|
@@ -1,36 +1,41 @@
|
|
package math
|
|
package math
|
|
|
|
|
|
|
|
+import "intrinsics"
|
|
|
|
+
|
|
|
|
+Float_Class :: enum {
|
|
|
|
+ Normal, // an ordinary nonzero floating point value
|
|
|
|
+ Subnormal, // a subnormal floating point value
|
|
|
|
+ Zero, // zero
|
|
|
|
+ Neg_Zero, // the negative zero
|
|
|
|
+ NaN, // Not-A-Number (NaN)
|
|
|
|
+ Inf, // positive infinity
|
|
|
|
+ Neg_Inf // negative infinity
|
|
|
|
+};
|
|
|
|
+
|
|
TAU :: 6.28318530717958647692528676655900576;
|
|
TAU :: 6.28318530717958647692528676655900576;
|
|
PI :: 3.14159265358979323846264338327950288;
|
|
PI :: 3.14159265358979323846264338327950288;
|
|
|
|
|
|
E :: 2.71828182845904523536;
|
|
E :: 2.71828182845904523536;
|
|
-SQRT_TWO :: 1.41421356237309504880168872420969808;
|
|
|
|
-SQRT_THREE :: 1.73205080756887729352744634150587236;
|
|
|
|
-SQRT_FIVE :: 2.23606797749978969640917366873127623;
|
|
|
|
-
|
|
|
|
-LOG_TWO :: 0.693147180559945309417232121458176568;
|
|
|
|
-LOG_TEN :: 2.30258509299404568401799145468436421;
|
|
|
|
-
|
|
|
|
-EPSILON :: 1.19209290e-7;
|
|
|
|
|
|
|
|
τ :: TAU;
|
|
τ :: TAU;
|
|
π :: PI;
|
|
π :: PI;
|
|
|
|
+e :: E;
|
|
|
|
|
|
-Vec2 :: distinct [2]f32;
|
|
|
|
-Vec3 :: distinct [3]f32;
|
|
|
|
-Vec4 :: distinct [4]f32;
|
|
|
|
|
|
+SQRT_TWO :: 1.41421356237309504880168872420969808;
|
|
|
|
+SQRT_THREE :: 1.73205080756887729352744634150587236;
|
|
|
|
+SQRT_FIVE :: 2.23606797749978969640917366873127623;
|
|
|
|
|
|
-// Column major
|
|
|
|
-Mat2 :: distinct [2][2]f32;
|
|
|
|
-Mat3 :: distinct [3][3]f32;
|
|
|
|
-Mat4 :: distinct [4][4]f32;
|
|
|
|
|
|
+LN2 :: 0.693147180559945309417232121458176568;
|
|
|
|
+LN10 :: 2.30258509299404568401799145468436421;
|
|
|
|
|
|
-Quat :: struct {x, y, z, w: f32};
|
|
|
|
|
|
+MAX_F64_PRECISION :: 16; // Maximum number of meaningful digits after the decimal point for 'f64'
|
|
|
|
+MAX_F32_PRECISION :: 8; // Maximum number of meaningful digits after the decimal point for 'f32'
|
|
|
|
|
|
-QUAT_IDENTITY := Quat{x = 0, y = 0, z = 0, w = 1};
|
|
|
|
|
|
+RAD_PER_DEG :: TAU/360.0;
|
|
|
|
+DEG_PER_RAD :: 360.0/TAU;
|
|
|
|
|
|
|
|
|
|
-@(default_calling_convention="c")
|
|
|
|
|
|
+@(default_calling_convention="none")
|
|
foreign _ {
|
|
foreign _ {
|
|
@(link_name="llvm.sqrt.f32")
|
|
@(link_name="llvm.sqrt.f32")
|
|
sqrt_f32 :: proc(x: f32) -> f32 ---;
|
|
sqrt_f32 :: proc(x: f32) -> f32 ---;
|
|
@@ -58,9 +63,9 @@ foreign _ {
|
|
fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
|
|
fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
|
|
|
|
|
|
@(link_name="llvm.log.f32")
|
|
@(link_name="llvm.log.f32")
|
|
- log_f32 :: proc(x: f32) -> f32 ---;
|
|
|
|
|
|
+ ln_f32 :: proc(x: f32) -> f32 ---;
|
|
@(link_name="llvm.log.f64")
|
|
@(link_name="llvm.log.f64")
|
|
- log_f64 :: proc(x: f64) -> f64 ---;
|
|
|
|
|
|
+ ln_f64 :: proc(x: f64) -> f64 ---;
|
|
|
|
|
|
@(link_name="llvm.exp.f32")
|
|
@(link_name="llvm.exp.f32")
|
|
exp_f32 :: proc(x: f32) -> f32 ---;
|
|
exp_f32 :: proc(x: f32) -> f32 ---;
|
|
@@ -68,20 +73,40 @@ foreign _ {
|
|
exp_f64 :: proc(x: f64) -> f64 ---;
|
|
exp_f64 :: proc(x: f64) -> f64 ---;
|
|
}
|
|
}
|
|
|
|
|
|
-log :: proc{log_f32, log_f64};
|
|
|
|
-exp :: proc{exp_f32, exp_f64};
|
|
|
|
|
|
+sqrt :: proc{sqrt_f32, sqrt_f64};
|
|
|
|
+sin :: proc{sin_f32, sin_f64};
|
|
|
|
+cos :: proc{cos_f32, cos_f64};
|
|
|
|
+pow :: proc{pow_f32, pow_f64};
|
|
|
|
+fmuladd :: proc{fmuladd_f32, fmuladd_f64};
|
|
|
|
+ln :: proc{ln_f32, ln_f64};
|
|
|
|
+exp :: proc{exp_f32, exp_f64};
|
|
|
|
+
|
|
|
|
+log_f32 :: proc(x, base: f32) -> f32 { return ln(x) / ln(base); }
|
|
|
|
+log_f64 :: proc(x, base: f64) -> f64 { return ln(x) / ln(base); }
|
|
|
|
+log :: proc{log_f32, log_f64};
|
|
|
|
+
|
|
|
|
