORD(_DIGIT_BITS);
|
|
|
+ if err = set(base_t, base); err != nil { return err; }
|
|
|
|
|
|
- /*
|
|
|
- Now subtract 3 * [w/3] from w, to get the remainder.
|
|
|
- */
|
|
|
- w -= t+t+t;
|
|
|
+ return #force_inline internal_int_pow(dest, base_t, power);
|
|
|
+}
|
|
|
|
|
|
- /*
|
|
|
- Fixup the remainder as required since the optimization is not exact.
|
|
|
- */
|
|
|
- for w >= 3 {
|
|
|
- t += 1;
|
|
|
- w -= 3;
|
|
|
- }
|
|
|
- } else {
|
|
|
- t = 0;
|
|
|
- }
|
|
|
- q.digit[ix] = DIGIT(t);
|
|
|
- }
|
|
|
- remainder = DIGIT(w);
|
|
|
+internal_pow :: proc { internal_int_pow, internal_int_pow_int, };
|
|
|
+internal_exp :: pow;
|
|
|
|
|
|
- /*
|
|
|
- [optional] store the quotient.
|
|
|
- */
|
|
|
- if quotient != nil {
|
|
|
- err = clamp(q);
|
|
|
- swap(q, quotient);
|
|
|
- }
|
|
|
- destroy(q);
|
|
|
- return remainder, nil;
|
|
|
+/*
|
|
|
+ Returns the log2 of an `Int`.
|
|
|
+ Assumes `a` not to be `nil` and to have been initialized.
|
|
|
+ Also assumes `base` is a power of two.
|
|
|
+*/
|
|
|
+private_log_power_of_two :: proc(a: ^Int, base: DIGIT) -> (log: int, err: Error) {
|
|
|
+ base := base;
|
|
|
+ y: int;
|
|
|
+ for y = 0; base & 1 == 0; {
|
|
|
+ y += 1;
|
|
|
+ base >>= 1;
|
|
|
+ }
|
|
|
+ log, err = count_bits(a);
|
|
|
+ return (log - 1) / y, err;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- Signed Integer Division
|
|
|
-
|
|
|
- c*b + d == a [i.e. a/b, c=quotient, d=remainder], HAC pp.598 Algorithm 14.20
|
|
|
-
|
|
|
- Note that the description in HAC is horribly incomplete.
|
|
|
- For example, it doesn't consider the case where digits are removed from 'x' in
|
|
|
- the inner loop.
|
|
|
|
|
|
- It also doesn't consider the case that y has fewer than three digits, etc.
|
|
|
- The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
|
|
|
*/
|
|
|
-_private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
|
|
|
- // if err = error_if_immutable(quotient, remainder); err != nil { return err; }
|
|
|
- // if err = clear_if_uninitialized(quotient, numerator, denominator); err != nil { return err; }
|
|
|
+internal_small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {
|
|
|
+ exponent := exponent; base := base;
|
|
|
+ result = _WORD(1);
|
|
|
|
|
|
- q, x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
- defer destroy(q, x, y, t1, t2);
|
|
|
-
|
|
|
- if err = grow(q, numerator.used + 2); err != nil { return err; }
|
|
|
- q.used = numerator.used + 2;
|
|
|
-
|
|
|
- if err = init_multi(t1, t2); err != nil { return err; }
|
|
|
- if err = copy(x, numerator); err != nil { return err; }
|
|
|
- if err = copy(y, denominator); err != nil { return err; }
|
|
|
-
|
|
|
- /*
|
|
|
- Fix the sign.
|
|
|
- */
|
|
|
- neg := numerator.sign != denominator.sign;
|
|
|
- x.sign = .Zero_or_Positive;
|
|
|
- y.sign = .Zero_or_Positive;
|
|
|
-
|
|
|
- /*
|
|
|
- Normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT]
|
|
|
- */
|
|
|
- norm, _ := count_bits(y);
|
|
|
- norm %= _DIGIT_BITS;
|
|
|
-
|
|
|
- if norm < _DIGIT_BITS - 1 {
|
|
|
- norm = (_DIGIT_BITS - 1) - norm;
|
|
|
- if err = shl(x, x, norm); err != nil { return err; }
|
|
|
- if err = shl(y, y, norm); err != nil { return err; }
|
|
|
- } else {
|
|
|
- norm = 0;
|
|
|
+ for exponent != 0 {
|
|
|
+ if exponent & 1 == 1 {
|
|
|
+ result *= base;
|
|
|
+ }
|
|
|
+ exponent >>= 1;
|
|
|
+ base *= base;
|
|
|
}
|
|
|
+ return result;
|
|
|
+}
|
|
|
|
|
|
+/*
|
|
|
+ This function is less generic than `root_n`, simpler and faster.
|
|
|
+ Assumes `dest` and `src` not to be `nil` and to have been initialized.
