|
@@ -1,7 +1,6 @@
|
|
|
package rand
|
|
|
|
|
|
import "core:intrinsics"
|
|
|
-import "core:math"
|
|
|
|
|
|
Rand :: struct {
|
|
|
state: u64,
|
|
@@ -127,256 +126,6 @@ float32 :: proc(r: ^Rand = nil) -> f32 { return f32(float64(r)) }
|
|
|
|
|
|
float64_range :: proc(lo, hi: f64, r: ^Rand = nil) -> f64 { return (hi-lo)*float64(r) + lo }
|
|
|
float32_range :: proc(lo, hi: f32, r: ^Rand = nil) -> f32 { return (hi-lo)*float32(r) + lo }
|
|
|
-float64_uniform :: float64_range
|
|
|
-float32_uniform :: float32_range
|
|
|
-
|
|
|
-
|
|
|
-// Triangular Distribution
|
|
|
-// See: http://wikipedia.org/wiki/Triangular_distribution
|
|
|
-float64_trianglular :: proc(lo, hi: f64, mode: Maybe(f64), r: ^Rand = nil) -> f64 {
|
|
|
- if hi-lo == 0 {
|
|
|
- return lo
|
|
|
- }
|
|
|
- lo, hi := lo, hi
|
|
|
- u := float64(r)
|
|
|
- c := f64(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1)
|
|
|
- if u > c {
|
|
|
- u = 1-u
|
|
|
- c = 1-c
|
|
|
- lo, hi = hi, lo
|
|
|
- }
|
|
|
- return lo + (hi - lo) * math.sqrt(u * c)
|
|
|
-
|
|
|
-}
|
|
|
-// Triangular Distribution
|
|
|
-// See: http://wikipedia.org/wiki/Triangular_distribution
|
|
|
-float32_trianglular :: proc(lo, hi: f32, mode: Maybe(f32), r: ^Rand = nil) -> f32 {
|
|
|
-
|
|
|
- if hi-lo == 0 {
|
|
|
- return lo
|
|
|
- }
|
|
|
- lo, hi := lo, hi
|
|
|
- u := float32(r)
|
|
|
- c := f32(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1)
|
|
|
- if u > c {
|
|
|
- u = 1-u
|
|
|
- c = 1-c
|
|
|
- lo, hi = hi, lo
|
|
|
- }
|
|
|
- return lo + (hi - lo) * math.sqrt(u * c)
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Normal/Gaussian Distribution
|
|
|
-float64_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 {
|
|
|
- return norm_float64(r) * stddev + mean
|
|
|
-}
|
|
|
-// Normal/Gaussian Distribution
|
|
|
-float32_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_normal(f64(mean), f64(stddev), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Log Normal Distribution
|
|
|
-float64_log_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 {
|
|
|
- return math.ln(float64_normal(mean, stddev, r))
|
|
|
-}
|
|
|
-// Log Normal Distribution
|
|
|
-float32_log_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_log_normal(f64(mean), f64(stddev), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Exponential Distribution
|
|
|
-// `lambda` is 1.0/(desired mean). It should be non-zero.
|
|
|
-// Return values range from
|
|
|
-// 0 to positive infinity if lambda > 0
|
|
|
-// negative infinity to 0 if lambda <= 0
|
|
|
-float64_exponential :: proc(lambda: f64, r: ^Rand = nil) -> f64 {
|
|
|
- return - math.ln(1 - float64(r)) / lambda
|
|
|
-}
|
|
|
-// Exponential Distribution
|
|
|
-// `lambda` is 1.0/(desired mean). It should be non-zero.
