浏览代码

Fix `delete("")` on `-llvm-api`; Fix linalg stuff

gingerBill 5 年之前
父节点
当前提交
77829af9de
共有 4 个文件被更改,包括 252 次插入17 次删除
  1. 14 14
      core/math/linalg/extended.odin
  2. 80 3
      core/math/linalg/general.odin
  3. 147 0
      core/math/linalg/specific.odin
  4. 11 0
      src/llvm_backend.cpp

+ 14 - 14
core/math/linalg/extended.odin

@@ -478,44 +478,44 @@ is_inf :: proc{is_inf_single, is_inf_array};
 classify :: proc{classify_single, classify_array};
 
 
-less_than_single          :: proc(x, y: $T) -> (out: bool) where IS_FLOAT(T) { return x < y; }
-less_than_equal_single    :: proc(x, y: $T) -> (out: bool) where IS_FLOAT(T) { return x <= y; }
-greater_than_single       :: proc(x, y: $T) -> (out: bool) where IS_FLOAT(T) { return x > y; }
-greater_than_equal_single :: proc(x, y: $T) -> (out: bool) where IS_FLOAT(T) { return x >= y; }
-equal_single              :: proc(x, y: $T) -> (out: bool) where IS_FLOAT(T) { return x == y; }
-not_equal_single          :: proc(x, y: $T) -> (out: bool) where IS_FLOAT(T) { return x != y; }
-
-less_than_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
+less_than_single          :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x < y; }
+less_than_equal_single    :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x <= y; }
+greater_than_single       :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x > y; }
+greater_than_equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x >= y; }
+equal_single              :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x == y; }
+not_equal_single          :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x != y; }
+
+less_than_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
 	for i in 0..<N {
 		out[i] = x[i] < y[i];
 	}
 	return;
 }
-less_than_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
+less_than_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
 	for i in 0..<N {
 		out[i] = x[i] <= y[i];
 	}
 	return;
 }
-greater_than_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
+greater_than_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
 	for i in 0..<N {
 		out[i] = x[i] > y[i];
 	}
 	return;
 }
-greater_than_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
+greater_than_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
 	for i in 0..<N {
 		out[i] = x[i] >= y[i];
 	}
 	return;
 }
-equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
+equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
 	for i in 0..<N {
 		out[i] = x[i] == y[i];
 	}
 	return;
 }
-not_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
+not_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
 	for i in 0..<N {
 		out[i] = x[i] != y[i];
 	}
@@ -539,7 +539,7 @@ any :: proc(x: $A/[$N]bool) -> (out: bool) {
 }
 all :: proc(x: $A/[$N]bool) -> (out: bool) {
 	for e in x {
-		if !x {
+		if !e {
 			return false;
 		}
 	}

+ 80 - 3
core/math/linalg/general.odin

@@ -37,6 +37,10 @@ DEG_PER_RAD :: 360.0/TAU;
 @private ELEM_TYPE :: intrinsics.type_elem_type;
 
 
+scalar_dot :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
+	return a * b;
+}
+
 vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
 	for i in 0..<N {
 		c += a[i] * b[i];
@@ -50,13 +54,27 @@ quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
 	return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
 }
 
-dot :: proc{vector_dot, quaternion128_dot, quaternion256_dot};
+dot :: proc{scalar_dot, vector_dot, quaternion128_dot, quaternion256_dot};
+
+inner_product :: dot;
+outer_product :: proc(a: $A/[$M]$E, b: $B/[$N]E) -> (out: [M][N]E) where IS_NUMERIC(E) {
+	for i in 0..<M {
+		for j in 0..<N {
+			out[i][j] = a[i]*b[j];
+		}
+	}
+	return;
+}
 
 quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
 	return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0);
 }
 
 
+scalar_cross :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
+	return a * b;
+}
+
 vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
 	return a[0]*b[1] - b[0]*a[1];
 }
@@ -76,8 +94,8 @@ quaternion_cross :: proc(q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
 	return;
 }
 
-vector_cross :: proc{vector_cross2, vector_cross3};
-cross :: proc{vector_cross2, vector_cross3, quaternion_cross};
+vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3};
+cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross};
 
 vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
 	return v / length(v);
@@ -114,9 +132,26 @@ quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
 	return dot(q, q);
 }
 
+scalar_triple_product :: proc(a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
+	// a . (b x c)
+	// b . (c x a)
+	// c . (a x b)
+	return dot(a, cross(b, c));
+}
+
+vector_triple_product :: proc(a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
+	// a x (b x c)
+	// (a . c)b - (a . b)c
+	return cross(a, cross(b, c));
+}
+
+
 length :: proc{vector_length, quaternion_length};
 length2 :: proc{vector_length2, quaternion_length2};
 