|
|
|
+*/
|
|
|
+internal_int_sqrt :: proc(dest, src: ^Int) -> (err: Error) {
|
|
|
/*
|
|
|
- Note: HAC does 0 based, so if used==5 then it's 0,1,2,3,4, i.e. use 4
|
|
|
+ Must be positive.
|
|
|
*/
|
|
|
- n := x.used - 1;
|
|
|
- t := y.used - 1;
|
|
|
+ if #force_inline internal_is_negative(src) { return .Invalid_Argument; }
|
|
|
|
|
|
/*
|
|
|
- while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} }
|
|
|
- y = y*b**{n-t}
|
|
|
+ Easy out. If src is zero, so is dest.
|
|
|
*/
|
|
|
-
|
|
|
- if err = shl_digit(y, n - t); err != nil { return err; }
|
|
|
-
|
|
|
- c, _ := cmp(x, y);
|
|
|
- for c != -1 {
|
|
|
- q.digit[n - t] += 1;
|
|
|
- if err = sub(x, x, y); err != nil { return err; }
|
|
|
- c, _ = cmp(x, y);
|
|
|
- }
|
|
|
+ if #force_inline internal_is_zero(src) { return zero(dest); }
|
|
|
|
|
|
/*
|
|
|
- Reset y by shifting it back down.
|
|
|
+ Set up temporaries.
|
|
|
*/
|
|
|
- shr_digit(y, n - t);
|
|
|
+ x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
+ defer destroy(x, y, t1, t2);
|
|
|
|
|
|
- /*
|
|
|
- Step 3. for i from n down to (t + 1).
|
|
|
- */
|
|
|
- #no_bounds_check for i := n; i >= (t + 1); i -= 1 {
|
|
|
- if (i > x.used) { continue; }
|
|
|
+ count: int;
|
|
|
+ if count, err = count_bits(src); err != nil { return err; }
|
|
|
|
|
|
+ a, b := count >> 1, count & 1;
|
|
|
+ if err = power_of_two(x, a+b); err != nil { return err; }
|
|
|
+
|
|
|
+ for {
|
|
|
/*
|
|
|
- step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt
|
|
|
+ y = (x + n // x) // 2
|
|
|
*/
|
|
|
- if x.digit[i] == y.digit[t] {
|
|
|
- q.digit[(i - t) - 1] = 1 << (_DIGIT_BITS - 1);
|
|
|
- } else {
|
|
|
+ internal_div(t1, src, x);
|
|
|
+ internal_add(t2, t1, x);
|
|
|
+ shr(y, t2, 1);
|
|
|
|
|
|
- tmp := _WORD(x.digit[i]) << _DIGIT_BITS;
|
|
|
- tmp |= _WORD(x.digit[i - 1]);
|
|
|
- tmp /= _WORD(y.digit[t]);
|
|
|
- if tmp > _WORD(_MASK) {
|
|
|
- tmp = _WORD(_MASK);
|
|
|
- }
|
|
|
- q.digit[(i - t) - 1] = DIGIT(tmp & _WORD(_MASK));
|
|
|
+ if c := internal_cmp(y, x); c == 0 || c == 1 {
|
|
|
+ swap(dest, x);
|
|
|
+ return nil;
|
|
|
}
|
|
|
+ swap(x, y);
|
|
|
+ }
|
|
|
|
|
|
- /* while (q{i-t-1} * (yt * b + y{t-1})) >
|
|
|
- xi * b**2 + xi-1 * b + xi-2
|
|
|
+ swap(dest, x);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+internal_sqrt :: proc { internal_int_sqrt, };
|
|
|
|
|
|
- do q{i-t-1} -= 1;
|
|
|
- */
|
|
|
|
|
|
- iter := 0;
|
|
|
+/*
|
|
|
+ Find the nth root of an Integer.
|
|
|
+ Result found such that `(dest)**n <= src` and `(dest+1)**n > src`
|
|
|
|
|
|
- q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] + 1) & _MASK;
|
|
|
- #no_bounds_check for {
|
|
|
- q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK;
|
|
|
+ This algorithm uses Newton's approximation `x[i+1] = x[i] - f(x[i])/f'(x[i])`,
|
|
|
+ which will find the root in `log(n)` time where each step involves a fair bit.
|
|
|
|
|
|
- /*
|
|
|
- Find left hand.
|
|
|
- */
|
|
|
- zero(t1);
|
|
|
- t1.digit[0] = ((t - 1) < 0) ? 0 : y.digit[t - 1];
|
|
|
- t1.digit[1] = y.digit[t];
|
|
|
- t1.used = 2;
|
|
|
- if err = mul(t1, t1, q.digit[(i - t) - 1]); err != nil { return err; }
|
|
|
+ Assumes `dest` and `src` not to be `nil` and have been initialized.