+log2_f32 :: proc(x: f32) -> f32 { return ln(x)/LN2; }
|
|
|
|
+log2_f64 :: proc(x: f64) -> f64 { return ln(x)/LN2; }
|
|
|
|
+log2 :: proc{log2_f32, log2_f64};
|
|
|
|
+
|
|
|
|
+log10_f32 :: proc(x: f32) -> f32 { return ln(x)/LN10; }
|
|
|
|
+log10_f64 :: proc(x: f64) -> f64 { return ln(x)/LN10; }
|
|
|
|
+log10 :: proc{log10_f32, log10_f64};
|
|
|
|
+
|
|
|
|
|
|
tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
|
|
tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
|
|
tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
|
|
tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
|
|
|
|
+tan :: proc{tan_f32, tan_f64};
|
|
|
|
|
|
lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
|
|
lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
|
|
|
|
|
|
unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
|
|
unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
|
|
unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
|
|
unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
|
|
|
|
+unlerp :: proc{unlerp_f32, unlerp_f64};
|
|
|
|
|
|
-
|
|
|
|
-sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
|
|
|
|
-sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
|
|
|
|
|
|
+sign_f32 :: proc(x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)); }
|
|
|
|
+sign_f64 :: proc(x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)); }
|
|
|
|
+sign :: proc{sign_f32, sign_f64};
|
|
|
|
|
|
copy_sign_f32 :: proc(x, y: f32) -> f32 {
|
|
copy_sign_f32 :: proc(x, y: f32) -> f32 {
|
|
ix := transmute(u32)x;
|
|
ix := transmute(u32)x;
|
|
@@ -90,7 +115,6 @@ copy_sign_f32 :: proc(x, y: f32) -> f32 {
|
|
ix |= iy & 0x8000_0000;
|
|
ix |= iy & 0x8000_0000;
|
|
return transmute(f32)ix;
|
|
return transmute(f32)ix;
|
|
}
|
|
}
|
|
-
|
|
|
|
copy_sign_f64 :: proc(x, y: f64) -> f64 {
|
|
copy_sign_f64 :: proc(x, y: f64) -> f64 {
|
|
ix := transmute(u64)x;
|
|
ix := transmute(u64)x;
|
|
iy := transmute(u64)y;
|
|
iy := transmute(u64)y;
|
|
@@ -98,22 +122,89 @@ copy_sign_f64 :: proc(x, y: f64) -> f64 {
|
|
ix |= iy & 0x8000_0000_0000_0000;
|
|
ix |= iy & 0x8000_0000_0000_0000;
|
|
return transmute(f64)ix;
|
|
return transmute(f64)ix;
|
|
}
|
|
}
|
|
|
|
+copy_sign :: proc{copy_sign_f32, copy_sign_f64};
|
|
|
|
|
|
|
|
|
|
-sqrt :: proc{sqrt_f32, sqrt_f64};
|
|
|
|
-sin :: proc{sin_f32, sin_f64};
|
|
|
|
-cos :: proc{cos_f32, cos_f64};
|
|
|
|
-tan :: proc{tan_f32, tan_f64};
|
|
|
|
-pow :: proc{pow_f32, pow_f64};
|
|
|
|
-fmuladd :: proc{fmuladd_f32, fmuladd_f64};
|
|
|
|
-sign :: proc{sign_f32, sign_f64};
|
|
|
|
-copy_sign :: proc{copy_sign_f32, copy_sign_f64};
|
|
|
|
|
|
+to_radians_f32 :: proc(degrees: f32) -> f32 { return degrees * RAD_PER_DEG; }
|
|
|
|
+to_radians_f64 :: proc(degrees: f64) -> f64 { return degrees * RAD_PER_DEG; }
|
|
|
|
+to_degrees_f32 :: proc(radians: f32) -> f32 { return radians * DEG_PER_RAD; }
|
|
|
|
+to_degrees_f64 :: proc(radians: f64) -> f64 { return radians * DEG_PER_RAD; }
|
|
|
|
+to_radians :: proc{to_radians_f32, to_radians_f64};
|
|
|
|
+to_degrees :: proc{to_degrees_f32, to_degrees_f64};
|
|
|
|
+
|
|
|
|
+trunc_f32 :: proc(x: f32) -> f32 {
|
|
|
|
+ trunc_internal :: proc(f: f32) -> f32 {
|
|
|
|
+ mask :: 0xff;
|
|
|
|
+ shift :: 32 - 9;
|
|
|
|
+ bias :: 0x7f;
|
|
|
|
+
|
|
|
|
+ if f < 1 {
|
|
|
|
+ switch {
|
|
|
|
+ case f < 0: return -trunc_internal(-f);
|
|
|
|
+ case f == 0: return f;
|
|
|
|
+ case: return 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
|
|
+ x := transmute(u32)f;
|
|
|
|
+ e := (x >> shift) & mask - bias;
|
|
|
|
|
|
-round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
|
|
|
|
-round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
|
|
|
|
|
|
+ if e < shift {
|
|
|
|
+ x &= ~(1 << (shift-e)) - 1;
|
|
|
|
+ }
|
|
|
|
+ return transmute(f32)x;
