|
@@ -29,11 +29,6 @@ foreign {
|
|
|
@(link_name="llvm.ctpop.i32") count_ones32 :: proc(i: u32) -> u32 ---
|
|
|
@(link_name="llvm.ctpop.i64") count_ones64 :: proc(i: u64) -> u64 ---
|
|
|
|
|
|
- @(link_name="llvm.ctlz.i8") leading_zeros8 :: proc(i: u8, is_zero_undef := false) -> u8 ---
|
|
|
- @(link_name="llvm.ctlz.i16") leading_zeros16 :: proc(i: u16, is_zero_undef := false) -> u16 ---
|
|
|
- @(link_name="llvm.ctlz.i32") leading_zeros32 :: proc(i: u32, is_zero_undef := false) -> u32 ---
|
|
|
- @(link_name="llvm.ctlz.i64") leading_zeros64 :: proc(i: u64, is_zero_undef := false) -> u64 ---
|
|
|
-
|
|
|
@(link_name="llvm.cttz.i8") trailing_zeros8 :: proc(i: u8, is_zero_undef := false) -> u8 ---
|
|
|
@(link_name="llvm.cttz.i16") trailing_zeros16 :: proc(i: u16, is_zero_undef := false) -> u16 ---
|
|
|
@(link_name="llvm.cttz.i32") trailing_zeros32 :: proc(i: u32, is_zero_undef := false) -> u32 ---
|
|
@@ -46,6 +41,29 @@ foreign {
|
|
|
}
|
|
|
|
|
|
|
|
|
+trailing_zeros_uint :: proc(i: uint) -> uint {
|
|
|
+ when size_of(uint) == size_of(u64) {
|
|
|
+ return uint(trailing_zeros64(u64(i)));
|
|
|
+ } else {
|
|
|
+ return uint(trailing_zeros32(u32(i)));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+leading_zeros_u8 :: proc(i: u8) -> int {
|
|
|
+ return 8*size_of(i) - len_u8(i);
|
|
|
+}
|
|
|
+leading_zeros_u16 :: proc(i: u16) -> int {
|
|
|
+ return 8*size_of(i) - len_u16(i);
|
|
|
+}
|
|
|
+leading_zeros_u32 :: proc(i: u32) -> int {
|
|
|
+ return 8*size_of(i) - len_u32(i);
|
|
|
+}
|
|
|
+leading_zeros_u64 :: proc(i: u64) -> int {
|
|
|
+ return 8*size_of(i) - len_u64(i);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
byte_swap_u16 :: proc(x: u16) -> u16 {
|
|
|
return u16(runtime.bswap_16(u16(x)));
|
|
|
}
|
|
@@ -257,6 +275,210 @@ overflowing_mul :: proc{
|
|
|
overflowing_mul_uint, overflowing_mul_int,
|
|
|
};
|
|
|
|
|
|
+
|
|
|
+len_u8 :: proc(x: u8) -> int {
|
|
|
+ return int(len_u8_table[x]);
|
|
|
+}
|
|
|
+len_u16 :: proc(x: u16) -> (n: int) {
|
|
|
+ x := x;
|
|
|
+ if x >= 1<<8 {
|
|
|
+ x >>= 8;
|
|
|
+ n = 8;
|
|
|
+ }
|
|
|
+ return n + int(len_u8_table[x]);
|
|
|
+}
|
|
|
+len_u32 :: proc(x: u32) -> (n: int) {
|
|
|
+ x := x;
|
|
|
+ if x >= 1<<16 {
|
|
|
+ x >>= 16;
|
|
|
+ n = 16;
|
|
|
+ }
|
|
|
+ if x >= 1<<8 {
|
|
|
+ x >>= 8;
|
|
|
+ n += 8;
|
|
|
+ }
|
|
|
+ return n + int(len_u8_table[x]);
|
|
|
+}
|
|
|
+len_u64 :: proc(x: u64) -> (n: int) {
|
|
|
+ x := x;
|
|
|
+ if x >= 1<<32 {
|
|
|
+ x >>= 32;
|
|
|
+ n = 32;
|
|
|
+ }
|
|
|
+ if x >= 1<<16 {
|
|
|
+ x >>= 16;
|
|
|
+ n += 16;
|
|
|
+ }
|
|
|
