|
@@ -41,7 +41,7 @@ scalar_dot :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
|
|
return a * b;
|
|
return a * b;
|
|
}
|
|
}
|
|
|
|
|
|
-vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
|
|
|
|
|
|
+vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check {
|
|
for i in 0..<N {
|
|
for i in 0..<N {
|
|
c += a[i] * b[i];
|
|
c += a[i] * b[i];
|
|
}
|
|
}
|
|
@@ -60,7 +60,7 @@ quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
|
|
dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot};
|
|
dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot};
|
|
|
|
|
|
inner_product :: dot;
|
|
inner_product :: dot;
|
|
-outer_product :: proc(a: $A/[$M]$E, b: $B/[$N]E) -> (out: [M][N]E) where IS_NUMERIC(E) {
|
|
|
|
|
|
+outer_product :: proc(a: $A/[$M]$E, b: $B/[$N]E) -> (out: [M][N]E) where IS_NUMERIC(E) #no_bounds_check {
|
|
for i in 0..<M {
|
|
for i in 0..<M {
|
|
for j in 0..<N {
|
|
for j in 0..<N {
|
|
out[i][j] = a[i]*b[j];
|
|
out[i][j] = a[i]*b[j];
|
|
@@ -156,7 +156,7 @@ projection :: proc(x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
|
|
return dot(x, normal) / dot(normal, normal) * normal;
|
|
return dot(x, normal) / dot(normal, normal) * normal;
|
|
}
|
|
}
|
|
|
|
|
|
-identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
|
|
|
|
|
|
+identity :: proc($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
|
|
for i in 0..<N {
|
|
for i in 0..<N {
|
|
m[i][i] = E(1);
|
|
m[i][i] = E(1);
|
|
}
|
|
}
|
|
@@ -170,7 +170,7 @@ trace :: proc(m: $T/[$N][N]$E) -> (tr: E) {
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
-transpose :: proc(a: $T/[$N][$M]$E) -> (m: (T when N == M else [M][N]E)) {
|
|
|
|
|
|
+transpose :: proc(a: $T/[$N][$M]$E) -> (m: (T when N == M else [M][N]E)) #no_bounds_check {
|
|
for j in 0..<M {
|
|
for j in 0..<M {
|
|
for i in 0..<N {
|
|
for i in 0..<N {
|
|
m[j][i] = a[i][j];
|
|
m[j][i] = a[i][j];
|
|
@@ -180,8 +180,7 @@ transpose :: proc(a: $T/[$N][$M]$E) -> (m: (T when N == M else [M][N]E)) {
|
|
}
|
|
}
|
|
|
|
|
|
matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
|
|
matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
|
|
- where !IS_ARRAY(E),
|
|
|
|
- IS_NUMERIC(E) {
|
|
|
|
|
|
+ where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
|
|
for i in 0..<N {
|
|
for i in 0..<N {
|
|
for k in 0..<N {
|
|
for k in 0..<N {
|
|
for j in 0..<N {
|
|
for j in 0..<N {
|
|
@@ -193,8 +192,7 @@ matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
|
|
}
|
|
}
|
|
|
|
|
|
matrix_comp_mul :: proc(a, b: $M/[$J][$I]$E) -> (c: M)
|
|
matrix_comp_mul :: proc(a, b: $M/[$J][$I]$E) -> (c: M)
|
|
- where !IS_ARRAY(E),
|
|
|
|
- IS_NUMERIC(E) {
|
|
|
|
|
|
+ where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
|
|
for j in 0..<J {
|
|
for j in 0..<J {
|
|
for i in 0..<I {
|
|
for i in 0..<I {
|
|
c[j][i] = a[j][i] * b[j][i];
|
|
c[j][i] = a[j][i] * b[j][i];
|
|
@@ -204,9 +202,7 @@ matrix_comp_mul :: proc(a, b: $M/[$J][$I]$E) -> (c: M)
|
|
}
|
|
}
|
|
|
|
|
|
matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
|
|
matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
|
|
- where !IS_ARRAY(E),
|
|
|
|
- IS_NUMERIC(E),
|
|
|
|
- I != K {
|
|
|
|
|
|
+ where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check {
|
|
for k in 0..<K {
|
|
for k in 0..<K {
|
|
for j in 0..<J {
|
|
for j in 0..<J {
|
|
for i in 0..<I {
|
|
for i in 0..<I {
|
|
@@ -219,8 +215,7 @@ matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
|
|
|
|
|
|
|
|
|
|
matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
|
|
matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
|
|
- where !IS_ARRAY(E),
|
|
|
|
- IS_NUMERIC(E) {
|
|
|
|
|
|
+ where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
|
|
for i in 0..<I {
|
|
for i in 0..<I {
|
|
for j in 0..<J {
|
|
for j in 0..<J {
|
|
c[j] += a[i][j] * b[i];
|
|
c[j] += a[i][j] * b[i];
|
|
@@ -328,14 +323,14 @@ cubic :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) {
|
|
|
|
|
|
+array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check {
|
|
for i in 0..<N {
|
|
for i in 0..<N {
|
|
w[i] = Elem_Type(v[i]);
|
|
w[i] = Elem_Type(v[i]);
|
|
}
|
|
}
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
-matrix_cast :: proc(v: $A/[$M][$N]$T, $Elem_Type: typeid) -> (w: [M][N]Elem_Type) {
|
|
|
|
|
|
+matrix_cast :: proc(v: $A/[$M][$N]$T, $Elem_Type: typeid) -> (w: [M][N]Elem_Type) #no_bounds_check {
|
|
for i in 0..<M {
|
|
for i in 0..<M {
|
|
for j in 0..<N {
|
|
for j in 0..<N {
|
|
w[i][j] = Elem_Type(v[i][j]);
|
|
w[i][j] = Elem_Type(v[i][j]);
|