|
|
|
|
+ }
|
|
|
|
+ switch classify(x) {
|
|
|
|
+ case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
|
|
|
|
+ return x;
|
|
|
|
+ }
|
|
|
|
+ return trunc_internal(x);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+trunc_f64 :: proc(x: f64) -> f64 {
|
|
|
|
+ trunc_internal :: proc(f: f64) -> f64 {
|
|
|
|
+ mask :: 0x7ff;
|
|
|
|
+ shift :: 64 - 12;
|
|
|
|
+ bias :: 0x3ff;
|
|
|
|
+
|
|
|
|
+ if f < 1 {
|
|
|
|
+ switch {
|
|
|
|
+ case f < 0: return -trunc_internal(-f);
|
|
|
|
+ case f == 0: return f;
|
|
|
|
+ case: return 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ x := transmute(u64)f;
|
|
|
|
+ e := (x >> shift) & mask - bias;
|
|
|
|
+
|
|
|
|
+ if e < shift {
|
|
|
|
+ x &= ~(1 << (shift-e)) - 1;
|
|
|
|
+ }
|
|
|
|
+ return transmute(f64)x;
|
|
|
|
+ }
|
|
|
|
+ switch classify(x) {
|
|
|
|
+ case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
|
|
|
|
+ return x;
|
|
|
|
+ }
|
|
|
|
+ return trunc_internal(x);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+trunc :: proc{trunc_f32, trunc_f64};
|
|
|
|
+
|
|
|
|
+round_f32 :: proc(x: f32) -> f32 {
|
|
|
|
+ return x < 0 ? ceil(x - 0.5) : floor(x + 0.5);
|
|
|
|
+}
|
|
|
|
+round_f64 :: proc(x: f64) -> f64 {
|
|
|
|
+ return x < 0 ? ceil(x - 0.5) : floor(x + 0.5);
|
|
|
|
+}
|
|
round :: proc{round_f32, round_f64};
|
|
round :: proc{round_f32, round_f64};
|
|
|
|
|
|
|
|
+
|
|
|
|
+ceil_f32 :: proc(x: f32) -> f32 { return -floor(-x); }
|
|
|
|
+ceil_f64 :: proc(x: f64) -> f64 { return -floor(-x); }
|
|
|
|
+ceil :: proc{ceil_f32, ceil_f64};
|
|
|
|
+
|
|
floor_f32 :: proc(x: f32) -> f32 {
|
|
floor_f32 :: proc(x: f32) -> f32 {
|
|
if x == 0 || is_nan(x) || is_inf(x) {
|
|
if x == 0 || is_nan(x) || is_inf(x) {
|
|
return x;
|
|
return x;
|
|
@@ -144,33 +235,27 @@ floor_f64 :: proc(x: f64) -> f64 {
|
|
}
|
|
}
|
|
floor :: proc{floor_f32, floor_f64};
|
|
floor :: proc{floor_f32, floor_f64};
|
|
|
|
|
|
-ceil_f32 :: proc(x: f32) -> f32 { return -floor_f32(-x); }
|
|
|
|
-ceil_f64 :: proc(x: f64) -> f64 { return -floor_f64(-x); }
|
|
|
|
-ceil :: proc{ceil_f32, ceil_f64};
|
|
|
|
|
|
|
|
-remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
|
|
|
|
-remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
|
|
|
|
-remainder :: proc{remainder_f32, remainder_f64};
|
|
|
|
-
|
|
|
|
-mod_f32 :: proc(x, y: f32) -> (n: f32) {
|
|
|
|
- z := abs(y);
|
|
|
|
- n = remainder(abs(x), z);
|
|
|
|
- if sign(n) < 0 {
|
|
|
|
- n += z;
|
|
|
|
|
|
+floor_div :: proc(x, y: $T) -> T
|
|
|
|
+ where intrinsics.type_is_integer(T) {
|
|
|
|
+ a := x / y;
|
|
|
|
+ r := x % y;
|
|
|
|
+ if (r > 0 && y < 0) || (r < 0 && y > 0) {
|
|
|
|
+ a -= 1;
|
|
}
|
|
}
|
|
- return copy_sign(n, x);
|
|
|
|
|
|
+ return a;
|
|
}
|
|
}
|
|
-mod_f64 :: proc(x, y: f64) -> (n: f64) {
|
|
|
|
- z := abs(y);
|
|
|
|
- n = remainder(abs(x), z);
|
|
|
|
- if sign(n) < 0 {
|
|
|
|
- n += z;
|
|
|
|
|
|
+
|
|
|
|
+floor_mod :: proc(x, y: $T) -> T
|
|
|
|
+ where intrinsics.type_is_integer(T) {
|
|
|
|
+ r := x % y;
|
|
|
|
+ if (r > 0 && y < 0) || (r < 0 && y > 0) {
|
|
|
|
+ r += y;
|
|
}
|
|
}
|
|
- return copy_sign(n, x);
|
|
|
|
|
|
+ return r;
|
|
}
|
|
}
|
|
-mod :: proc{mod_f32, mod_f64};
|
|
|
|
|
|
|
|
-// TODO(bill): These need to implemented with the actual instructions
|
|
|
|
|
|
+
|
|
modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) {
|
|
modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) {
|
|
shift :: 32 - 8 - 1;
|
|
shift :: 32 - 8 - 1;
|
|
mask :: 0xff;
|
|
mask :: 0xff;
|
|
@@ -190,8 +275,8 @@ modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) {
|
|
i := transmute(u32)x;
|
|
i := transmute(u32)x;
|
|
e := uint(i>>shift)&mask - bias;
|
|
e := uint(i>>shift)&mask - bias;
|
|
|
|
|
|
- if e < 32-9 {