|
|
|
-// Return values range from
|
|
|
-// 0 to positive infinity if lambda > 0
|
|
|
-// negative infinity to 0 if lambda <= 0
|
|
|
-float32_exponential :: proc(lambda: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_exponential(f64(lambda), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Gamma Distribution (NOT THE GAMMA FUNCTION)
|
|
|
-//
|
|
|
-// Required: alpha > 0 and beta > 0
|
|
|
-//
|
|
|
-// math.pow(x, alpha-1) * math.exp(-x / beta)
|
|
|
-// pdf(x) = --------------------------------------------
|
|
|
-// math.gamma(alpha) * math.pow(beta, alpha)
|
|
|
-//
|
|
|
-// mean is alpha*beta, variance is math.pow(alpha*beta, 2)
|
|
|
-float64_gamma :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
|
|
|
- if alpha <= 0 || beta <= 0 {
|
|
|
- panic(#procedure + ": alpha and beta must be > 0.0")
|
|
|
- }
|
|
|
-
|
|
|
- LOG4 :: 1.3862943611198906188344642429163531361510002687205105082413600189
|
|
|
- SG_MAGIC_CONST :: 2.5040773967762740733732583523868748412194809812852436493487
|
|
|
-
|
|
|
- switch {
|
|
|
- case alpha > 1:
|
|
|
- // R.C.H. Cheng, "The generation of Gamma variables with non-integral shape parameters", Applied Statistics, (1977), 26, No. 1, p71-74
|
|
|
-
|
|
|
- ainv := math.sqrt(2 * alpha - 1)
|
|
|
- bbb := alpha - LOG4
|
|
|
- ccc := alpha + ainv
|
|
|
- for {
|
|
|
- u1 := float64(r)
|
|
|
- if !(1e-7 < u1 && u1 < 0.9999999) {
|
|
|
- continue
|
|
|
- }
|
|
|
- u2 := 1 - float64(r)
|
|
|
- v := math.ln(u1 / (1 - u1)) / ainv
|
|
|
- x := alpha * math.exp(v)
|
|
|
- z := u1 * u1 * u2
|
|
|
- t := bbb + ccc*v - x
|
|
|
- if t + SG_MAGIC_CONST - 4.5 * z >= 0 || t >= math.ln(z) {
|
|
|
- return x * beta
|
|
|
- }
|
|
|
- }
|
|
|
- case alpha == 1:
|
|
|
- // float64_exponential(1/beta)
|
|
|
- return -math.ln(1 - float64(r)) * beta
|
|
|
- case:
|
|
|
- // ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
|
|
- x: f64
|
|
|
- for {
|
|
|
- u := float64(r)
|
|
|
- b := (math.e + alpha) / math.e
|
|
|
- p := b * u
|
|
|
- if p <= 1 {
|
|
|
- x = math.pow(p, 1/alpha)
|
|
|
- } else {
|
|
|
- x = -math.ln((b - p) / alpha)
|
|
|
- }
|
|
|
- u1 := float64(r)
|
|
|
- if p > 1 {
|
|
|
- if u1 <= math.pow(x, alpha-1) {
|
|
|
- break
|
|
|
- }
|
|
|
- } else if u1 <= math.exp(-x) {
|
|
|
- break
|
|
|
- }
|
|
|
- }
|
|
|
- return x * beta
|
|
|
- }
|
|
|
-}
|
|
|
-// Gamma Distribution (NOT THE GAMMA FUNCTION)
|
|
|
-//
|
|
|
-// Required: alpha > 0 and beta > 0
|
|
|
-//
|
|
|
-// math.pow(x, alpha-1) * math.exp(-x / beta)
|
|
|
-// pdf(x) = --------------------------------------------
|
|
|
-// math.gamma(alpha) * math.pow(beta, alpha)
|
|
|
-//
|
|
|
-// mean is alpha*beta, variance is math.pow(alpha*beta, 2)
|
|
|
-float32_gamma :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_gamma(f64(alpha), f64(beta), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Beta Distribution
|
|
|
-//
|
|
|
-// Required: alpha > 0 and beta > 0
|
|
|
-//
|
|
|
-// Return values range between 0 and 1
|
|
|
-float64_beta :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
|
|
|
- if alpha <= 0 || beta <= 0 {
|
|
|
- panic(#procedure + ": alpha and beta must be > 0.0")
|
|
|
- }
|
|
|
- // Knuth Vol 2 Ed 3 pg 134 "the beta distribution"
|
|
|
- y := float64_gamma(alpha, 1.0, r)
|
|
|
- if y != 0 {
|
|
|
- return y / (y + float64_gamma(beta, 1.0, r))
|
|
|
- }
|
|
|
- return 0
|
|
|
-}
|
|
|
-// Beta Distribution
|
|
|
-//
|
|
|
-// Required: alpha > 0 and beta > 0
|
|
|
-//
|
|
|
-// Return values range between 0 and 1
|
|
|
-float32_beta :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_beta(f64(alpha), f64(beta), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Pareto distribution, `alpha` is the shape parameter.