|
|
|
+*/
|
|
|
+internal_int_root_n :: proc(dest, src: ^Int, n: int) -> (err: Error) {
|
|
|
+ /*
|
|
|
+ Fast path for n == 2
|
|
|
+ */
|
|
|
+ if n == 2 { return #force_inline internal_sqrt(dest, src); }
|
|
|
|
|
|
- /*
|
|
|
- Find right hand.
|
|
|
- */
|
|
|
- t2.digit[0] = ((i - 2) < 0) ? 0 : x.digit[i - 2];
|
|
|
- t2.digit[1] = x.digit[i - 1]; /* i >= 1 always holds */
|
|
|
- t2.digit[2] = x.digit[i];
|
|
|
- t2.used = 3;
|
|
|
+ if n < 0 || n > int(_DIGIT_MAX) { return .Invalid_Argument; }
|
|
|
|
|
|
- if t1_t2, _ := cmp_mag(t1, t2); t1_t2 != 1 {
|
|
|
- break;
|
|
|
- }
|
|
|
- iter += 1; if iter > 100 { return .Max_Iterations_Reached; }
|
|
|
- }
|
|
|
+ if n & 1 == 0 && #force_inline internal_is_negative(src) { return .Invalid_Argument; }
|
|
|
|
|
|
- /*
|
|
|
- Step 3.3 x = x - q{i-t-1} * y * b**{i-t-1}
|
|
|
- */
|
|
|
- if err = int_mul_digit(t1, y, q.digit[(i - t) - 1]); err != nil { return err; }
|
|
|
- if err = shl_digit(t1, (i - t) - 1); err != nil { return err; }
|
|
|
- if err = sub(x, x, t1); err != nil { return err; }
|
|
|
+ /*
|
|
|
+ Set up temporaries.
|
|
|
+ */
|
|
|
+ t1, t2, t3, a := &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
+ defer destroy(t1, t2, t3);
|
|
|
|
|
|
- /*
|
|
|
- if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; }
|
|
|
- */
|
|
|
- if x.sign == .Negative {
|
|
|
- if err = copy(t1, y); err != nil { return err; }
|
|
|
- if err = shl_digit(t1, (i - t) - 1); err != nil { return err; }
|
|
|
- if err = add(x, x, t1); err != nil { return err; }
|
|
|
+ /*
|
|
|
+ If `src` is negative fudge the sign but keep track.
|
|
|
+ */
|
|
|
+ a.sign = .Zero_or_Positive;
|
|
|
+ a.used = src.used;
|
|
|
+ a.digit = src.digit;
|
|
|
|
|
|
- q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK;
|
|
|
- }
|
|
|
+ /*
|
|
|
+ If "n" is larger than INT_MAX it is also larger than
|
|
|
+ log_2(src) because the bit-length of the "src" is measured
|
|
|
+ with an int and hence the root is always < 2 (two).
|
|
|
+ */
|
|
|
+ if n > max(int) / 2 {
|
|
|
+ err = set(dest, 1);
|
|
|
+ dest.sign = a.sign;
|
|
|
+ return err;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- Now q is the quotient and x is the remainder, [which we have to normalize]
|
|
|
- Get sign before writing to c.
|
|
|
+ Compute seed: 2^(log_2(src)/n + 2)
|
|
|
*/
|
|
|
- z, _ := is_zero(x);
|
|
|
- x.sign = .Zero_or_Positive if z else numerator.sign;
|
|
|
+ ilog2: int;
|
|
|
+ ilog2, err = count_bits(src);
|
|
|
|
|
|
- if quotient != nil {
|
|
|
- clamp(q);
|
|
|
- swap(q, quotient);
|
|
|
- quotient.sign = .Negative if neg else .Zero_or_Positive;
|
|
|
+ /*
|
|
|
+ "src" is smaller than max(int), we can cast safely.
|
|
|
+ */
|
|
|
+ if ilog2 < n {
|
|
|
+ err = set(dest, 1);
|
|
|
+ dest.sign = a.sign;
|
|
|
+ return err;
|
|
|
}
|
|
|
|
|
|
- if remainder != nil {
|
|
|
- if err = shr(x, x, norm); err != nil { return err; }
|
|
|
- swap(x, remainder);
|
|
|
+ ilog2 /= n;
|
|
|
+ if ilog2 == 0 {
|
|
|
+ err = set(dest, 1);
|
|
|
+ dest.sign = a.sign;
|
|
|
+ return err;
|
|
|
}
|
|
|
|
|
|
- return nil;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- Slower bit-bang division... also smaller.
|
|
|
-*/
|
|
|
-@(deprecated="Use `_int_div_school`, it's 3.5x faster.")
|
|
|
-_private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
|
|
|
+ /*
|
|
|
+ Start value must be larger than root.