+projection :: proc(x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
+	return dot(x, normal) / dot(normal, normal) * normal;
+}
 
 identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
 	for i in 0..<N do m[i][i] = E(1);
@@ -234,3 +269,45 @@ to_ptr :: proc{vector_to_ptr, matrix_to_ptr};
 
 
 
+
+
+// Splines
+
+vector_slerp :: proc(x, y: $T/[$N]$E, a: E) -> T {
+	cos_alpha := dot(x, y);
+	alpha := math.acos(cos_alpha);
+	sin_alpha := math.sin(alpha);
+
+	t1 := math.sin((1 - a) * alpha) / sin_alpha;
+	t2 := math.sin(a * alpha) / sin_alpha;
+
+	return x * t1 + y * t2;
+}
+
+catmull_rom :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
+	s2 := s*s;
+	s3 := s2*s;
+
+	f1 := -s3 + 2 * s2 - s;
+	f2 := 3 * s3 - 5 * s2 + 2;
+	f3 := -3 * s3 + 4 * s2 + s;
+	f4 := s3 - s2;
+
+	return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5;
+}
+
+hermite :: proc(v1, t1, v2, t2: $T/[$N]$E, s: E) -> T {
+	s2 := s*s;
+	s3 := s2*s;
+
+	f1 := 2 * s3 - 3 * s2 + 1;
+	f2 := -2 * s3 + 3 * s2;
+	f3 := s3 - 2 * s2 + s;
+	f4 := s3 - s2;
+
+	return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2;
+}
+
+cubic :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
+	return ((v1 * s + v2) * s + v3) * s + v3;
+}

+ 147 - 0
core/math/linalg/specific.odin

@@ -723,3 +723,150 @@ matrix4_infinite_perspective :: proc(fovy, aspect, near: Float, flip_z_axis := t
 }
 
