|
@@ -0,0 +1,567 @@
|
|
|
+// This package implements a red-black tree
|
|
|
+package container_intrusive_rbtree
|
|
|
+
|
|
|
+@(require) import "base:intrinsics"
|
|
|
+@(require) import "base:runtime"
|
|
|
+import "core:slice"
|
|
|
+
|
|
|
+// Originally based on the CC0 implementation from literateprograms.org
|
|
|
+// But with API design mimicking `core:container/avl` for ease of use.
|
|
|
+
|
|
|
+// Direction specifies the traversal direction for a tree iterator.
|
|
|
+Direction :: enum i8 {
|
|
|
+ // Backward is the in-order backwards direction.
|
|
|
+ Backward = -1,
|
|
|
+ // Forward is the in-order forwards direction.
|
|
|
+ Forward = 1,
|
|
|
+}
|
|
|
+
|
|
|
+Ordering :: slice.Ordering
|
|
|
+
|
|
|
+// Tree is a red-black tree
|
|
|
+Tree :: struct($Key: typeid, $Value: typeid) {
|
|
|
+ // user_data is a parameter that will be passed to the on_remove
|
|
|
+ // callback.
|
|
|
+ user_data: rawptr,
|
|
|
+ // on_remove is an optional callback that can be called immediately
|
|
|
+ // after a node is removed from the tree.
|
|
|
+ on_remove: proc(key: Key, value: Value, user_data: rawptr),
|
|
|
+
|
|
|
+ _root: ^Node(Key, Value),
|
|
|
+ _node_allocator: runtime.Allocator,
|
|
|
+ _cmp_fn: proc(Key, Key) -> Ordering,
|
|
|
+ _size: int,
|
|
|
+}
|
|
|
+
|
|
|
+// Node is a red-black tree node.
|
|
|
+//
|
|
|
+// WARNING: It is unsafe to mutate value if the node is part of a tree
|
|
|
+// if doing so will alter the Node's sort position relative to other
|
|
|
+// elements in the tree.
|
|
|
+Node :: struct($Key: typeid, $Value: typeid) {
|
|
|
+ key: Key,
|
|
|
+ value: Value,
|
|
|
+
|
|
|
+ _parent: ^Node(Key, Value),
|
|
|
+ _left: ^Node(Key, Value),
|
|
|
+ _right: ^Node(Key, Value),
|
|
|
+ _color: Color,
|
|
|
+}
|
|
|
+
|
|
|
+// Might store this in the node pointer in the future, but that'll require a decent amount of rework to pass ^^N instead of ^N
|
|
|
+Color :: enum uintptr {Black = 0, Red = 1}
|
|
|
+
|
|
|
+// Iterator is a tree iterator.
|
|
|
+//
|
|
|
+// WARNING: It is unsafe to modify the tree while iterating, except via
|
|
|
+// the iterator_remove method.
|
|
|
+Iterator :: struct($Key: typeid, $Value: typeid) {
|
|
|
+ _tree: ^Tree(Key, Value),
|
|
|
+ _cur: ^Node(Key, Value),
|
|
|
+ _next: ^Node(Key, Value),
|
|
|
+ _direction: Direction,
|
|
|
+ _called_next: bool,
|
|
|
+}
|
|
|
+
|
|
|
+// init initializes a tree.
|
|
|
+init :: proc {
|
|
|
+ init_ordered,
|
|
|
+ init_cmp,
|
|
|
+}
|
|
|
+
|
|
|
+// init_cmp initializes a tree.
|
|
|
+init_cmp :: proc(t: ^$T/Tree($Key, $Value), cmp_fn: proc(a, b: Key) -> Ordering, node_allocator := context.allocator) {
|
|
|
+ t._root = nil
|
|
|
+ t._node_allocator = node_allocator
|
|
|
+ t._cmp_fn = cmp_fn
|
|
|
+ t._size = 0
|
|
|
+}
|
|
|
+
|
|
|
+// init_ordered initializes a tree containing ordered keys, with
|
|
|
+// a comparison function that results in an ascending order sort.