|
|
|
+ */
|
|
|
+ ilog2 += 2;
|
|
|
+ if err = power_of_two(t2, ilog2); err != nil { return err; }
|
|
|
|
|
|
- ta, tb, tq, q := &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
c: int;
|
|
|
+ iterations := 0;
|
|
|
+ for {
|
|
|
+ /* t1 = t2 */
|
|
|
+ if err = copy(t1, t2); err != nil { return err; }
|
|
|
|
|
|
- goto_end: for {
|
|
|
- if err = one(tq); err != nil { break goto_end; }
|
|
|
+ /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
|
|
|
|
|
|
- num_bits, _ := count_bits(numerator);
|
|
|
- den_bits, _ := count_bits(denominator);
|
|
|
- n := num_bits - den_bits;
|
|
|
+ /* t3 = t1**(b-1) */
|
|
|
+ if err = internal_pow(t3, t1, n-1); err != nil { return err; }
|
|
|
|
|
|
- if err = abs(ta, numerator); err != nil { break goto_end; }
|
|
|
- if err = abs(tb, denominator); err != nil { break goto_end; }
|
|
|
- if err = shl(tb, tb, n); err != nil { break goto_end; }
|
|
|
- if err = shl(tq, tq, n); err != nil { break goto_end; }
|
|
|
+ /* numerator */
|
|
|
+ /* t2 = t1**b */
|
|
|
+ if err = internal_mul(t2, t1, t3); err != nil { return err; }
|
|
|
|
|
|
- for n >= 0 {
|
|
|
- if c, _ = cmp_mag(ta, tb); c == 0 || c == 1 {
|
|
|
- // ta -= tb
|
|
|
- if err = sub(ta, ta, tb); err != nil { break goto_end; }
|
|
|
- // q += tq
|
|
|
- if err = add( q, q, tq); err != nil { break goto_end; }
|
|
|
- }
|
|
|
- if err = shr1(tb, tb); err != nil { break goto_end; }
|
|
|
- if err = shr1(tq, tq); err != nil { break goto_end; }
|
|
|
+ /* t2 = t1**b - a */
|
|
|
+ if err = internal_sub(t2, t2, a); err != nil { return err; }
|
|
|
|
|
|
- n -= 1;
|
|
|
- }
|
|
|
+ /* denominator */
|
|
|
+ /* t3 = t1**(b-1) * b */
|
|
|
+ if err = internal_mul(t3, t3, DIGIT(n)); err != nil { return err; }
|
|
|
+
|
|
|
+ /* t3 = (t1**b - a)/(b * t1**(b-1)) */
|
|
|
+ if err = internal_div(t3, t2, t3); err != nil { return err; }
|
|
|
+ if err = internal_sub(t2, t1, t3); err != nil { return err; }
|
|
|
|
|
|
/*
|
|
|
- Now q == quotient and ta == remainder.
|
|
|
+ Number of rounds is at most log_2(root). If it is more it
|
|
|
+ got stuck, so break out of the loop and do the rest manually.
|
|
|
*/
|
|
|
- neg := numerator.sign != denominator.sign;
|
|
|
- if quotient != nil {
|
|
|
- swap(quotient, q);
|
|
|
- z, _ := is_zero(quotient);
|
|
|
- quotient.sign = .Negative if neg && !z else .Zero_or_Positive;
|
|
|
+ if ilog2 -= 1; ilog2 == 0 {
|
|
|
+ break;
|
|
|
}
|
|
|
- if remainder != nil {
|
|
|
- swap(remainder, ta);
|
|
|
- z, _ := is_zero(numerator);
|
|
|
- remainder.sign = .Zero_or_Positive if z else numerator.sign;
|
|
|
+ if c := internal_cmp(t1, t2); c == 0 { break; }
|
|
|
+ iterations += 1;
|
|
|
+ if iterations == MAX_ITERATIONS_ROOT_N {
|
|
|
+ return .Max_Iterations_Reached;
|
|
|
}
|
|
|
-
|
|
|
- break goto_end;
|
|
|
}
|
|
|
- destroy(ta, tb, tq, q);
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-/*
|
|
|
- Binary split factorial algo due to: http://www.luschny.de/math/factorial/binarysplitfact.html
|
|
|
-*/
|
|
|
-_private_int_factorial_binary_split :: proc(res: ^Int, n: int) -> (err: Error) {
|
|
|
|
|
|
- inner, outer, start, stop, temp := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
- defer destroy(inner, outer, start, stop, temp);
|
|
|
+ /* Result can be off by a few so check. */
|
|
|
+ /* Loop beneath can overshoot by one if found root is smaller than actual root. */
|
|
|
|
|
|
- if err = set(inner, 1); err != nil { return err; }
|
|
|
- if err = set(outer, 1); err != nil { return err; }
|
|
|
+ iterations = 0;
|
|
|
+ for {
|
|
|
+ if err = internal_pow(t2, t1, n); err != nil { return err; }
|
|
|
|
|
|
- bits_used := int(_DIGIT_TYPE_BITS - intrinsics.count_leading_zeros(n));
|
|
|
+ c := internal_cmp(t2, a);
|
|
|
+ if c == 0 {
|
|
|
+ swap(dest, t1);
|
|
|
+ return nil;
|
|
|
+ } else if c == -1 {
|
|
|
+ if err = internal_add(t1, t1, DIGIT(1)); err != nil { return err; }
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
|
|
|
- for i := bits_used; i >= 0; i -= 1 {
|
|
|
- start := (n >> (uint(i) + 1)) + 1 | 1;
|
|
|
- stop := (n >> uint(i)) + 1 | 1;
|
|
|
- if err = _private_int_recursive_product(temp, start, stop); err != nil { return err; }
|
|
|
- if err = internal_mul(inner, inner, temp); err != nil { return err; }
|
|
|
- if err = internal_mul(outer, outer, inner); err != nil { return err; }
|
|
|
+ iterations += 1;
|
|
|
+ if iterations == MAX_ITERATIONS_ROOT_N {
|
|
|
+ return .Max_Iterations_Reached;
|
|
|
+ }
|
|
|
}
|
|
|
- shift := n - intrinsics.count_ones(n);
|
|
|
-
|
|
|
- return shl(res, outer, int(shift));
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- Recursive product used by binary split factorial algorithm.