 
+matrix2_from_scalar :: proc(f: Float) -> (m: Matrix2) {
+	m[0][0], m[0][1] = f, 0;
+	m[1][0], m[1][1] = 0, f;
+	return;
+}
+
+matrix3_from_scalar :: proc(f: Float) -> (m: Matrix3) {
+	m[0][0], m[0][1], m[0][2] = f, 0, 0;
+	m[1][0], m[1][1], m[1][2] = 0, f, 0;
+	m[2][0], m[2][1], m[2][2] = 0, 0, f;
+	return;
+}
+
+matrix4_from_scalar :: proc(f: Float) -> (m: Matrix4) {
+	m[0][0], m[0][1], m[0][2], m[0][3] = f, 0, 0, 0;
+	m[1][0], m[1][1], m[1][2], m[1][3] = 0, f, 0, 0;
+	m[2][0], m[2][1], m[2][2], m[2][3] = 0, 0, f, 0;
+	m[3][0], m[3][1], m[3][2], m[3][3] = 0, 0, 0, f;
+	return;
+}
+
+matrix2_from_matrix3 :: proc(m: Matrix3) -> (r: Matrix2) {
+	r[0][0], r[0][1] = m[0][0], m[0][1];
+	r[1][0], r[1][1] = m[1][0], m[1][1];
+	return;
+}
+
+matrix2_from_matrix4 :: proc(m: Matrix4) -> (r: Matrix2) {
+	r[0][0], r[0][1] = m[0][0], m[0][1];
+	r[1][0], r[1][1] = m[1][0], m[1][1];
+	return;
+}
+
+matrix3_from_matrix2 :: proc(m: Matrix2) -> (r: Matrix3) {
+	r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], 0;
+	r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], 0;
+	r[2][0], r[2][1], r[2][2] =       0,       0, 1;
+	return;
+}
+
+matrix3_from_matrix4 :: proc(m: Matrix4) -> (r: Matrix3) {
+	r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], m[0][2];
+	r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], m[1][2];
+	r[2][0], r[2][1], r[2][2] = m[2][0], m[2][1], m[2][2];
+	return;
+}
+
+matrix4_from_matrix2 :: proc(m: Matrix2) -> (r: Matrix4) {
+	r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], 0, 0;
+	r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], 0, 0;
+	r[2][0], r[2][1], r[2][2], r[2][3] =       0,       0, 1, 0;
+	r[3][0], r[3][1], r[3][2], r[3][3] =       0,       0, 0, 1;
+	return;
+}
+matrix4_from_matrix3 :: proc(m: Matrix3) -> (r: Matrix4) {
+	r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], m[0][2], 0;
+	r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], m[1][2], 0;
+	r[2][0], r[2][1], r[2][2], r[2][3] = m[2][0], m[2][1], m[2][2], 0;
+	r[3][0], r[3][1], r[3][2], r[3][3] =       0,       0,       0, 1;
+	return;
+}
+
+quaternion_from_scalar :: proc(f: Float) -> (q: Quaternion) {
+	q.w = f;
+	return;
+}
+
+to_matrix2    :: proc{matrix2_from_scalar, matrix2_from_matrix3, matrix2_from_matrix4};
+to_matrix3    :: proc{matrix3_from_scalar, matrix3_from_matrix2, matrix3_from_matrix4, matrix3_from_quaternion};
+to_matrix4    :: proc{matrix4_from_scalar, matrix4_from_matrix2, matrix4_from_matrix3, matrix4_from_quaternion};
+to_quaternion :: proc{quaternion_from_scalar, quaternion_from_matrix3, quaternion_from_matrix4};
+
+
+
+matrix2_orthonormalize :: proc(m: Matrix2) -> (r: Matrix2) {
+	r[0] = normalize(m[0]);
+
+	d0 := dot(r[0], r[1]);
+	r[1] -= r[0] * d0;
+	r[1] = normalize(r[1]);
+
+	return;
+}
+
+matrix3_orthonormalize :: proc(m: Matrix3) -> (r: Matrix3) {
+	r[0] = normalize(m[0]);
+
+	d0 := dot(r[0], r[1]);
+	r[1] -= r[0] * d0;
+	r[1] = normalize(r[1]);
+
+	d1 := dot(r[1], r[2]);
+	d0 = dot(r[0], r[2]);
+	r[2] -= r[0]*d0 + r[1]*d1;
+	r[2] = normalize(r[2]);
+
+	return;
+}
+
+vector3_orthonormalize :: proc(x, y: Vector3) -> (z: Vector3) {
+	return normalize(x - y * dot(y, x));
+}
+
+
+orthonormalize :: proc{
+	matrix2_orthonormalize,
+	matrix3_orthonormalize,
+	vector3_orthonormalize,
+};
+
+
+matrix4_orientation :: proc(normal, up: Vector3) -> Matrix4 {
+	if all(equal(normal, up)) {
+		return MATRIX4_IDENTITY;
+	}
+
+	rotation_axis := cross(up, normal);
+	angle := math.acos(dot(normal, up));
+
+	return matrix4_rotate(angle, rotation_axis);
+}
+
+
+
+euclidean_from_polar :: proc(polar: Vector2) -> Vector3 {
+	latitude, longitude := polar.x, polar.y;
+	cx, sx := math.cos(latitude), math.sin(latitude);
+	cy, sy := math.cos(longitude), math.sin(longitude);
+
+	return Vector3{
+		cx*sy,
+		sx,
+		cx*cy,
+	};
+}
+polar_from_euclidean :: proc(euclidean: Vector3) -> Vector3 {
+	n := length(euclidean);
+	tmp := euclidean / n;
+
+	xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z);
+
+	return Vector3{
+		math.asin(tmp.y),
+		math.atan2(tmp.x, tmp.z),
+		xz_dist,
+	};
+}

+ 11 - 0
src/llvm_backend.cpp

@@ -4558,6 +4558,10 @@ lbValue lb_emit_clamp(lbProcedure *p, Type *t, lbValue x, lbValue min, lbValue m
 
 
 LLVMValueRef lb_find_or_add_entity_string_ptr(lbModule *m, String const &str) {
+	if (str.len == 0) {
+		return LLVMConstNull(lb_type(m, t_u8_ptr));
+	}
+
 	StringHashKey key = string_hash_string(str);
 	LLVMValueRef *found = string_map_get(&m->const_strings, key);
 	if (found != nullptr) {
@@ -4587,6 +4591,9 @@ LLVMValueRef lb_find_or_add_entity_string_ptr(lbModule *m, String const &str) {
 }
 
 lbValue lb_find_or_add_entity_string(lbModule *m, String const &str) {
+	if (str.len == 0) {
+		return lb_zero(m, t_string);
+	}
 	LLVMValueRef ptr = lb_find_or_add_entity_string_ptr(m, str);
 	LLVMValueRef str_len = LLVMConstInt(lb_type(m, t_int), str.len, true);
 	LLVMValueRef values[2] = {ptr, str_len};
@@ -4598,6 +4605,10 @@ lbValue lb_find_or_add_entity_string(lbModule *m, String const &str) {
 }
 
 lbValue lb_find_or_add_entity_string_byte_slice(lbModule *m, String const &str) {
+	if (str.len == 0) {
+		return lb_zero(m, t_u8_slice);
+	}
+
 	LLVMValueRef indices[2] = {llvm_zero(m), llvm_zero(m)};
 	LLVMValueRef data = LLVMConstStringInContext(m->ctx,
 		cast(char const *)str.text,