|
@@ -2203,6 +2203,212 @@ arbitrary_precision_maths :: proc() {
|
|
|
print_bigint("\nLCM of random prime A and random number B (in base 36): ", d, 36)
|
|
|
}
|
|
|
|
|
|
+matrix_type :: proc() {
|
|
|
+ fmt.println("\n# matrix type")
|
|
|
+ // A matrix is a mathematical type built into Odin. It is a regular array of numbers,
|
|
|
+ // arranged in rows and columns
|
|
|
+
|
|
|
+ {
|
|
|
+ // The following represents a matrix that has 2 rows and 3 columns
|
|
|
+ m: matrix[2, 3]f32
|
|
|
+
|
|
|
+ m = matrix[2, 3]f32{
|
|
|
+ 1, 9, -13,
|
|
|
+ 20, 5, -6,
|
|
|
+ }
|
|
|
+
|
|
|
+ // Element types of integers, float, and complex numbers are supported by matrices.
|
|
|
+ // There is no support for booleans, quaternions, or any compound type.
|
|
|
+
|
|
|
+ // Indexing a matrix can be used with the matrix indexing syntax
|
|
|
+ // This mirrors othe type usages: type on the left, usage on the right
|
|
|
+
|
|
|
+ elem := m[1, 2] // row 1, column 2
|
|
|
+ assert(elem == -6)
|
|
|
+
|
|
|
+
|
|
|
+ // Scalars act as if they are scaled identity matrices
|
|
|
+ // and can be assigned to matrices as them
|
|
|
+ b := matrix[2, 2]f32{}
|
|
|
+ f := f32(3)
|
|
|
+ b = f
|
|
|
+
|
|
|
+ fmt.println("b", b)
|
|
|
+ fmt.println("b == f", b == f)
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ { // Matrices support multiplication between matrices
|
|
|
+ a := matrix[2, 3]f32{
|
|
|
+ 2, 3, 1,
|
|
|
+ 4, 5, 0,
|
|
|
+ }
|
|
|
+
|
|
|
+ b := matrix[3, 2]f32{
|
|
|
+ 1, 2,
|
|
|
+ 3, 4,
|
|
|
+ 5, 6,
|
|
|
+ }
|
|
|
+
|
|
|
+ fmt.println("a", a)
|
|
|
+ fmt.println("b", b)
|
|
|
+
|
|
|
+ c := a * b
|
|
|
+ #assert(type_of(c) == matrix[2, 2]f32)
|
|
|
+ fmt.tprintln("c = a * b", c)
|
|
|
+ }
|
|
|
+
|
|
|
+ { // Matrices support multiplication between matrices and arrays
|
|
|
+ m := matrix[4, 4]f32{
|
|
|
+ 1, 2, 3, 4,
|
|
|
+ 5, 5, 4, 2,
|
|
|
+ 0, 1, 3, 0,
|
|
|
+ 0, 1, 4, 1,
|
|
|
+ }
|
|
|
+
|
|
|
+ v := [4]f32{1, 5, 4, 3}
|
|
|
+
|
|
|
+ // treating 'v' as a column vector
|
|
|
+ fmt.println("m * v", m * v)
|
|
|
+
|
|
|
+ // treating 'v' as a row vector
|
|
|
+ fmt.println("v * m", v * m)
|
|
|
+
|
|
|
+ // Support with non-square matrices
|
|
|
+ s := matrix[2, 4]f32{ // [4][2]f32
|
|
|
+ 2, 4, 3, 1,
|
|
|
+ 7, 8, 6, 5,
|
|
|
+ }
|
|
|
+
|
|
|
+ w := [2]f32{1, 2}
|
|
|
+ r: [4]f32 = w * s
|
|
|
+ fmt.println("r", r)
|
|
|
+ }
|
|
|
+
|
|
|
+ { // Component-wise operations
|
|
|
+ // if the element type supports it
|
|
|
+ // Not support for '/', '%', or '%%' operations
|
|
|
+
|
|
|
+ a := matrix[2, 2]i32{
|
|
|
+ 1, 2,
|
|
|
+ 3, 4,
|
|
|
+ }
|
|
|
+
|
|
|
+ b := matrix[2, 2]i32{
|
|
|
+ -5, 1,
|
|
|
+ 9, -7,
|
|
|
+ }
|
|
|
+
|
|
|
+ c0 := a + b
|
|
|
+ c1 := a - b
|
|
|
+ c2 := a & b
|
|
|
+ c3 := a | b
|
|
|
+ c4 := a ~ b
|
|
|
+ c5 := a &~ b
|
|
|
+
|
|
|
+ // component-wise multiplication
|
|
|
+ // since a * b would be a standard matrix multiplication
|
|
|
+ c6 := hadamard_product(a, b)
|
|
|
+
|
|
|
+
|
|
|
+ fmt.println("a + b", c0)
|
|
|
+ fmt.println("a - b", c1)
|
|
|
+ fmt.println("a & b", c2)
|
|
|
+ fmt.println("a | b", c3)
|
|
|
+ fmt.println("a ~ b", c4)
|
|
|
+ fmt.println("a &~ b", c5)
|
|
|
+ fmt.println("hadamard_product(a, b)", c6)
|
|
|
+ }
|
|
|
+
|
|
|
+ { // Submatrix casting square matrices
|
|
|
+ // Casting a square matrix to another square matrix with same element type
|
|
|
+ // is supported.