|
|
|
+init_ordered :: proc(t: ^$T/Tree($Key, $Value), node_allocator := context.allocator) where intrinsics.type_is_ordered_numeric(Key) {
|
|
|
+ init_cmp(t, slice.cmp_proc(Key), node_allocator)
|
|
|
+}
|
|
|
+
|
|
|
+// destroy de-initializes a tree.
|
|
|
+destroy :: proc(t: ^$T/Tree($Key, $Value), call_on_remove: bool = true) {
|
|
|
+ iter := iterator(t, .Forward)
|
|
|
+ for _ in iterator_next(&iter) {
|
|
|
+ iterator_remove(&iter, call_on_remove)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+len :: proc "contextless" (t: ^$T/Tree($Key, $Value)) -> (node_count: int) {
|
|
|
+ return t._size
|
|
|
+}
|
|
|
+
|
|
|
+// first returns the first node in the tree (in-order) or nil iff
|
|
|
+// the tree is empty.
|
|
|
+first :: proc "contextless" (t: ^$T/Tree($Key, $Value)) -> ^Node(Key, Value) {
|
|
|
+ return tree_first_or_last_in_order(t, Direction.Backward)
|
|
|
+}
|
|
|
+
|
|
|
+// last returns the last element in the tree (in-order) or nil iff
|
|
|
+// the tree is empty.
|
|
|
+last :: proc "contextless" (t: ^$T/Tree($Key, $Value)) -> ^Node(Key, Value) {
|
|
|
+ return tree_first_or_last_in_order(t, Direction.Forward)
|
|
|
+}
|
|
|
+
|
|
|
+// find finds the key in the tree, and returns the corresponding node, or nil iff the value is not present.
|
|
|
+find :: proc(t: ^$T/Tree($Key, $Value), key: Key) -> (node: ^Node(Key, Value)) {
|
|
|
+ node = t._root
|
|
|
+ for node != nil {
|
|
|
+ switch t._cmp_fn(key, node.key) {
|
|
|
+ case .Equal: return node
|
|
|
+ case .Less: node = node._left
|
|
|
+ case .Greater: node = node._right
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return node
|
|
|
+}
|
|
|
+
|
|
|
+// find_value finds the key in the tree, and returns the corresponding value, or nil iff the value is not present.
|
|
|
+find_value :: proc(t: ^$T/Tree($Key, $Value), key: Key) -> (value: Value, ok: bool) #optional_ok {
|
|
|
+ if n := find(t, key); n != nil {
|
|
|
+ return n.value, true
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// find_or_insert attempts to insert the value into the tree, and returns
|
|
|
+// the node, a boolean indicating if the value was inserted, and the
|
|
|
+// node allocator error if relevant. If the value is already present, the existing node is updated.
|
|
|
+find_or_insert :: proc(t: ^$T/Tree($Key, $Value), key: Key, value: Value) -> (n: ^Node(Key, Value), inserted: bool) {
|
|
|
+ n_ptr := &t._root
|
|
|
+ for n_ptr^ != nil {
|
|
|
+ n = n_ptr^
|
|
|
+ switch t._cmp_fn(key, n.key) {
|
|
|
+ case .Less:
|
|
|
+ n_ptr = &n._left
|
|
|
+ case .Greater:
|
|
|
+ n_ptr = &n._right
|
|
|
+ case .Equal:
|
|
|
+ return
|
|
|
+ }
|
|
|
+ }
|
|
|
+ _parent := n
|
|
|
+ n = new_clone(Node(Key, Value){key=key, value=value, _parent=_parent, _color=.Red}, t._node_allocator) // or_return
|
|
|
+ n_ptr^ = n
|
|
|
+ insert_case1(t, n)
|
|
|
+ t._size += 1
|
|
|
+ return n, true
|
|
|
+}
|
|
|
+
|
|
|
+// remove removes a node or value from the tree, and returns true iff the
|
|
|
+// removal was successful. While the node's value will be left intact,
|
|
|
+// the node itself will be freed via the tree's node allocator.