|
|
|
-*/
|
|
|
-_private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int(0)) -> (err: Error) {
|
|
|
- t1, t2 := &Int{}, &Int{};
|
|
|
- defer destroy(t1, t2);
|
|
|
|
|
|
- if level > FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS { return .Max_Iterations_Reached; }
|
|
|
+ iterations = 0;
|
|
|
+ /* Correct overshoot from above or from recurrence. */
|
|
|
+ for {
|
|
|
+ if err = internal_pow(t2, t1, n); err != nil { return err; }
|
|
|
|
|
|
- num_factors := (stop - start) >> 1;
|
|
|
- if num_factors == 2 {
|
|
|
- if err = set(t1, start); err != nil { return err; }
|
|
|
- when true {
|
|
|
- if err = grow(t2, t1.used + 1); err != nil { return err; }
|
|
|
- if err = internal_add(t2, t1, 2); err != nil { return err; }
|
|
|
+ c := internal_cmp(t2, a);
|
|
|
+ if c == 1 {
|
|
|
+ if err = internal_sub(t1, t1, DIGIT(1)); err != nil { return err; }
|
|
|
} else {
|
|
|
- if err = add(t2, t1, 2); err != nil { return err; }
|
|
|
+ break;
|
|
|
}
|
|
|
- return internal_mul(res, t1, t2);
|
|
|
- }
|
|
|
|
|
|
- if num_factors > 1 {
|
|
|
- mid := (start + num_factors) | 1;
|
|
|
- if err = _private_int_recursive_product(t1, start, mid, level + 1); err != nil { return err; }
|
|
|
- if err = _private_int_recursive_product(t2, mid, stop, level + 1); err != nil { return err; }
|
|
|
- return internal_mul(res, t1, t2);
|
|
|
+ iterations += 1;
|
|
|
+ if iterations == MAX_ITERATIONS_ROOT_N {
|
|
|
+ return .Max_Iterations_Reached;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- if num_factors == 1 { return #force_inline set(res, start); }
|
|
|
+ /* Set the result. */
|
|
|
+ swap(dest, t1);
|
|
|
+
|
|
|
+ /* set the sign of the result */
|
|
|
+ dest.sign = src.sign;
|
|
|
|
|
|
- return #force_inline set(res, 1);
|
|
|
+ return err;
|
|
|
}
|
|
|
+internal_root_n :: proc { internal_int_root_n, };
|
|
|
|
|
|
/*
|
|
|
- Internal function computing both GCD using the binary method,
|
|
|
- and, if target isn't `nil`, also LCM.
|
|
|
-
|
|
|
- Expects the `a` and `b` to have been initialized
|
|
|
- and one or both of `res_gcd` or `res_lcm` not to be `nil`.
|
|
|
-
|
|
|
- If both `a` and `b` are zero, return zero.
|
|
|
- If either `a` or `b`, return the other one.
|
|
|
-
|
|
|
- The `gcd` and `lcm` wrappers have already done this test,
|
|
|
- but `gcd_lcm` wouldn't have, so we still need to perform it.
|
|
|
-
|
|
|
- If neither result is wanted, we have nothing to do.
|
|
|
+ Internal implementation of log.
|
|
|
+ Assumes `a` not to be `nil` and to have been initialized.
|
|
|
*/
|
|
|
-_private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int) -> (err: Error) {
|
|
|
- if res_gcd == nil && res_lcm == nil { return nil; }
|
|
|
+private_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {
|
|
|
+ bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
+ defer destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
|
|
|
|
|
|
- /*
|
|
|
- We need a temporary because `res_gcd` is allowed to be `nil`.
|
|
|
- */
|
|
|
- if a.used == 0 && b.used == 0 {
|
|
|
- /*
|
|
|
- GCD(0, 0) and LCM(0, 0) are both 0.