|
|
|
+ // If the cast is to a smaller matrix type, the top-left submatrix is taken.
|
|
|
+ // If the cast is to a larger matrix type, the matrix is extended with zeros
|
|
|
+ // everywhere and ones in the diagonal for the unfilled elements of the
|
|
|
+ // extended matrix.
|
|
|
+
|
|
|
+ mat2 :: distinct matrix[2, 2]f32
|
|
|
+ mat4 :: distinct matrix[4, 4]f32
|
|
|
+
|
|
|
+ m2 := mat2{
|
|
|
+ 1, 3,
|
|
|
+ 2, 4,
|
|
|
+ }
|
|
|
+
|
|
|
+ m4 := mat4(m2)
|
|
|
+ assert(m4[2, 2] == 1)
|
|
|
+ assert(m4[3, 3] == 1)
|
|
|
+ fmt.println("m2", m2)
|
|
|
+ fmt.println("m4", m4)
|
|
|
+ fmt.println("mat2(m4)", mat2(m4))
|
|
|
+ assert(mat2(m4) == m2)
|
|
|
+ }
|
|
|
+
|
|
|
+ { // Casting non-square matrices
|
|
|
+ // Casting a matrix to another matrix is allowed as long as they share
|
|
|
+ // the same element type and the number of elements (rows*columns).
|
|
|
+ // Matrices in Odin are stored in column-major order, which means
|
|
|
+ // the casts will preserve this element order.
|
|
|
+
|
|
|
+ mat2x4 :: distinct matrix[2, 4]f32
|
|
|
+ mat4x2 :: distinct matrix[4, 2]f32
|
|
|
+
|
|
|
+ x := mat2x4{
|
|
|
+ 1, 3, 5, 7,
|
|
|
+ 2, 4, 6, 8,
|
|
|
+ }
|
|
|
+
|
|
|
+ y := mat4x2(x)
|
|
|
+ fmt.println("x", x)
|
|
|
+ fmt.println("y", y)
|
|
|
+ }
|
|
|
+
|
|
|
+ // TECHNICAL INFORMATION: the internal representation of a matrix in Odin is stored
|
|
|
+ // in column-major format
|
|
|
+ // e.g. matrix[2, 3]f32 is internally [3][2]f32 (with different a alignment requirement)
|
|
|
+ // Column-major is used in order to utilize SIMD instructions effectively on modern hardware
|
|
|
+ //
|
|
|
+ // Unlike normal arrays, matrices try to maximize alignment to allow for the (SIMD) vectorization
|
|
|
+ // properties whilst keeping zero padding (either between columns or at the end of the type).
|
|
|
+ //
|
|
|
+ // Zero padding is a compromise for use with third-party libraries, instead of optimizing for performance
|
|
|
+ //
|
|
|
+ // Currently, matrices are limited to a maximum of 16 elements (rows*columns), and a minimum of 1 element.
|
|
|
+ // This is because matrices are stored as values (not a reference type), and thus operations on them will
|
|
|
+ // be stored on the stack. Restricting the maximum element count minimizing the possibility of stack overflows.
|
|
|
+
|
|
|
+ // Built-in Procedures (Compiler Level)
|
|
|
+ // transpose(m)
|
|
|
+ // transposes a matrix
|
|
|
+ // outer_product(a, b)
|
|
|
+ // takes two array-like data types and returns the outer product
|
|
|
+ // of the values in a matrix
|
|
|
+ // hadamard_product(a, b)
|
|
|
+ // component-wise multiplication of two matrices of the same type
|
|
|
+ // matrix_flatten(m)
|
|
|
+ // converts the matrix into a flatten array of elements
|
|
|
+ // in column-major order
|
|
|
+ // Example:
|
|
|
+ // m := matrix[2, 2]f32{
|
|
|
+ // x0, x1,
|
|
|
+ // y0, y1,
|
|
|
+ // }
|
|
|
+ // array: [4]f32 = matrix_flatten(m)
|
|
|
+ // assert(array == {x0, y0, x1, y1})
|
|
|
+ // conj(x)
|
|
|
+ // conjugates the elements of a matrix for complex element types only
|
|
|
+
|
|
|
+ // Built-in Procedures (Runtime Level) (all square matrix procedures)
|
|
|
+ // determinant(m)
|
|
|
+ // adjugate(m)
|
|
|
+ // inverse(m)
|
|
|
+ // inverse_transpose(m)
|
|
|
+ // hermitian_adjoint(m)
|
|
|
+ // matrix_trace(m)
|
|
|
+ // matrix_minor(m)
|
|
|
+}
|
|
|
+
|
|
|
main :: proc() {
|
|
|
when true {
|
|
|
the_basics()
|
|
@@ -2238,5 +2444,6 @@ main :: proc() {
|
|
|
or_else_operator()
|
|
|
or_return_operator()
|
|
|
arbitrary_precision_maths()
|
|
|
+ matrix_type()
|
|
|
}
|
|
|
}
|