|
|
|
+remove :: proc {
|
|
|
+ remove_key,
|
|
|
+ remove_node,
|
|
|
+}
|
|
|
+
|
|
|
+// remove_value removes a value from the tree, and returns true iff the
|
|
|
+// removal was successful. While the node's key + value will be left intact,
|
|
|
+// the node itself will be freed via the tree's node allocator.
|
|
|
+remove_key :: proc(t: ^$T/Tree($Key, $Value), key: Key, call_on_remove := true) -> bool {
|
|
|
+ n := find(t, key)
|
|
|
+ if n == nil {
|
|
|
+ return false // Key not found, nothing to do
|
|
|
+ }
|
|
|
+ return remove_node(t, n, call_on_remove)
|
|
|
+}
|
|
|
+
|
|
|
+// remove_node removes a node from the tree, and returns true iff the
|
|
|
+// removal was successful. While the node's key + value will be left intact,
|
|
|
+// the node itself will be freed via the tree's node allocator.
|
|
|
+remove_node :: proc(t: ^$T/Tree($Key, $Value), node: ^$N/Node(Key, Value), call_on_remove := true) -> (found: bool) {
|
|
|
+ if node._parent == node || (node._parent == nil && t._root != node) {
|
|
|
+ return false // Don't touch self-parented or dangling nodes.
|
|
|
+ }
|
|
|
+ node := node
|
|
|
+ if node._left != nil && node._right != nil {
|
|
|
+ // Copy key + value from predecessor and delete it instead
|
|
|
+ predecessor := maximum_node(node._left)
|
|
|
+ node.key = predecessor.key
|
|
|
+ node.value = predecessor.value
|
|
|
+ node = predecessor
|
|
|
+ }
|
|
|
+
|
|
|
+ child := node._right == nil ? node._left : node._right
|
|
|
+ if node_color(node) == .Black {
|
|
|
+ node._color = node_color(child)
|
|
|
+ remove_case1(t, node)
|
|
|
+ }
|
|
|
+ replace_node(t, node, child)
|
|
|
+ if node._parent == nil && child != nil {
|
|
|
+ child._color = .Black // root should be black
|
|
|
+ }
|
|
|
+
|
|
|
+ if call_on_remove && t.on_remove != nil {
|
|
|
+ t.on_remove(node.key, node.value, t.user_data)
|
|
|
+ }
|
|
|
+ free(node, t._node_allocator)
|
|
|
+ t._size -= 1
|
|
|
+ return true
|
|
|
+}
|
|
|
+
|
|
|
+// iterator returns a tree iterator in the specified direction.
|
|
|
+iterator :: proc "contextless" (t: ^$T/Tree($Key, $Value), direction: Direction) -> Iterator(Key, Value) {
|
|
|
+ it: Iterator(Key, Value)
|
|
|
+ it._tree = transmute(^Tree(Key, Value))t
|
|
|
+ it._direction = direction
|
|
|
+
|
|
|
+ iterator_first(&it)
|
|
|
+
|
|
|
+ return it
|
|
|
+}
|
|
|
+
|
|
|
+// iterator_from_pos returns a tree iterator in the specified direction,
|
|
|
+// spanning the range [pos, last] (inclusive).
|
|
|
+iterator_from_pos :: proc "contextless" (t: ^$T/Tree($Key, $Value), pos: ^Node(Key, Value), direction: Direction) -> Iterator(Key, Value) {
|
|
|
+ it: Iterator(Key, Value)
|
|
|
+ it._tree = transmute(^Tree(Key, Value))t
|
|
|
+ it._direction = direction
|
|
|
+ it._next = nil
|
|
|
+ it._called_next = false
|
|
|
+
|
|
|
+ if it._cur = pos; pos != nil {
|
|
|
+ it._next = node_next_or_prev_in_order(it._cur, it._direction)
|
|
|
+ }
|
|
|
+
|
|
|
+ return it
|
|
|
+}
|
|
|
+
|
|
|
+// iterator_get returns the node currently pointed to by the iterator,
|
|
|
+// or nil iff the node has been removed, the tree is empty, or the end
|
|
|
+// of the tree has been reached.