|
|
|
|
- i &~= 1<<(32-9-e) - 1;
|
|
|
|
|
|
+ if e < shift {
|
|
|
|
+ i &~= 1<<(shift-e) - 1;
|
|
}
|
|
}
|
|
int = transmute(f32)i;
|
|
int = transmute(f32)i;
|
|
frac = x - int;
|
|
frac = x - int;
|
|
@@ -216,361 +301,275 @@ modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) {
|
|
i := transmute(u64)x;
|
|
i := transmute(u64)x;
|
|
e := uint(i>>shift)&mask - bias;
|
|
e := uint(i>>shift)&mask - bias;
|
|
|
|
|
|
- if e < 64-12 {
|
|
|
|
- i &~= 1<<(64-12-e) - 1;
|
|
|
|
|
|
+ if e < shift {
|
|
|
|
+ i &~= 1<<(shift-e) - 1;
|
|
}
|
|
}
|
|
int = transmute(f64)i;
|
|
int = transmute(f64)i;
|
|
frac = x - int;
|
|
frac = x - int;
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
modf :: proc{modf_f32, modf_f64};
|
|
modf :: proc{modf_f32, modf_f64};
|
|
|
|
+split_decimal :: modf;
|
|
|
|
|
|
-is_nan_f32 :: inline proc(x: f32) -> bool { return x != x; }
|
|
|
|
-is_nan_f64 :: inline proc(x: f64) -> bool { return x != x; }
|
|
|
|
-is_nan :: proc{is_nan_f32, is_nan_f64};
|
|
|
|
-
|
|
|
|
-is_finite_f32 :: inline proc(x: f32) -> bool { return !is_nan(x-x); }
|
|
|
|
-is_finite_f64 :: inline proc(x: f64) -> bool { return !is_nan(x-x); }
|
|
|
|
-is_finite :: proc{is_finite_f32, is_finite_f64};
|
|
|
|
-
|
|
|
|
-is_inf_f32 :: proc(x: f32, sign := 0) -> bool {
|
|
|
|
- return sign >= 0 && x > F32_MAX || sign <= 0 && x < -F32_MAX;
|
|
|
|
|
|
+mod_f32 :: proc(x, y: f32) -> (n: f32) {
|
|
|
|
+ z := abs(y);
|
|
|
|
+ n = remainder(abs(x), z);
|
|
|
|
+ if sign(n) < 0 {
|
|
|
|
+ n += z;
|
|
|
|
+ }
|
|
|
|
+ return copy_sign(n, x);
|
|
}
|
|
}
|
|
-is_inf_f64 :: proc(x: f64, sign := 0) -> bool {
|
|
|
|
- return sign >= 0 && x > F64_MAX || sign <= 0 && x < -F64_MAX;
|
|
|
|
|
|
+mod_f64 :: proc(x, y: f64) -> (n: f64) {
|
|
|
|
+ z := abs(y);
|
|
|
|
+ n = remainder(abs(x), z);
|
|
|
|
+ if sign(n) < 0 {
|
|
|
|
+ n += z;
|
|
|
|
+ }
|
|
|
|
+ return copy_sign(n, x);
|
|
}
|
|
}
|
|
-// If sign > 0, is_inf reports whether f is positive infinity
|
|
|
|
-// If sign < 0, is_inf reports whether f is negative infinity
|
|
|
|
-// If sign == 0, is_inf reports whether f is either infinity
|
|
|
|
-is_inf :: proc{is_inf_f32, is_inf_f64};
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
|
|
|
|
-to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
|
|
+mod :: proc{mod_f32, mod_f64};
|
|
|
|
|
|
-mul :: proc{
|
|
|
|
- mat3_mul,
|
|
|
|
- mat4_mul, mat4_mul_vec4,
|
|
|
|
- quat_mul, quat_mulf,
|
|
|
|
-};
|
|
|
|
|
|
+remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
|
|
|
|
+remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
|
|
|
|
+remainder :: proc{remainder_f32, remainder_f64};
|
|
|
|
|
|
-div :: proc{quat_div, quat_divf};
|
|
|
|
|
|
|
|
-inverse :: proc{mat4_inverse, quat_inverse};
|
|
|
|
-dot :: proc{vec_dot, quat_dot};
|
|
|
|
-cross :: proc{cross2, cross3};
|
|
|
|
|
|
|
|
-vec_dot :: proc(a, b: $T/[$N]$E) -> E {
|
|
|
|
- res: E;
|
|
|
|
- for i in 0..<N {
|
|
|
|
- res += a[i] * b[i];
|
|
|
|
|
|
+gcd :: proc(x, y: $T) -> T
|
|
|
|
+ where intrinsics.type_is_ordered_numeric(T) {
|
|
|
|
+ x, y := x, y;
|
|
|
|
+ for y != 0 {
|
|
|
|
+ x %= y;
|
|
|
|
+ x, y = y, x;
|
|
}
|
|
}
|
|
- return res;
|
|
|
|
|
|
+ return abs(x);
|
|
}
|
|
}
|
|
|
|
|
|
-cross2 :: proc(a, b: $T/[2]$E) -> E {
|
|
|
|
- return a[0]*b[1] - a[1]*b[0];
|
|
|
|
|
|
+lcm :: proc(x, y: $T) -> T
|
|
|
|
+ where intrinsics.type_is_ordered_numeric(T) {
|
|
|
|
+ return x / gcd(x, y) * y;
|
|
}
|
|
}
|
|
|
|
|
|
-cross3 :: proc(a, b: $T/[3]$E) -> T {
|
|
|
|
- i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
|
|
|
|
- j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
|
|
|
|
- return T(i - j);
|
|
|
|
|
|
+frexp_f32 :: proc(x: f32) -> (significand: f32, exponent: int) {
|
|
|
|
+ switch {
