Browse Source

big: Use new comparison helpers.

Jeroen van Rijn 4 years ago
parent
commit
671b413b15
5 changed files with 41 additions and 46 deletions
  1. 3 2
      core/math/big/build.bat
  2. 14 15
      core/math/big/internal.odin
  3. 1 1
      core/math/big/prime.odin
  4. 23 27
      core/math/big/private.odin
  5. 0 1
      core/math/big/test.py

+ 3 - 2
core/math/big/build.bat

@@ -1,9 +1,10 @@
 @echo off
-odin run . -vet
+:odin run . -vet
 
 set TEST_ARGS=-fast-tests
+:set TEST_ARGS=
 :odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
 :odin build . -build-mode:shared -show-timings -o:size -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
 :odin build . -build-mode:shared -show-timings -o:size -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
-:odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
+odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
 :odin build . -build-mode:shared -show-timings -o:speed -define:MATH_BIG_EXE=false && python test.py -fast-tests %TEST_ARGS%

+ 14 - 15
core/math/big/internal.odin

@@ -136,7 +136,7 @@ internal_int_add_signed :: proc(dest, a, b: ^Int, allocator := context.allocator
 		Subtract the one with the greater magnitude from the other.
 		The result gets the sign of the one with the greater magnitude.
 	*/
-	if #force_inline internal_cmp_mag(a, b) == -1 {
+	if #force_inline internal_lt_abs(a, b) {
 		x, y = y, x;
 	}
 
@@ -358,7 +358,7 @@ internal_int_sub_signed :: proc(dest, number, decrease: ^Int, allocator := conte
 		Subtract a positive from a positive, OR negative from a negative.
 		First, take the difference between their magnitudes, then...
 	*/
-	if #force_inline internal_cmp_mag(number, decrease) == -1 {
+	if #force_inline internal_lt_abs(number, decrease) {
 		/*
 			The second has a larger magnitude.
 			The result has the *opposite* sign from the first number.
@@ -718,7 +718,7 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
 	/*
 		If numerator < denominator then quotient = 0, remainder = numerator.
 	*/
-	if #force_inline internal_cmp_mag(numerator, denominator) == -1 {
+	if #force_inline internal_lt_abs(numerator, denominator) {
 		if remainder != nil {
 			internal_copy(remainder, numerator) or_return;
 		}
@@ -731,7 +731,6 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
 	if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used / 3) * 2) {
 		assert(denominator.used >= 160 && numerator.used >= 240, "MUL_KARATSUBA_CUTOFF global not properly set.");
 		err = _private_int_div_recursive(quotient, remainder, numerator, denominator);
-		// err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
 	} else {
 		when true {
 			err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
@@ -1243,12 +1242,12 @@ internal_less_than_or_equal :: proc {
 	internal_int_less_than_or_equal,
 	internal_int_less_than_or_equal_digit,
 }
-internal_lteq :: internal_less_than_or_equal;
+internal_lte :: internal_less_than_or_equal;
 
 internal_less_than_or_equal_abs :: proc {
 	internal_int_less_than_or_equal_abs,
 }
-internal_lteq_abs :: internal_less_than_or_equal_abs;
+internal_lte_abs :: internal_less_than_or_equal_abs;
 
 
 /*
@@ -1311,12 +1310,12 @@ internal_greater_than_or_equal :: proc {
 	internal_int_greater_than_or_equal,
 	internal_int_greater_than_or_equal_digit,
 }
-internal_gteq :: internal_greater_than_or_equal;
+internal_gte :: internal_greater_than_or_equal;
 
 internal_greater_than_or_equal_abs :: proc {
 	internal_int_greater_than_or_equal_abs,
 }
-internal_gteq_abs :: internal_greater_than_or_equal_abs;
+internal_gte_abs :: internal_greater_than_or_equal_abs;
 
 
 /*
@@ -1410,7 +1409,7 @@ internal_int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (squa
 	sqrt(t, a) or_return;
 	sqr(t, t)  or_return;
 
-	square = internal_cmp_mag(t, a) == 0;
+	square = internal_eq_abs(t, a);
 
 	return;
 }
@@ -1642,7 +1641,7 @@ internal_int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (e
 		internal_add(t2, t1, x)  or_return;
 		internal_shr(y, t2, 1)   or_return;
 
-		if c := internal_cmp(y, x); c == 0 || c == 1 {
+		if internal_gte(y, x) {
 			internal_swap(dest, x);
 			return nil;
 		}
@@ -1757,8 +1756,8 @@ internal_int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.alloca
 			 Number of rounds is at most log_2(root). If it is more it
 			 got stuck, so break out of the loop and do the rest manually.
 		*/
-		if ilog2 -= 1;    ilog2 == 0 { break; }
-		if internal_cmp(t1, t2) == 0 { break; }
+		if ilog2 -= 1; ilog2 == 0 { break; }
+		if internal_eq(t1, t2)    { break; }
 
 		iterations += 1;
 		if iterations == MAX_ITERATIONS_ROOT_N {
@@ -1796,7 +1795,7 @@ internal_int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.alloca
 	for {
 		internal_pow(t2, t1, n) or_return;
 	