|
|
|
+iterator_get :: proc "contextless" (it: ^$I/Iterator($Key, $Value)) -> ^Node(Key, Value) {
|
|
|
+ return it._cur
|
|
|
+}
|
|
|
+
|
|
|
+// iterator_remove removes the node currently pointed to by the iterator,
|
|
|
+// and returns true iff the removal was successful. Semantics are the
|
|
|
+// same as the Tree remove.
|
|
|
+iterator_remove :: proc(it: ^$I/Iterator($Key, $Value), call_on_remove: bool = true) -> bool {
|
|
|
+ if it._cur == nil {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+
|
|
|
+ ok := remove_node(it._tree, it._cur , call_on_remove)
|
|
|
+ if ok {
|
|
|
+ it._cur = nil
|
|
|
+ }
|
|
|
+
|
|
|
+ return ok
|
|
|
+}
|
|
|
+
|
|
|
+// iterator_next advances the iterator and returns the (node, true) or
|
|
|
+// or (nil, false) iff the end of the tree has been reached.
|
|
|
+//
|
|
|
+// Note: The first call to iterator_next will return the first node instead
|
|
|
+// of advancing the iterator.
|
|
|
+iterator_next :: proc "contextless" (it: ^$I/Iterator($Key, $Value)) -> (^Node(Key, Value), bool) {
|
|
|
+ // This check is needed so that the first element gets returned from
|
|
|
+ // a brand-new iterator, and so that the somewhat contrived case where
|
|
|
+ // iterator_remove is called before the first call to iterator_next
|
|
|
+ // returns the correct value.
|
|
|
+ if !it._called_next {
|
|
|
+ it._called_next = true
|
|
|
+
|
|
|
+ // There can be the contrived case where iterator_remove is
|
|
|
+ // called before ever calling iterator_next, which needs to be
|
|
|
+ // handled as an actual call to next.
|
|
|
+ //
|
|
|
+ // If this happens it._cur will be nil, so only return the
|
|
|
+ // first value, if it._cur is valid.
|
|
|
+ if it._cur != nil {
|
|
|
+ return it._cur, true
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if it._next == nil {
|
|
|
+ return nil, false
|
|
|
+ }
|
|
|
+
|
|
|
+ it._cur = it._next
|
|
|
+ it._next = node_next_or_prev_in_order(it._cur, it._direction)
|
|
|
+
|
|
|
+ return it._cur, true
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+tree_first_or_last_in_order :: proc "contextless" (t: ^$T/Tree($Key, $Value), direction: Direction) -> ^Node(Key, Value) {
|
|
|
+ first, sign := t._root, i8(direction)
|
|
|
+ if first != nil {
|
|
|
+ for {
|
|
|
+ tmp := node_get_child(first, sign)
|
|
|
+ if tmp == nil {
|
|
|
+ break
|
|
|
+ }
|
|
|
+ first = tmp
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return first
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+node_get_child :: #force_inline proc "contextless" (n: ^Node($Key, $Value), sign: i8) -> ^Node(Key, Value) {
|
|
|
+ if sign < 0 {
|
|
|
+ return n._left
|
|
|
+ }
|
|
|
+ return n._right
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+node_next_or_prev_in_order :: proc "contextless" (n: ^Node($Key, $Value), direction: Direction) -> ^Node(Key, Value) {
|
|
|
+ next, tmp: ^Node(Key, Value)
|
|
|
+ sign := i8(direction)
|
|
|
+
|
|
|
+ if next = node_get_child(n, +sign); next != nil {
|
|
|
+ for {
|
|
|
+ tmp = node_get_child(next, -sign)
|
|
|
+ if tmp == nil {
|
|
|
+ break
|
|
|
+ }
|
|
|
+ next = tmp
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ tmp, next = n, n._parent
|
|
|
+ for next != nil && tmp == node_get_child(next, +sign) {
|
|
|
+ tmp, next = next, next._parent
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return next
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+iterator_first :: proc "contextless" (it: ^Iterator($Key, $Value)) {
|
|
|
+ // This is private because behavior when the user manually calls
|
|
|
+ // iterator_first followed by iterator_next is unintuitive, since
|
|
|
+ // the first call to iterator_next MUST return the first node
|
|
|
+ // instead of advancing so that `for node in iterator_next(&next)`
|
|
|
+ // works as expected.