|
|
|
|
+ case x == 0:
|
|
|
|
+ return 0, 0;
|
|
|
|
+ case x < 0:
|
|
|
|
+ significand, exponent = frexp(-x);
|
|
|
|
+ return -significand, exponent;
|
|
|
|
+ }
|
|
|
|
+ ex := trunc(log2(x));
|
|
|
|
+ exponent = int(ex);
|
|
|
|
+ significand = x / pow(2.0, ex);
|
|
|
|
+ if abs(significand) >= 1 {
|
|
|
|
+ exponent += 1;
|
|
|
|
+ significand /= 2;
|
|
|
|
+ }
|
|
|
|
+ if exponent == 1024 && significand == 0 {
|
|
|
|
+ significand = 0.99999999999999988898;
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
}
|
|
}
|
|
|
|
+frexp_f64 :: proc(x: f64) -> (significand: f64, exponent: int) {
|
|
|
|
+ switch {
|
|
|
|
+ case x == 0:
|
|
|
|
+ return 0, 0;
|
|
|
|
+ case x < 0:
|
|
|
|
+ significand, exponent = frexp(-x);
|
|
|
|
+ return -significand, exponent;
|
|
|
|
+ }
|
|
|
|
+ ex := trunc(log2(x));
|
|
|
|
+ exponent = int(ex);
|
|
|
|
+ significand = x / pow(2.0, ex);
|
|
|
|
+ if abs(significand) >= 1 {
|
|
|
|
+ exponent += 1;
|
|
|
|
+ significand /= 2;
|
|
|
|
+ }
|
|
|
|
+ if exponent == 1024 && significand == 0 {
|
|
|
|
+ significand = 0.99999999999999988898;
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+frexp :: proc{frexp_f32, frexp_f64};
|
|
|
|
|
|
|
|
|
|
-length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); }
|
|
|
|
-
|
|
|
|
-norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); }
|
|
|
|
|
|
|
|
-norm0 :: proc(v: $T/[$N]$E) -> T {
|
|
|
|
- m := length(v);
|
|
|
|
- return m == 0 ? 0 : v/m;
|
|
|
|
-}
|
|
|
|
|
|
|
|
|
|
+binomial :: proc(n, k: int) -> int {
|
|
|
|
+ switch {
|
|
|
|
+ case k <= 0: return 1;
|
|
|
|
+ case 2*k > n: return binomial(n, n-k);
|
|
|
|
+ }
|
|
|
|
|
|
|
|
+ b := n;
|
|
|
|
+ for i in 2..<k {
|
|
|
|
+ b = (b * (n+1-i))/i;
|
|
|
|
+ }
|
|
|
|
+ return b;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+factorial :: proc(n: int) -> int {
|
|
|
|
+ when size_of(int) == size_of(i64) {
|
|
|
|
+ @static table := [21]int{
|
|
|
|
+ 1,
|
|
|
|
+ 1,
|
|
|
|
+ 2,
|
|
|
|
+ 6,
|
|
|
|
+ 24,
|
|
|
|
+ 120,
|
|
|
|
+ 720,
|
|
|
|
+ 5_040,
|
|
|
|
+ 40_320,
|
|
|
|
+ 362_880,
|
|
|
|
+ 3_628_800,
|
|
|
|
+ 39_916_800,
|
|
|
|
+ 479_001_600,
|
|
|
|
+ 6_227_020_800,
|
|
|
|
+ 87_178_291_200,
|
|
|
|
+ 1_307_674_368_000,
|
|
|
|
+ 20_922_789_888_000,
|
|
|
|
+ 355_687_428_096_000,
|
|
|
|
+ 6_402_373_705_728_000,
|
|
|
|
+ 121_645_100_408_832_000,
|
|
|
|
+ 2_432_902_008_176_640_000,
|
|
|
|
+ };
|
|
|
|
+ } else {
|
|
|
|
+ @static table := [13]int{
|
|
|
|
+ 1,
|
|
|
|
+ 1,
|
|
|
|
+ 2,
|
|
|
|
+ 6,
|
|
|
|
+ 24,
|
|
|
|
+ 120,
|
|
|
|
+ 720,
|
|
|
|
+ 5_040,
|
|
|
|
+ 40_320,
|
|
|
|
+ 362_880,
|
|
|
|
+ 3_628_800,
|
|
|
|
+ 39_916_800,
|
|
|
|
+ 479_001_600,
|
|
|
|
+ };
|
|
|
|
+ }
|
|
|
|
|
|
-identity :: proc($T: typeid/[$N][N]$E) -> T {
|
|
|
|
- m: T;
|
|
|
|
- for i in 0..<N do m[i][i] = E(1);
|
|
|
|
- return m;
|
|
|
|
|
|
+ assert(n >= 0, "parameter must not be negative");
|
|
|
|
+ assert(n < len(table), "parameter is too large to lookup in the table");
|
|
|
|
+ return 0;
|
|
}
|
|
}
|
|
|
|
|
|
-transpose :: proc(m: $M/[$N][N]f32) -> M {
|
|
|
|
- for j in 0..<N {
|
|
|
|
- for i in 0..<N {
|
|
|
|
- m[i][j], m[j][i] = m[j][i], m[i][j];
|
|
|
|
|
|
+classify_f32 :: proc(x: f32) -> Float_Class {
|
|
|
|
+ switch {
|
|
|
|
+ case x == 0:
|
|
|
|
+ i := transmute(i32)x;
|
|
|
|
+ if i < 0 {
|
|
|
|
+ return .Neg_Zero;
|
|
}
|
|
}
|
|
- }
|
|
|
|
- return m;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-mat3_mul :: proc(a, b: Mat3) -> Mat3 {
|
|
|
|
- c: Mat3;
|
|
|
|
- for j in 0..<3 {
|
|
|
|
- for i in 0..<3 {
|
|
|
|
- c[j][i] = a[0][i]*b[j][0] +
|
|
|
|
- a[1][i]*b[j][1] +
|
|
|
|
- a[2][i]*b[j][2];
|
|
|
|
|
|
+ return .Zero;
|
|
|
|
+ case x*0.5 == x:
|
|
|
|
+ if x < 0 {
|
|
|
|
+ return .Neg_Inf;
|