|
|
|
- */
|
|
|
- if res_gcd != nil {
|
|
|
- if err = zero(res_gcd); err != nil { return err; }
|
|
|
- }
|
|
|
- if res_lcm != nil {
|
|
|
- if err = zero(res_lcm); err != nil { return err; }
|
|
|
- }
|
|
|
- return nil;
|
|
|
- } else if a.used == 0 {
|
|
|
- /*
|
|
|
- We can early out with GCD = B and LCM = 0
|
|
|
- */
|
|
|
- if res_gcd != nil {
|
|
|
- if err = abs(res_gcd, b); err != nil { return err; }
|
|
|
- }
|
|
|
- if res_lcm != nil {
|
|
|
- if err = zero(res_lcm); err != nil { return err; }
|
|
|
- }
|
|
|
- return nil;
|
|
|
- } else if b.used == 0 {
|
|
|
- /*
|
|
|
- We can early out with GCD = A and LCM = 0
|
|
|
- */
|
|
|
- if res_gcd != nil {
|
|
|
- if err = abs(res_gcd, a); err != nil { return err; }
|
|
|
- }
|
|
|
- if res_lcm != nil {
|
|
|
- if err = zero(res_lcm); err != nil { return err; }
|
|
|
- }
|
|
|
- return nil;
|
|
|
+ ic := #force_inline internal_cmp(a, base);
|
|
|
+ if ic == -1 || ic == 0 {
|
|
|
+ return 1 if ic == 0 else 0, nil;
|
|
|
}
|
|
|
|
|
|
- temp_gcd_res := &Int{};
|
|
|
- defer destroy(temp_gcd_res);
|
|
|
-
|
|
|
- /*
|
|
|
- If neither `a` or `b` was zero, we need to compute `gcd`.
|
|
|
- Get copies of `a` and `b` we can modify.
|
|
|
- */
|
|
|
- u, v := &Int{}, &Int{};
|
|
|
- defer destroy(u, v);
|
|
|
- if err = copy(u, a); err != nil { return err; }
|
|
|
- if err = copy(v, b); err != nil { return err; }
|
|
|
+ if err = set(bi_base, base); err != nil { return -1, err; }
|
|
|
+ if err = init_multi(bracket_mid, t); err != nil { return -1, err; }
|
|
|
+ if err = set(bracket_low, 1); err != nil { return -1, err; }
|
|
|
+ if err = set(bracket_high, base); err != nil { return -1, err; }
|
|
|
|
|
|
- /*
|
|
|
- Must be positive for the remainder of the algorithm.
|
|
|
- */
|
|
|
- u.sign = .Zero_or_Positive; v.sign = .Zero_or_Positive;
|
|
|
+ low := 0; high := 1;
|
|
|
|
|
|
- /*
|
|
|
- B1. Find the common power of two for `u` and `v`.
|
|
|
- */
|
|
|
- u_lsb, _ := count_lsb(u);
|
|
|
- v_lsb, _ := count_lsb(v);
|
|
|
- k := min(u_lsb, v_lsb);
|
|
|
+ /*
|
|
|
+ A kind of Giant-step/baby-step algorithm.
|
|
|
+ Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/
|
|
|
+ The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped
|
|
|
+ for small n.
|
|
|
+ */
|
|
|
|
|
|
- if k > 0 {
|
|
|
+ for {
|
|
|
/*
|
|
|
- Divide the power of two out.
|
|
|
+ Iterate until `a` is bracketed between low + high.
|
|
|
*/
|
|
|
- if err = shr(u, u, k); err != nil { return err; }
|
|
|
- if err = shr(v, v, k); err != nil { return err; }
|
|
|
- }
|
|
|
+ if bc := #force_inline internal_cmp(bracket_high, a); bc != -1 { break; }
|
|
|
|
|
|
- /*
|
|
|
- Divide any remaining factors of two out.
|
|
|
- */
|
|
|
- if u_lsb != k {
|
|
|
- if err = shr(u, u, u_lsb - k); err != nil { return err; }
|
|
|
- }
|
|
|
- if v_lsb != k {
|
|
|
- if err = shr(v, v, v_lsb - k); err != nil { return err; }
|
|
|
+ low = high;
|
|
|
+ if err = copy(bracket_low, bracket_high); err != nil { return -1, err; }
|
|
|
+ high <<= 1;
|
|
|
+ if err = #force_inline internal_sqr(bracket_high, bracket_high); err != nil { return -1, err; }
|
|
|
}
|
|
|
|
|
|
- for v.used != 0 {
|
|
|
- /*
|
|
|
- Make sure `v` is the largest.
|
|
|
- */
|
|
|
- if c, _ := cmp_mag(u, v); c == 1 {
|
|
|
- /*
|
|
|
- Swap `u` and `v` to make sure `v` is >= `u`.