-		if internal_cmp(t2, a) != 1 { break; }
+		if internal_lt(t2, a) { break; }
 		
 		internal_sub(t1, t1, DIGIT(1)) or_return;
 
@@ -2001,12 +2000,12 @@ internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.alloc
 	/*
 		For all n in N and n > 0, n = 0 mod 1.
 	*/
-	if internal_is_positive(a) && internal_cmp(b, 1) == 0 { return internal_zero(dest);	}
+	if internal_is_positive(a) && internal_eq(b, 1) { return internal_zero(dest);	}
 
 	/*
 		`b` cannot be negative and has to be > 1
 	*/
-	if internal_is_negative(b) && internal_cmp(b, 1) != 1 { return .Invalid_Argument; }
+	if internal_is_negative(b) || internal_gt(b, 1) { return .Invalid_Argument; }
 
 	/*
 		If the modulus is odd we can use a faster routine instead.

+ 1 - 1
core/math/big/prime.odin

@@ -163,7 +163,7 @@ internal_int_kronecker :: proc(a, p: ^Int, allocator := context.allocator) -> (k
 
 	for {
 		if internal_is_zero(a1) {
-			if internal_cmp(p1, 1) == 0 {
+			if internal_eq(p1, 1) {
 				return k, nil;
 			} else {
 				return 0, nil;

+ 23 - 27
core/math/big/private.odin

@@ -1071,11 +1071,11 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
 
 	internal_shl_digit(y, n - t) or_return;
 
-	c := internal_cmp(x, y);
-	for c != -1 {
+	gte := internal_gte(x, y);
+	for gte {
 		q.digit[n - t] += 1;
 		internal_sub(x, x, y) or_return;
-		c = internal_cmp(x, y);
+		gte = internal_gte(x, y);
 	}
 
 	/*
@@ -1134,7 +1134,7 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
 			t2.digit[2] = x.digit[i];
 			t2.used = 3;
 
-			if t1_t2 := internal_cmp_mag(t1, t2); t1_t2 != 1 {
+			if internal_lte(t1, t2) {
 				break;
 			}
 			iter += 1; if iter > 100 {
@@ -1227,15 +1227,13 @@ _private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := con
 	/*
 		While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
 	*/
-	if internal_cmp(A1, 0) == -1 {
+	if internal_lt(A1, 0) {
 		internal_shl(t, b, k * _DIGIT_BITS) or_return;
 
 		for {
 			internal_decr(Q1) or_return;
 			internal_add(A1, A1, t) or_return;
-			if internal_cmp(A1, 0) != -1 {
-				break;
-			}
+			if internal_gte(A1, 0) { break; }
 		}
 	}
 
@@ -1256,7 +1254,7 @@ _private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := con
 	/*
 		While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
 	*/
-	for internal_cmp(A2, 0) == -1 {
+	for internal_is_negative(A2) { // internal_lt(A2, 0) {
 		internal_decr(Q0) or_return;
 		internal_add(A2, A2, b) or_return;
 	}
@@ -1391,7 +1389,7 @@ _private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int
 		shl(tq, tq, n)       or_return;
 
 		for n >= 0 {
-			if c, _ = cmp_mag(ta, tb); c == 0 || c == 1 {
+			if internal_gte(ta, tb) {
 				// ta -= tb
 				sub(ta, ta, tb) or_return;
 				//  q += tq
@@ -1596,7 +1594,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
 		/*
 			Make sure `v` is the largest.
 		*/
-		if internal_cmp_mag(u, v) == 1 {
+		if internal_gt(u, v) {
 			/*
 				Swap `u` and `v` to make sure `v` is >= `u`.
 			*/
@@ -1634,7 +1632,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
 		Computes least common multiple as `|a*b|/gcd(a,b)`
 		Divide the smallest by the GCD.
 	*/
-	if internal_cmp_mag(a, b) == -1 {
+	if internal_lt_abs(a, b) {
 		/*
 			Store quotient in `t2` such that `t2 * b` is the LCM.
 		*/
@@ -1694,9 +1692,7 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
 		/*
 			Iterate until `a` is bracketed between low + high.
 		*/
-		if #force_inline internal_cmp(bracket_high, a) != -1 {
-			break;
-		}
+		if #force_inline internal_gte(bracket_high, a) { break; }
 