|
}
|
|
}
|
|
|
|
+ return .Inf;
|
|
|
|
+ case x != x:
|
|
|
|
+ return .NaN;
|
|
}
|
|
}
|
|
- return c;
|
|
|
|
-}
|
|
|
|
|
|
|
|
-mat4_mul :: proc(a, b: Mat4) -> Mat4 {
|
|
|
|
- c: Mat4;
|
|
|
|
- for j in 0..<4 {
|
|
|
|
- for i in 0..<4 {
|
|
|
|
- c[j][i] = a[0][i]*b[j][0] +
|
|
|
|
- a[1][i]*b[j][1] +
|
|
|
|
- a[2][i]*b[j][2] +
|
|
|
|
- a[3][i]*b[j][3];
|
|
|
|
|
|
+ u := transmute(u32)x;
|
|
|
|
+ exp := int(u>>23) & (1<<8 - 1);
|
|
|
|
+ if exp == 0 {
|
|
|
|
+ return .Subnormal;
|
|
|
|
+ }
|
|
|
|
+ return .Normal;
|
|
|
|
+}
|
|
|
|
+classify_f64 :: proc(x: f64) -> Float_Class {
|
|
|
|
+ switch {
|
|
|
|
+ case x == 0:
|
|
|
|
+ i := transmute(i64)x;
|
|
|
|
+ if i < 0 {
|
|
|
|
+ return .Neg_Zero;
|
|
|
|
+ }
|
|
|
|
+ return .Zero;
|
|
|
|
+ case x*0.5 == x:
|
|
|
|
+ if x < 0 {
|
|
|
|
+ return .Neg_Inf;
|
|
}
|
|
}
|
|
|
|
+ return .Inf;
|
|
|
|
+ case x != x:
|
|
|
|
+ return .NaN;
|
|
}
|
|
}
|
|
- return c;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
|
|
|
|
- return Vec4{
|
|
|
|
- m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3],
|
|
|
|
- m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3],
|
|
|
|
- m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3],
|
|
|
|
- m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3],
|
|
|
|
- };
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-mat4_inverse :: proc(m: Mat4) -> Mat4 {
|
|
|
|
- o: Mat4;
|
|
|
|
-
|
|
|
|
- sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
|
|
|
- sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
|
|
|
- sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
|
|
|
- sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
|
|
|
- sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
|
|
|
- sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
|
|
|
- sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
|
|
|
|
- sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
|
|
- sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
|
|
|
|
- sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
|
|
|
|
- sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
|
|
|
|
- sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
|
|
- sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
|
|
|
|
- sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
|
|
|
|
- sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
|
|
|
|
- sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
|
|
|
|
- sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
|
|
|
|
- sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
|
|
|
|
- sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
|
|
|
|
- o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
|
|
|
|
- o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
|
|
|
|
- o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
|
|
|
|
-
|
|
|
|
- o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
|
|
|
|
- o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
|
|
|
|
- o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
|
|
|
|
- o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
|
|
|
|
-
|
|
|
|
- o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
|
|
|
|
- o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
|
|
|
|
- o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
|
|
|
|
- o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
|
|
|
|
-
|
|
|
|
- o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
|
|
|
|
- o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
|
|
|
|
- o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
|
|
|
|
- o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
|
|
|
|
-
|
|
|
|
- ood := 1.0 / (m[0][0] * o[0][0] +
|
|
|
|
- m[0][1] * o[0][1] +
|
|
|
|
- m[0][2] * o[0][2] +
|
|