|
|
|
- */
|
|
|
- swap(u, v);
|
|
|
- }
|
|
|
+ for (high - low) > 1 {
|
|
|
+ mid := (high + low) >> 1;
|
|
|
|
|
|
- /*
|
|
|
- Subtract smallest from largest.
|
|
|
- */
|
|
|
- if err = internal_sub(v, v, u); err != nil { return err; }
|
|
|
+ if err = #force_inline internal_pow(t, bi_base, mid - low); err != nil { return -1, err; }
|
|
|
|
|
|
- /*
|
|
|
- Divide out all factors of two.
|
|
|
- */
|
|
|
- b, _ := count_lsb(v);
|
|
|
- if err = shr(v, v, b); err != nil { return err; }
|
|
|
+ if err = #force_inline internal_mul(bracket_mid, bracket_low, t); err != nil { return -1, err; }
|
|
|
+
|
|
|
+ mc := #force_inline internal_cmp(a, bracket_mid);
|
|
|
+ if mc == -1 {
|
|
|
+ high = mid;
|
|
|
+ swap(bracket_mid, bracket_high);
|
|
|
+ }
|
|
|
+ if mc == 1 {
|
|
|
+ low = mid;
|
|
|
+ swap(bracket_mid, bracket_low);
|
|
|
+ }
|
|
|
+ if mc == 0 { return mid, nil; }
|
|
|
}
|
|
|
|
|
|
- /*
|
|
|
- Multiply by 2**k which we divided out at the beginning.
|
|
|
- */
|
|
|
- if err = shl(temp_gcd_res, u, k); err != nil { return err; }
|
|
|
- temp_gcd_res.sign = .Zero_or_Positive;
|
|
|
+ fc := #force_inline internal_cmp(bracket_high, a);
|
|
|
+ res = high if fc == 0 else low;
|
|
|
|
|
|
- /*
|
|
|
- We've computed `gcd`, either the long way, or because one of the inputs was zero.
|
|
|
- If we don't want `lcm`, we're done.
|
|
|
- */
|
|
|
- if res_lcm == nil {
|
|
|
- swap(temp_gcd_res, res_gcd);
|
|
|
- return nil;
|
|
|
- }
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Other internal helpers
|
|
|
+*/
|
|
|
|
|
|
+internal_int_zero_unused :: #force_inline proc(dest: ^Int, old_used := -1) {
|
|
|
/*
|
|
|
- Computes least common multiple as `|a*b|/gcd(a,b)`
|
|
|
- Divide the smallest by the GCD.
|
|
|
+ If we don't pass the number of previously used DIGITs, we zero all remaining ones.
|
|
|
*/
|
|
|
- if c, _ := cmp_mag(a, b); c == -1 {
|
|
|
- /*
|
|
|
- Store quotient in `t2` such that `t2 * b` is the LCM.
|
|
|
- */
|
|
|
- if err = internal_div(res_lcm, a, temp_gcd_res); err != nil { return err; }
|
|
|
- err = internal_mul(res_lcm, res_lcm, b);
|
|
|
+ zero_count: int;
|
|
|
+ if old_used == -1 {
|
|
|
+ zero_count = len(dest.digit) - dest.used;
|
|
|
} else {
|
|
|
- /*
|
|
|
- Store quotient in `t2` such that `t2 * a` is the LCM.
|
|
|
- */
|
|
|
- if err = internal_div(res_lcm, a, temp_gcd_res); err != nil { return err; }
|
|
|
- err = internal_mul(res_lcm, res_lcm, b);
|
|
|
- }
|
|
|
-
|
|
|
- if res_gcd != nil {
|
|
|
- swap(temp_gcd_res, res_gcd);
|
|
|
+ zero_count = old_used - dest.used;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- Fix the sign to positive and return.
|
|
|
+ Zero remainder.
|
|
|
*/
|
|
|
- res_lcm.sign = .Zero_or_Positive;
|
|
|
- return err;
|
|
|
+ if zero_count > 0 && dest.used < len(dest.digit) {
|
|
|
+ mem.zero_slice(dest.digit[dest.used:][:zero_count]);
|
|
|
+ }
|
|
|
}
|
|
|
-
|
|
|
-/*
|
|
|
- ======================== End of private procedures =======================
|
|
|
-
|
|
|
- =============================== Private tables ===============================
|
|
|
-
|
|
|
- Tables used by `internal_*` and `_*`.