+ if x >= 1<<8 {
|
|
|
+ x >>= 8;
|
|
|
+ n += 8;
|
|
|
+ }
|
|
|
+ return n + int(len_u8_table[x]);
|
|
|
+}
|
|
|
+len_uint :: proc(x: uint) -> (n: int) {
|
|
|
+ when size_of(uint) == size_of(u64) {
|
|
|
+ return len_u64(u64(x));
|
|
|
+ } else {
|
|
|
+ return len_u32(u32(x));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// returns the minimum number of bits required to represent x
|
|
|
+len :: proc{len_u8, len_u16, len_u32, len_u64, len_uint};
|
|
|
+
|
|
|
+
|
|
|
+add_u32 :: proc(x, y, carry: u32) -> (sum, carry_out: u32) {
|
|
|
+ yc := y + carry;
|
|
|
+ sum = x + yc;
|
|
|
+ if sum < x || yc < y {
|
|
|
+ carry_out = 1;
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+add_u64 :: proc(x, y, carry: u64) -> (sum, carry_out: u64) {
|
|
|
+ yc := y + carry;
|
|
|
+ sum = x + yc;
|
|
|
+ if sum < x || yc < y {
|
|
|
+ carry_out = 1;
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+add_uint :: proc(x, y, carry: uint) -> (sum, carry_out: uint) {
|
|
|
+ yc := y + carry;
|
|
|
+ sum = x + yc;
|
|
|
+ if sum < x || yc < y {
|
|
|
+ carry_out = 1;
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+add :: proc{add_u32, add_u64, add_uint};
|
|
|
+
|
|
|
+
|
|
|
+sub_u32 :: proc(x, y, borrow: u32) -> (diff, borrow_out: u32) {
|
|
|
+ yb := y + borrow;
|
|
|
+ diff = x - yb;
|
|
|
+ if diff > x || yb < y {
|
|
|
+ borrow_out = 1;
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+sub_u64 :: proc(x, y, borrow: u64) -> (diff, borrow_out: u64) {
|
|
|
+ yb := y + borrow;
|
|
|
+ diff = x - yb;
|
|
|
+ if diff > x || yb < y {
|
|
|
+ borrow_out = 1;
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+sub_uint :: proc(x, y, borrow: uint) -> (diff, borrow_out: uint) {
|
|
|
+ yb := y + borrow;
|
|
|
+ diff = x - yb;
|
|
|
+ if diff > x || yb < y {
|
|
|
+ borrow_out = 1;
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+sub :: proc{sub_u32, sub_u64, sub_uint};
|
|
|
+
|
|
|
+
|
|
|
+mul_u32 :: proc(x, y: u32) -> (hi, lo: u32) {
|
|
|
+ z := u64(x) * u64(y);
|
|
|
+ hi, lo = u32(z>>32), u32(z);
|
|
|
+ return;
|
|
|
+}
|
|
|
+mul_u64 :: proc(x, y: u64) -> (hi, lo: u64) {
|
|
|
+ mask :: 1<<32 - 1;
|
|
|
+
|
|
|
+ x0, x1 := x & mask, x >> 32;
|
|
|
+ y0, y1 := y & mask, y >> 32;
|
|
|
+
|
|
|
+ w0 := x0 * y0;
|
|
|
+ t := x1*y0 + w0>>32;
|
|
|
+
|
|
|
+ w1, w2 := t & mask, t >> 32;
|
|
|
+ w1 += x0 * y1;
|
|
|
+ hi = x1*y1 + w2 + w1>>32;
|
|
|
+ lo = x * y;
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+mul_uint :: proc(x, y: uint) -> (hi, lo: uint) {
|
|
|
+ when size_of(uint) == size_of(u32) {
|
|
|
+ a, b := mul_u32(u32(x), u32(y));