|
|
- m[0][3] * o[0][3]);
|
|
|
|
-
|
|
|
|
- o[0][0] *= ood;
|
|
|
|
- o[0][1] *= ood;
|
|
|
|
- o[0][2] *= ood;
|
|
|
|
- o[0][3] *= ood;
|
|
|
|
- o[1][0] *= ood;
|
|
|
|
- o[1][1] *= ood;
|
|
|
|
- o[1][2] *= ood;
|
|
|
|
- o[1][3] *= ood;
|
|
|
|
- o[2][0] *= ood;
|
|
|
|
- o[2][1] *= ood;
|
|
|
|
- o[2][2] *= ood;
|
|
|
|
- o[2][3] *= ood;
|
|
|
|
- o[3][0] *= ood;
|
|
|
|
- o[3][1] *= ood;
|
|
|
|
- o[3][2] *= ood;
|
|
|
|
- o[3][3] *= ood;
|
|
|
|
-
|
|
|
|
- return o;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-mat4_translate :: proc(v: Vec3) -> Mat4 {
|
|
|
|
- m := identity(Mat4);
|
|
|
|
- m[3][0] = v[0];
|
|
|
|
- m[3][1] = v[1];
|
|
|
|
- m[3][2] = v[2];
|
|
|
|
- m[3][3] = 1;
|
|
|
|
- return m;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
|
|
|
|
- c := cos(angle_radians);
|
|
|
|
- s := sin(angle_radians);
|
|
|
|
-
|
|
|
|
- a := norm(v);
|
|
|
|
- t := a * (1-c);
|
|
|
|
-
|
|
|
|
- rot := identity(Mat4);
|
|
|
|
-
|
|
|
|
- rot[0][0] = c + t[0]*a[0];
|
|
|
|
- rot[0][1] = 0 + t[0]*a[1] + s*a[2];
|
|
|
|
- rot[0][2] = 0 + t[0]*a[2] - s*a[1];
|
|
|
|
- rot[0][3] = 0;
|
|
|
|
-
|
|
|
|
- rot[1][0] = 0 + t[1]*a[0] - s*a[2];
|
|
|
|
- rot[1][1] = c + t[1]*a[1];
|
|
|
|
- rot[1][2] = 0 + t[1]*a[2] + s*a[0];
|
|
|
|
- rot[1][3] = 0;
|
|
|
|
-
|
|
|
|
- rot[2][0] = 0 + t[2]*a[0] + s*a[1];
|
|
|
|
- rot[2][1] = 0 + t[2]*a[1] - s*a[0];
|
|
|
|
- rot[2][2] = c + t[2]*a[2];
|
|
|
|
- rot[2][3] = 0;
|
|
|
|
-
|
|
|
|
- return rot;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 {
|
|
|
|
- mm := m;
|
|
|
|
- mm[0][0] *= v[0];
|
|
|
|
- mm[1][1] *= v[1];
|
|
|
|
- mm[2][2] *= v[2];
|
|
|
|
- return mm;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 {
|
|
|
|
- mm := m;
|
|
|
|
- mm[0][0] *= s;
|
|
|
|
- mm[1][1] *= s;
|
|
|
|
- mm[2][2] *= s;
|
|
|
|
- return mm;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-scale :: proc{scale_vec3, scale_f32};
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
|
|
|
|
- f := norm(centre - eye);
|
|
|
|
- s := norm(cross(f, up));
|
|
|
|
- u := cross(s, f);
|
|
|
|
-
|
|
|
|
- return Mat4{
|
|
|
|
- {+s.x, +u.x, -f.x, 0},
|
|
|
|
- {+s.y, +u.y, -f.y, 0},
|
|
|
|
- {+s.z, +u.z, -f.z, 0},
|
|
|
|
- {-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
|
|
|
|
- };
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
|
|
|
|
- m: Mat4;
|
|
|
|
- tan_half_fovy := tan(0.5 * fovy);
|
|
|
|
-
|
|
|
|
- m[0][0] = 1.0 / (aspect*tan_half_fovy);
|
|
|
|
- m[1][1] = 1.0 / (tan_half_fovy);
|
|
|
|
- m[2][2] = -(far + near) / (far - near);
|
|
|
|
- m[2][3] = -1.0;
|
|
|
|
- m[3][2] = -2.0*far*near / (far - near);
|
|
|
|
- return m;
|
|
|
|
|
|
+ u := transmute(u64)x;
|
|
|
|
+ exp := int(u>>52) & (1<<11 - 1);
|
|
|
|
+ if exp == 0 {
|
|
|
|
+ return .Subnormal;
|
|
|
|
+ }
|
|
|
|
+ return .Normal;
|
|
}
|
|
}
|
|
|
|
+classify :: proc{classify_f32, classify_f64};
|
|
|
|
|
|
|
|
+is_nan_f32 :: proc(x: f32) -> bool { return classify(x) == .NaN; }
|
|
|
|
+is_nan_f64 :: proc(x: f64) -> bool { return classify(x) == .NaN; }
|
|
|
|
+is_nan :: proc{is_nan_f32, is_nan_f64};
|
|
|
|
|
|
-ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
|
|
|
|
- m := identity(Mat4);
|
|
|
|
- m[0][0] = +2.0 / (right - left);
|
|
|
|
- m[1][1] = +2.0 / (top - bottom);
|
|
|
|
- m[2][2] = -2.0 / (far - near);
|
|
|
|
- m[3][0] = -(right + left) / (right - left);
|
|
|
|
- m[3][1] = -(top + bottom) / (top - bottom);
|
|
|
|
- m[3][2] = -(far + near) / (far - near);
|
|
|
|
- return m;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
|
|
+is_inf_f32 :: proc(x: f32) -> bool { return classify(abs(x)) == .Inf; }
|
|
|
|
+is_inf_f64 :: proc(x: f64) -> bool { return classify(abs(x)) == .Inf; }
|
|
|
|
+is_inf :: proc{is_inf_f32, is_inf_f64};
|
|
|
|
|
|