|
|
|
-*/
|
|
|
-
|
|
|
-_private_prime_table := []DIGIT{
|
|
|
- 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
|
|
|
- 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
|
|
|
- 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
|
|
|
- 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
|
|
|
- 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
|
|
|
- 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
|
|
|
- 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
|
|
|
- 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
|
|
|
-
|
|
|
- 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
|
|
|
- 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
|
|
|
- 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
|
|
|
- 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
|
|
|
- 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
|
|
|
- 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
|
|
|
- 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
|
|
|
- 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
|
|
|
-
|
|
|
- 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
|
|
|
- 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
|
|
|
- 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
|
|
|
- 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
|
|
|
- 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
|
|
|
- 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
|
|
|
- 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
|
|
|
- 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
|
|
|
-
|
|
|
- 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
|
|
|
- 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
|
|
|
- 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
|
|
|
- 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
|
|
|
- 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
|
|
|
- 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
|
|
|
- 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
|
|
|
- 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653,
|
|
|
-};
|
|
|
-
|
|
|
-when MATH_BIG_FORCE_64_BIT || (!MATH_BIG_FORCE_32_BIT && size_of(rawptr) == 8) {
|
|
|
- _factorial_table := [35]_WORD{
|
|
|
-/* f(00): */ 1,
|
|
|
-/* f(01): */ 1,
|
|
|
-/* f(02): */ 2,
|
|
|
-/* f(03): */ 6,
|
|
|
-/* f(04): */ 24,
|
|
|
-/* f(05): */ 120,
|
|
|
-/* f(06): */ 720,
|
|
|
-/* f(07): */ 5_040,
|
|
|
-/* f(08): */ 40_320,
|
|
|
-/* f(09): */ 362_880,
|
|
|
-/* f(10): */ 3_628_800,
|
|
|
-/* f(11): */ 39_916_800,
|
|
|
-/* f(12): */ 479_001_600,
|
|
|
-/* f(13): */ 6_227_020_800,
|
|
|
-/* f(14): */ 87_178_291_200,
|
|
|
-/* f(15): */ 1_307_674_368_000,
|
|
|
-/* f(16): */ 20_922_789_888_000,
|
|
|
-/* f(17): */ 355_687_428_096_000,
|
|
|
-/* f(18): */ 6_402_373_705_728_000,
|
|
|
-/* f(19): */ 121_645_100_408_832_000,
|
|
|
-/* f(20): */ 2_432_902_008_176_640_000,
|
|
|
-/* f(21): */ 51_090_942_171_709_440_000,
|
|
|
-/* f(22): */ 1_124_000_727_777_607_680_000,
|
|
|
-/* f(23): */ 25_852_016_738_884_976_640_000,
|
|
|
-/* f(24): */ 620_448_401_733_239_439_360_000,
|
|
|
-/* f(25): */ 15_511_210_043_330_985_984_000_000,
|
|
|
-/* f(26): */ 403_291_461_126_605_635_584_000_000,
|
|
|
-/* f(27): */ 10_888_869_450_418_352_160_768_000_000,
|
|
|
-/* f(28): */ 304_888_344_611_713_860_501_504_000_000,
|
|
|
-/* f(29): */ 8_841_761_993_739_701_954_543_616_000_000,
|
|
|
-/* f(30): */ 265_252_859_812_191_058_636_308_480_000_000,
|
|
|
-/* f(31): */ 8_222_838_654_177_922_817_725_562_880_000_000,
|
|
|
-/* f(32): */ 263_130_836_933_693_530_167_218_012_160_000_000,
|
|
|
-/* f(33): */ 8_683_317_618_811_886_495_518_194_401_280_000_000,
|
|
|
-/* f(34): */ 295_232_799_039_604_140_847_618_609_643_520_000_000,
|
|
|
- };
|
|
|
-} else {
|
|
|
- _factorial_table := [21]_WORD{
|
|
|
-/* f(00): */ 1,
|
|
|
-/* f(01): */ 1,
|
|
|
-/* f(02): */ 2,
|
|
|
-/* f(03): */ 6,
|
|
|
-/* f(04): */ 24,
|
|
|
-/* f(05): */ 120,
|
|
|
-/* f(06): */ 720,
|
|
|
-/* f(07): */ 5_040,
|
|
|
-/* f(08): */ 40_320,
|
|
|
-/* f(09): */ 362_880,
|
|
|
-/* f(10): */ 3_628_800,
|
|
|
-/* f(11): */ 39_916_800,
|
|
|
-/* f(12): */ 479_001_600,
|
|
|
-/* f(13): */ 6_227_020_800,
|
|
|
-/* f(14): */ 87_178_291_200,
|
|
|
-/* f(15): */ 1_307_674_368_000,
|
|
|
-/* f(16): */ 20_922_789_888_000,
|
|
|
-/* f(17): */ 355_687_428_096_000,
|
|
|
-/* f(18): */ 6_402_373_705_728_000,
|
|
|
-/* f(19): */ 121_645_100_408_832_000,
|
|
|
-/* f(20): */ 2_432_902_008_176_640_000,
|
|
|
- };
|
|
|
-};
|
|
|
+internal_zero_unused :: proc { internal_int_zero_unused, };
|
|
|
|
|
|
/*
|
|
|
- ========================= End of private tables ========================
|
|
|
+ ========================== End of low-level routines ==========================
|
|
|
*/
|