|
|
|
+ } else {
|
|
|
+ #assert(size_of(uint) == size_of(u64));
|
|
|
+ a, b := mul_u64(u64(x), u64(y));
|
|
|
+ }
|
|
|
+ return uint(a), uint(b);
|
|
|
+}
|
|
|
+
|
|
|
+mul :: proc{mul_u32, mul_u64, mul_uint};
|
|
|
+
|
|
|
+
|
|
|
+div_u32 :: proc(hi, lo, y: u32) -> (quo, rem: u32) {
|
|
|
+ assert(y != 0 && y <= hi);
|
|
|
+ z := u64(hi)<<32 | u64(lo);
|
|
|
+ quo, rem = u32(z/u64(y)), u32(z%u64(y));
|
|
|
+ return;
|
|
|
+}
|
|
|
+div_u64 :: proc(hi, lo, y: u64) -> (quo, rem: u64) {
|
|
|
+ y := y;
|
|
|
+ two32 :: 1 << 32;
|
|
|
+ mask32 :: two32 - 1;
|
|
|
+ if y == 0 {
|
|
|
+ panic("divide error");
|
|
|
+ }
|
|
|
+ if y <= hi {
|
|
|
+ panic("overflow error");
|
|
|
+ }
|
|
|
+
|
|
|
+ s := uint(leading_zeros_u64(y));
|
|
|
+ y <<= s;
|
|
|
+
|
|
|
+ yn1 := y >> 32;
|
|
|
+ yn0 := y & mask32;
|
|
|
+ un32 := hi<<s | lo>>(64-s);
|
|
|
+ un10 := lo << s;
|
|
|
+ un1 := un10 >> 32;
|
|
|
+ un0 := un10 & mask32;
|
|
|
+ q1 := un32 / yn1;
|
|
|
+ rhat := un32 - q1*yn1;
|
|
|
+
|
|
|
+ for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
|
|
|
+ q1 -= 1;
|
|
|
+ rhat += yn1;
|
|
|
+ if rhat >= two32 {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ un21 := un32*two32 + un1 - q1*y;
|
|
|
+ q0 := un21 / yn1;
|
|
|
+ rhat = un21 - q0*yn1;
|
|
|
+
|
|
|
+ for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
|
|
|
+ q0 -= 1;
|
|
|
+ rhat += yn1;
|
|
|
+ if rhat >= two32 {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s;
|
|
|
+}
|
|
|
+div_uint :: proc(hi, lo, y: uint) -> (quo, rem: uint) {
|
|
|
+ when size_of(uint) == size_of(u32) {
|
|
|
+ a, b := div_u32(u32(hi), u32(lo), u32(y));
|
|
|
+ } else {
|
|
|
+ #assert(size_of(uint) == size_of(u64));
|
|
|
+ a, b := div_u64(u64(hi), u64(lo), u64(y));
|
|
|
+ }
|
|
|
+ return uint(a), uint(b);
|
|
|
+}
|
|
|
+div :: proc{div_u32, div_u64, div_uint};
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
is_power_of_two_u8 :: proc(i: u8) -> bool { return i > 0 && (i & (i-1)) == 0; }
|
|
|
is_power_of_two_i8 :: proc(i: i8) -> bool { return i > 0 && (i & (i-1)) == 0; }
|
|
|
is_power_of_two_u16 :: proc(i: u16) -> bool { return i > 0 && (i & (i-1)) == 0; }
|
|
@@ -275,3 +497,19 @@ is_power_of_two :: proc{
|
|
|
is_power_of_two_u64, is_power_of_two_i64,
|
|
|
is_power_of_two_uint, is_power_of_two_int,
|
|
|
};
|
|
|
+
|
|
|
+
|
|
|
+@private
|
|
|
+len_u8_table := [256]u8{
|
|
|
+ 0 = 0,
|
|
|
+ 1 = 1,
|
|
|
+ 2..<4 = 2,
|
|
|
+ 4..<8 = 3,
|
|
|
+ 8..<16 = 4,
|
|
|
+ 16..<32 = 5,
|
|
|
+ 32..<64 = 6,
|
|
|
+ 64..<128 = 7,
|
|
|
+ 128..<256 = 8,
|
|
|
+};
|
|
|
+
|
|
|
+
|