|
|
|
+
|
|
|
+ switch it._direction {
|
|
|
+ case .Forward:
|
|
|
+ it._cur = tree_first_or_last_in_order(it._tree, .Backward)
|
|
|
+ case .Backward:
|
|
|
+ it._cur = tree_first_or_last_in_order(it._tree, .Forward)
|
|
|
+ }
|
|
|
+
|
|
|
+ it._next = nil
|
|
|
+ it._called_next = false
|
|
|
+
|
|
|
+ if it._cur != nil {
|
|
|
+ it._next = node_next_or_prev_in_order(it._cur, it._direction)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+grand_parent :: proc(n: ^$N/Node($Key, $Value)) -> (g: ^N) {
|
|
|
+ return n._parent._parent
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+sibling :: proc(n: ^$N/Node($Key, $Value)) -> (s: ^N) {
|
|
|
+ if n == n._parent._left {
|
|
|
+ return n._parent._right
|
|
|
+ } else {
|
|
|
+ return n._parent._left
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+uncle :: proc(n: ^$N/Node($Key, $Value)) -> (u: ^N) {
|
|
|
+ return sibling(n._parent)
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+rotate__left :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ r := n._right
|
|
|
+ replace_node(t, n, r)
|
|
|
+ n._right = r._left
|
|
|
+ if r._left != nil {
|
|
|
+ r._left._parent = n
|
|
|
+ }
|
|
|
+ r._left = n
|
|
|
+ n._parent = r
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+rotate__right :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ l := n._left
|
|
|
+ replace_node(t, n, l)
|
|
|
+ n._left = l._right
|
|
|
+ if l._right != nil {
|
|
|
+ l._right._parent = n
|
|
|
+ }
|
|
|
+ l._right = n
|
|
|
+ n._parent = l
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+replace_node :: proc(t: ^$T/Tree($Key, $Value), old_n: ^$N/Node(Key, Value), new_n: ^N) {
|
|
|
+ if old_n._parent == nil {
|
|
|
+ t._root = new_n
|
|
|
+ } else {
|
|
|
+ if (old_n == old_n._parent._left) {
|
|
|
+ old_n._parent._left = new_n
|
|
|
+ } else {
|
|
|
+ old_n._parent._right = new_n
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if new_n != nil {
|
|
|
+ new_n._parent = old_n._parent
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+insert_case1 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if n._parent == nil {
|
|
|
+ n._color = .Black
|
|
|
+ } else {
|
|
|
+ insert_case2(t, n)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+insert_case2 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if node_color(n._parent) == .Black {
|
|
|
+ return // Tree is still valid
|
|
|
+ } else {
|
|
|
+ insert_case3(t, n)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+insert_case3 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if node_color(uncle(n)) == .Red {
|
|
|
+ n._parent._color = .Black
|
|
|
+ uncle(n)._color = .Black
|
|
|
+ grand_parent(n)._color = .Red
|
|
|
+ insert_case1(t, grand_parent(n))
|
|
|
+ } else {
|
|
|
+ insert_case4(t, n)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+insert_case4 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ n := n
|
|
|
+ if n == n._parent._right && n._parent == grand_parent(n)._left {
|
|
|
+ rotate__left(t, n._parent)
|
|
|
+ n = n._left
|
|
|
+ } else if n == n._parent._left && n._parent == grand_parent(n)._right {
|
|
|
+ rotate__right(t, n._parent)
|
|
|
+ n = n._right
|
|
|
+ }
|
|
|
+ insert_case5(t, n)
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+insert_case5 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ n._parent._color = .Black