|
|
|
-// https://wikipedia.org/wiki/Pareto_distribution
|
|
|
-float64_pareto :: proc(alpha: f64, r: ^Rand = nil) -> f64 {
|
|
|
- return math.pow(1 - float64(r), -1.0 / alpha)
|
|
|
-}
|
|
|
-// Pareto distribution, `alpha` is the shape parameter.
|
|
|
-// https://wikipedia.org/wiki/Pareto_distribution
|
|
|
-float32_pareto :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_pareto(f64(alpha), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter.
|
|
|
-float64_weibull :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
|
|
|
- u := 1 - float64(r)
|
|
|
- return alpha * math.pow(-math.ln(u), 1.0/beta)
|
|
|
-}
|
|
|
-// Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter.
|
|
|
-float32_weibull :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_weibull(f64(alpha), f64(beta), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// Circular Data (von Mises) Distribution
|
|
|
-// `mean_angle` is the in mean angle between 0 and 2pi radians
|
|
|
-// `kappa` is the concentration parameter which must be >= 0
|
|
|
-// When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi
|
|
|
-float64_von_mises :: proc(mean_angle, kappa: f64, r: ^Rand = nil) -> f64 {
|
|
|
- // Fisher, N.I., "Statistical Analysis of Circular Data", Cambridge University Press, 1993.
|
|
|
-
|
|
|
- mu := mean_angle
|
|
|
- if kappa <= 1e-6 {
|
|
|
- return math.TAU * float64(r)
|
|
|
- }
|
|
|
-
|
|
|
- s := 0.5 / kappa
|
|
|
- t := s + math.sqrt(1 + s*s)
|
|
|
- z: f64
|
|
|
- for {
|
|
|
- u1 := float64(r)
|
|
|
- z = math.cos(math.TAU * 0.5 * u1)
|
|
|
-
|
|
|
- d := z / (t + z)
|
|
|
- u2 := float64(r)
|
|
|
- if u2 < 1 - d*d || u2 <= (1-d)*math.exp(d) {
|
|
|
- break
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- q := 1.0 / t
|
|
|
- f := (q + z) / (1 + q*z)
|
|
|
- u3 := float64(r)
|
|
|
- if u3 > 0.5 {
|
|
|
- return math.mod(mu + math.acos(f), math.TAU)
|
|
|
- } else {
|
|
|
- return math.mod(mu - math.acos(f), math.TAU)
|
|
|
- }
|
|
|
-}
|
|
|
-// Circular Data (von Mises) Distribution
|
|
|
-// `mean_angle` is the in mean angle between 0 and 2pi radians
|
|
|
-// `kappa` is the concentration parameter which must be >= 0
|
|
|
-// When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi
|
|
|
-float32_von_mises :: proc(mean_angle, kappa: f32, r: ^Rand = nil) -> f32 {
|
|
|
- return f32(float64_von_mises(f64(mean_angle), f64(kappa), r))
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
|
|
|
read :: proc(p: []byte, r: ^Rand = nil) -> (n: int) {
|
|
|
pos := i8(0)
|