 		low = high;
 		#force_inline internal_copy(bracket_low, bracket_high) or_return;
@@ -1844,7 +1840,7 @@ _private_montgomery_reduce_comba :: proc(x, n: ^Int, rho: DIGIT, allocator := co
 	/*
 		if A >= m then A = A - m
 	*/
-	if internal_cmp_mag(x, n) != -1 {
+	if internal_gte_abs(x, n) {
 		return internal_sub(x, x, n);
 	}
 	return nil;
@@ -1932,7 +1928,7 @@ _private_int_montgomery_reduce :: proc(x, n: ^Int, rho: DIGIT, allocator := cont
 	/*
 		if x >= n then x = x - n
 	*/
-	if internal_cmp_mag(x, n) != -1 {
+	if internal_gte_abs(x, n) {
 		return internal_sub(x, x, n);
 	}
 
@@ -1969,7 +1965,7 @@ _private_int_montgomery_calc_normalization :: proc(a, b: ^Int, allocator := cont
 	*/
 	for x := bits - 1; x < _DIGIT_BITS; x += 1 {
 		internal_int_shl1(a, a)                                      or_return;
-		if internal_cmp_mag(a, b) != -1 {
+		if internal_gte_abs(a, b) {
 			internal_sub(a, a, b)                                    or_return;
 		}
 	}
@@ -2064,7 +2060,7 @@ _private_int_reduce :: proc(x, m, mu: ^Int, allocator := context.allocator) -> (
 	/*
 		If x < 0, add b**(k+1) to it.
 	*/
-	if internal_cmp(x, 0) == -1 {
+	if internal_is_negative(x) {
 		internal_set(q, 1)                                           or_return;
 		internal_shl_digit(q, um + 1)                                or_return;
 		internal_add(x, x, q)                                        or_return;
@@ -2073,7 +2069,7 @@ _private_int_reduce :: proc(x, m, mu: ^Int, allocator := context.allocator) -> (
 	/*
 		Back off if it's too big.
 	*/
-	for internal_cmp(x, m) != -1 {
+	for internal_gte(x, m) {
 		internal_sub(x, x, m)                                        or_return;
 	}
 
@@ -2110,7 +2106,7 @@ _private_int_reduce_2k :: proc(a, n: ^Int, d: DIGIT, allocator := context.alloca
 			a = a + q
 		*/
 		internal_add(a, a, q)                                        or_return;
-		if internal_cmp_mag(a, n) == -1                              { break; }
+		if internal_lt_abs(a, n)                                     { break; }
 		internal_sub(a, a, n)                                        or_return;
 	}
 
@@ -2146,7 +2142,7 @@ _private_int_reduce_2k_l :: proc(a, n, d: ^Int, allocator := context.allocator)
 			a = a + q
 		*/
 		internal_add(a, a, q)                                        or_return;
-		if internal_cmp_mag(a, n) == -1                              { break; }
+		if internal_lt_abs(a, n)                                     { break; }
 		internal_sub(a, a, n)                                        or_return;
 	}
 
@@ -2359,7 +2355,7 @@ _private_int_dr_reduce :: proc(x, n: ^Int, k: DIGIT, allocator := context.alloca
 			If x >= n then subtract and reduce again.
 			Each successive "recursion" makes the input smaller and smaller.
 		*/
-		if internal_cmp_mag(x, n) == -1 { break; }
+		if internal_lt_abs(x, n) { break; }
 
 		internal_sub(x, x, n)                                        or_return;
 	}
@@ -2985,21 +2981,21 @@ _private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator
 	/*
 		If `v` != `1` then there is no inverse.
 	*/
-	if internal_cmp(v, 1) != 0 {
+	if !internal_eq(v, 1) {
 		return .Invalid_Argument;
 	}
 
 	/*
 		If its too low.
 	*/
-	if internal_cmp(C, 0) == -1 {
+	if internal_is_negative(C) {
 		internal_add(C, C, b) or_return;
 	}
 
 	/*
 		Too big.
 	*/
-	if internal_cmp(C, 0) != -1 {
+	if internal_gte(C, 0) {
 		internal_sub(C, C, b) or_return;
 	}
 
@@ -3152,7 +3148,7 @@ _private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.alloc
 	/*
 		Too big.
 	*/
-	for internal_cmp_mag(D, b) != -1 {
+	for internal_gte_abs(D, b) {
 		internal_sub(D, D, b) or_return;
 	}
 

+ 0 - 1
core/math/big/test.py

@@ -413,7 +413,6 @@ def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
 	return test("test_shr_signed", res, [a, bits], expected_error, expected_result)
 
 def test_factorial(number = 0, expected_error = Error.Okay):
-	print("Factorial:", number)
 	args  = [number]
 	try:
 		res = int_factorial(*args)