|
@@ -37,13 +37,6 @@ inverse :: proc{
|
|
|
matrix4x4_inverse,
|
|
|
}
|
|
|
|
|
|
-@(builtin)
|
|
|
-hermitian_adjoint :: proc{
|
|
|
- matrix1x1_hermitian_adjoint,
|
|
|
- matrix2x2_hermitian_adjoint,
|
|
|
- matrix3x3_hermitian_adjoint,
|
|
|
- matrix4x4_hermitian_adjoint,
|
|
|
-}
|
|
|
|
|
|
@(builtin)
|
|
|
matrix1x1_determinant :: proc(m: $M/matrix[1, 1]$T) -> (det: T) {
|
|
@@ -103,26 +96,25 @@ matrix3x3_adjugate :: proc(m: $M/matrix[3, 3]$T) -> (y: M) {
|
|
|
}
|
|
|
|
|
|
@(builtin)
|
|
|
-matrix4x4_adjugate :: proc(x: $M/matrix[4, 4]$T) -> (y: M) {
|
|
|
- minor :: proc(m: $M/matrix[4, 4]$T, row, column: i32) -> (minor: T) {
|
|
|
- cut_down: matrix[3, 3]T
|
|
|
- for col_idx in 0..<3 {
|
|
|
- col := col_idx + int(col_idx >= column)
|
|
|
- for row_idx in 0..<3 {
|
|
|
- row := row_idx + int(row_idx >= row)
|
|
|
- cut_down[row_idx, col_idx] = m[row, col]
|
|
|
- }
|
|
|
+matrix_minor :: proc(m: $M/matrix[$N, N]$T, row, column: int) -> (minor: T) where N > 1 {
|
|
|
+ K :: N-1
|
|
|
+ cut_down: matrix[K, K]T
|
|
|
+ for col_idx in 0..<K {
|
|
|
+ j := col_idx + int(col_idx >= column)
|
|
|
+ for row_idx in 0..<K {
|
|
|
+ i := row_idx + int(row_idx >= row)
|
|
|
+ cut_down[row_idx, col_idx] = m[i, j]
|
|
|
}
|
|
|
- return determinant(cut_down)
|
|
|
- }
|
|
|
- cofactor :: proc(m: $M/matrix[4, 4]$T, row, column: i32) -> (cofactor: T) {
|
|
|
- sign: T = 1 if (row + column) % 2 == 0 else -1
|
|
|
- return sign * minor(m, row, column)
|
|
|
}
|
|
|
-
|
|
|
+ return determinant(cut_down)
|
|
|
+}
|
|
|
+
|
|
|
+@(builtin)
|
|
|
+matrix4x4_adjugate :: proc(x: $M/matrix[4, 4]$T) -> (y: M) {
|
|
|
for i in 0..<4 {
|
|
|
for j in 0..<4 {
|
|
|
- y[i, j] = cofactor(x, i, j)
|
|
|
+ sign: T = 1 if (i + j) % 2 == 0 else -1
|
|
|
+ y[i, j] = sign * matrix_minor(x, i, j)
|
|
|
}
|
|
|
}
|
|
|
return
|
|
@@ -268,19 +260,14 @@ matrix4x4_inverse :: proc(x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
|
|
|
|
|
|
|
|
|
@(builtin)
|
|
|
-matrix1x1_hermitian_adjoint :: proc(m: $M/matrix[1, 1]$T) -> M where intrinsics.type_is_complex(T) {
|
|
|
- return conj(transpose(m))
|
|
|
-}
|
|
|
-@(builtin)
|
|
|
-matrix2x2_hermitian_adjoint :: proc(m: $M/matrix[2, 2]$T) -> M where intrinsics.type_is_complex(T) {
|
|
|
- return conj(transpose(m))
|
|
|
-}
|
|
|
-@(builtin)
|
|
|
-matrix3x3_hermitian_adjoint :: proc(m: $M/matrix[3, 3]$T) -> M where intrinsics.type_is_complex(T) {
|
|
|
- return conj(transpose(m))
|
|
|
-}
|
|
|
-@(builtin)
|
|
|
-matrix4x4_hermitian_adjoint :: proc(m: $M/matrix[4, 4]$T) -> M where intrinsics.type_is_complex(T) {
|
|
|
+matrix_hermitian_adjoint :: proc(m: $M/matrix[$N, N]$T) -> M where intrinsics.type_is_complex(T), N >= 1, N <= 4 {
|
|
|
return conj(transpose(m))
|
|
|
}
|
|
|
|
|
|
+@(builtin)
|
|
|
+matrix_trace :: proc(m: $M/matrix[$N, N]$T) -> (trace: T) where N >= 1, N <= 4 {
|
|
|
+ for i in 0..<N {
|
|
|
+ trace += m[i, i]
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|