-// Quaternion operations
|
|
|
|
|
|
|
|
-conj :: proc(q: Quat) -> Quat {
|
|
|
|
- return Quat{-q.x, -q.y, -q.z, q.w};
|
|
|
|
-}
|
|
|
|
|
|
|
|
-quat_mul :: proc(q0, q1: Quat) -> Quat {
|
|
|
|
- d: Quat;
|
|
|
|
- d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y;
|
|
|
|
- d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x;
|
|
|
|
- d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w;
|
|
|
|
- d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z;
|
|
|
|
- return d;
|
|
|
|
|
|
+is_power_of_two :: proc(x: int) -> bool {
|
|
|
|
+ return x > 0 && (x & (x-1)) == 0;
|
|
}
|
|
}
|
|
|
|
|
|
-quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; }
|
|
|
|
-quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; }
|
|
|
|
-
|
|
|
|
-quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); }
|
|
|
|
-quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); }
|
|
|
|
-quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; }
|
|
|
|
-
|
|
|
|
-quat_norm :: proc(q: Quat) -> Quat {
|
|
|
|
- m := sqrt(dot(q, q));
|
|
|
|
- return div(q, m);
|
|
|
|
|
|
+next_power_of_two :: proc(x: int) -> int {
|
|
|
|
+ k := x -1;
|
|
|
|
+ when size_of(int) == 8 {
|
|
|
|
+ k = k | (k >> 32);
|
|
|
|
+ }
|
|
|
|
+ k = k | (k >> 16);
|
|
|
|
+ k = k | (k >> 8);
|
|
|
|
+ k = k | (k >> 4);
|
|
|
|
+ k = k | (k >> 2);
|
|
|
|
+ k = k | (k >> 1);
|
|
|
|
+ k += 1 + int(x <= 0);
|
|
|
|
+ return k;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+sum :: proc(x: $T/[]$E) -> (res: E)
|
|
|
|
+ where intrinsics.BuiltinProc_type_is_numeric(E) {
|
|
|
|
+ for i in x {
|
|
|
|
+ res += i;
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
}
|
|
}
|
|
|
|
|
|
-axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat {
|
|
|
|
- v := norm(axis) * sin(0.5*angle_radians);
|
|
|
|
- w := cos(0.5*angle_radians);
|
|
|
|
- return Quat{v.x, v.y, v.z, w};
|
|
|
|
|
|
+prod :: proc(x: $T/[]$E) -> (res: E)
|
|
|
|
+ where intrinsics.BuiltinProc_type_is_numeric(E) {
|
|
|
|
+ for i in x {
|
|
|
|
+ res *= i;
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
}
|
|
}
|
|
|
|
|
|
-euler_angles :: proc(pitch, yaw, roll: f32) -> Quat {
|
|
|
|
- p := axis_angle(Vec3{1, 0, 0}, pitch);
|
|
|
|
- y := axis_angle(Vec3{0, 1, 0}, yaw);
|
|
|
|
- r := axis_angle(Vec3{0, 0, 1}, roll);
|
|
|
|
- return mul(mul(y, p), r);
|
|
|
|
|
|
+cumsum_inplace :: proc(x: $T/[]$E) -> T
|
|
|
|
+ where intrinsics.BuiltinProc_type_is_numeric(E) {
|
|
|
|
+ for i in 1..<len(x) {
|
|
|
|
+ x[i] = x[i-1] + x[i];
|
|
|
|
+ }
|
|
}
|
|
}
|
|
|
|
|
|
-quat_to_mat4 :: proc(q: Quat) -> Mat4 {
|
|
|
|
- a := quat_norm(q);
|
|
|
|
- xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z;
|
|
|
|
- xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z;
|
|
|
|
- wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z;
|
|
|
|
-
|
|
|
|
- m := identity(Mat4);
|
|
|
|
-
|
|
|
|
- m[0][0] = 1 - 2*(yy + zz);
|
|
|
|
- m[0][1] = 2*(xy + wz);
|
|
|
|
- m[0][2] = 2*(xz - wy);
|
|
|
|
|
|
|
|
- m[1][0] = 2*(xy - wz);
|
|
|
|
- m[1][1] = 1 - 2*(xx + zz);
|
|
|
|
- m[1][2] = 2*(yz + wx);
|
|
|
|
-
|
|
|
|
- m[2][0] = 2*(xz + wy);
|
|
|
|
- m[2][1] = 2*(yz - wx);
|
|
|
|
- m[2][2] = 1 - 2*(xx + yy);
|
|
|
|
- return m;
|
|
|
|
|
|
+cumsum :: proc(dst, src: $T/[]$E) -> T
|
|
|
|
+ where intrinsics.BuiltinProc_type_is_numeric(E) {
|
|
|
|
+ N := min(len(dst), len(src));
|
|
|
|
+ if N > 0 {
|
|
|
|
+ dst[0] = src[0];
|
|
|
|
+ for i in 1..<N {
|
|
|
|
+ dst[i] = dst[i-1] + src[i];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return dst[:N];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
-
|
|
|
|
F32_DIG :: 6;
|
|
F32_DIG :: 6;
|
|
F32_EPSILON :: 1.192092896e-07;
|
|
F32_EPSILON :: 1.192092896e-07;
|
|
F32_GUARD :: 0;
|
|
F32_GUARD :: 0;
|