|
|
|
+ grand_parent(n)._color = .Red
|
|
|
+ if n == n._parent._left && n._parent == grand_parent(n)._left {
|
|
|
+ rotate__right(t, grand_parent(n))
|
|
|
+ } else {
|
|
|
+ rotate__left(t, grand_parent(n))
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// The maximum_node() helper function just walks _right until it reaches the last non-leaf:
|
|
|
+@(private)
|
|
|
+maximum_node :: proc(n: ^$N/Node($Key, $Value)) -> (max_node: ^N) {
|
|
|
+ n := n
|
|
|
+ for n._right != nil {
|
|
|
+ n = n._right
|
|
|
+ }
|
|
|
+ return n
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+remove_case1 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if n._parent == nil {
|
|
|
+ return
|
|
|
+ } else {
|
|
|
+ remove_case2(t, n)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+remove_case2 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if node_color(sibling(n)) == .Red {
|
|
|
+ n._parent._color = .Red
|
|
|
+ sibling(n)._color = .Black
|
|
|
+ if n == n._parent._left {
|
|
|
+ rotate__left(t, n._parent)
|
|
|
+ } else {
|
|
|
+ rotate__right(t, n._parent)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ remove_case3(t, n)
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+remove_case3 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if node_color(n._parent) == .Black &&
|
|
|
+ node_color(sibling(n)) == .Black &&
|
|
|
+ node_color(sibling(n)._left) == .Black &&
|
|
|
+ node_color(sibling(n)._right) == .Black {
|
|
|
+ sibling(n)._color = .Red
|
|
|
+ remove_case1(t, n._parent)
|
|
|
+ } else {
|
|
|
+ remove_case4(t, n)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+remove_case4 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if node_color(n._parent) == .Red &&
|
|
|
+ node_color(sibling(n)) == .Black &&
|
|
|
+ node_color(sibling(n)._left) == .Black &&
|
|
|
+ node_color(sibling(n)._right) == .Black {
|
|
|
+ sibling(n)._color = .Red
|
|
|
+ n._parent._color = .Black
|
|
|
+ } else {
|
|
|
+ remove_case5(t, n)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+remove_case5 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ if n == n._parent._left &&
|
|
|
+ node_color(sibling(n)) == .Black &&
|
|
|
+ node_color(sibling(n)._left) == .Red &&
|
|
|
+ node_color(sibling(n)._right) == .Black {
|
|
|
+ sibling(n)._color = .Red
|
|
|
+ sibling(n)._left._color = .Black
|
|
|
+ rotate__right(t, sibling(n))
|
|
|
+ } else if n == n._parent._right &&
|
|
|
+ node_color(sibling(n)) == .Black &&
|
|
|
+ node_color(sibling(n)._right) == .Red &&
|
|
|
+ node_color(sibling(n)._left) == .Black {
|
|
|
+ sibling(n)._color = .Red
|
|
|
+ sibling(n)._right._color = .Black
|
|
|
+ rotate__left(t, sibling(n))
|
|
|
+ }
|
|
|
+ remove_case6(t, n)
|
|
|
+}
|
|
|
+
|
|
|
+@(private)
|
|
|
+remove_case6 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
|
|
|
+ sibling(n)._color = node_color(n._parent)
|
|
|
+ n._parent._color = .Black
|
|
|
+ if n == n._parent._left {
|
|
|
+ sibling(n)._right._color = .Black
|
|
|
+ rotate__left(t, n._parent)
|
|
|
+ } else {
|
|
|
+ sibling(n)._left._color = .Black
|
|
|
+ rotate__right(t, n._parent)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+node_color :: proc(n: ^$N/Node($Key, $Value)) -> (c: Color) {
|
|
|
+ return n == nil ? .Black : n._color
|
|
|
+}
|