|
@@ -19,6 +19,10 @@ main :: proc() {
|
|
|
test_trunc_f32(&t)
|
|
|
test_trunc_f64(&t)
|
|
|
|
|
|
+ test_round_f16(&t)
|
|
|
+ test_round_f32(&t)
|
|
|
+ test_round_f64(&t)
|
|
|
+
|
|
|
test_nan(&t)
|
|
|
test_acos(&t)
|
|
|
test_acosh(&t)
|
|
@@ -307,6 +311,183 @@ test_trunc_f64 :: proc(t: ^testing.T) {
|
|
|
tc.expect(t, math.is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
|
|
|
}
|
|
|
|
|
|
+@test
|
|
|
+test_round_f16 :: proc(t: ^testing.T) {
|
|
|
+ r, v: f16
|
|
|
+
|
|
|
+ Datum :: struct {
|
|
|
+ i: int,
|
|
|
+ v: f16,
|
|
|
+ e: f16,
|
|
|
+ }
|
|
|
+ @static data := []Datum{
|
|
|
+ { 0, 10.5, 11 },
|
|
|
+ { 1, -10.5, -11 },
|
|
|
+
|
|
|
+ { 2, math.F16_MAX, math.F16_MAX },
|
|
|
+ { 3, -math.F16_MAX, -math.F16_MAX },
|
|
|
+ { 4, math.F16_MIN, 0.0 },
|
|
|
+ { 5, -math.F16_MIN, -0.0 },
|
|
|
+ { 6, 0.0, 0.0 },
|
|
|
+ { 7, -0.0, -0.0 },
|
|
|
+ { 8, 1, 1 },
|
|
|
+ { 9, -1, -1 },
|
|
|
+ { 10, math.INF_F16, math.INF_F16 },
|
|
|
+ { 11, math.NEG_INF_F16, math.NEG_INF_F16 },
|
|
|
+
|
|
|
+ /* From https://en.wikipedia.org/wiki/Half-precision_floating-point_format */
|
|
|
+ { 12, 0h3C01, 1 }, // 0x1.004p+0 (smallest > 1)
|
|
|
+ { 13, -0h3C01, -1 },
|
|
|
+ { 14, 0h3BFF, 1 }, // 0x1.ffcp-1 (largest < 1)
|
|
|
+ { 15, -0h3BFF, -1 },
|
|
|
+ { 16, 0h0001, 0.0 }, // 0x0.004p-14 (smallest subnormal)
|
|
|
+ { 17, -0h0001, -0.0 },
|
|
|
+ { 18, 0h03FF, 0.0 }, // 0x0.ffcp-14 (largest subnormal)
|
|
|
+ { 19, -0h03FF, -0.0 },
|
|
|
+
|
|
|
+ { 20, 0hC809, -8 }, // -0x1.024p+3
|
|
|
+ { 21, 0h4458, 4 }, // 0x1.16p+2
|
|
|
+ }
|
|
|
+
|
|
|
+ for d, i in data {
|
|
|
+ assert(i == d.i)
|
|
|
+ r = math.round_f16(d.v)
|
|
|
+ tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
|
|
|
+ }
|
|
|
+
|
|
|
+ v = math.SNAN_F16
|
|
|
+ r = math.round_f16(v)
|
|
|
+ tc.expect(t, math.is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
|
|
|
+
|
|
|
+ v = math.QNAN_F16
|
|
|
+ r = math.round_f16(v)
|
|
|
+ tc.expect(t, math.is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
|
|
|
+}
|
|
|
+
|
|
|
+@test
|
|
|
+test_round_f32 :: proc(t: ^testing.T) {
|
|
|
+ r, v: f32
|
|
|
+
|
|
|
+ Datum :: struct {
|
|
|
+ i: int,
|
|
|
+ v: f32,
|
|
|
+ e: f32,
|
|
|
+ }
|
|
|
+ @static data := []Datum{
|
|
|
+ { 0, 10.5, 11 },
|
|
|
+ { 1, -10.5, -11 },
|
|
|
+
|
|
|
+ { 2, math.F32_MAX, math.F32_MAX },
|
|
|
+ { 3, -math.F32_MAX, -math.F32_MAX },
|
|
|
+ { 4, math.F32_MIN, 0.0 },
|
|
|
+ { 5, -math.F32_MIN, -0.0 },
|
|
|
+ { 6, 0.0, 0.0 },
|
|
|
+ { 7, -0.0, -0.0 },
|
|
|
+ { 8, 1, 1 },
|
|
|
+ { 9, -1, -1 },
|
|
|
+ { 10, math.INF_F32, math.INF_F32 },
|
|
|
+ { 11, math.NEG_INF_F32, math.NEG_INF_F32 },
|
|
|
+
|
|
|
+ /* From https://en.wikipedia.org/wiki/Single-precision_floating-point_format */
|
|
|
+ { 12, 0h3F80_0001, 1 }, // 0x1.000002p+0 (smallest > 1)
|
|
|
+ { 13, -0h3F80_0001, -1 },
|
|
|
+ { 14, 0h3F7F_FFFF, 1 }, // 0x1.fffffep-1 (largest < 1)
|
|
|
+ { 15, -0h3F7F_FFFF, -1 },
|
|
|
+ { 16, 0h0000_0001, 0.0 }, // 0x0.000002p-126 (smallest subnormal)
|
|
|
+ { 17, -0h0000_0001, -0.0 },
|
|
|
+ { 18, 0h007F_FFFF, 0.0 }, // 0x0.fffffep-126 (largest subnormal)
|
|
|
+ { 19, -0h007F_FFFF, -0.0 },
|
|
|
+
|
|
|
+ /* From libc-test src/math/sanity/roundf.h */
|
|
|
+ { 20, 0hC101_11D0, -8 }, // -0x1.0223ap+3
|
|
|
+ { 21, 0h408B_0C34, 4 }, // 0x1.161868p+2
|
|
|
+ { 22, 0hC106_1A5A, -8 }, // -0x1.0c34b4p+3
|
|
|
+ { 23, 0hC0D1_0378, -7 }, // -0x1.a206fp+2
|
|
|
+ { 24, 0h4114_45DE, 9 }, // 0x1.288bbcp+3
|
|
|
+ { 25, 0h3F29_77E8, 1.0 }, // 0x1.52efdp-1
|
|
|
+ { 26, 0hBED0_2E64, -0.0 }, // -0x1.a05cc8p-2
|
|
|
+ { 27, 0h3F0F_CF7D, 1.0 }, // 0x1.1f9efap-1
|
|
|
+ { 28, 0h3F46_2ED8, 1.0 }, // 0x1.8c5dbp-1
|
|
|
+ { 29, 0hBF2D_C375, -1.0 }, // -0x1.5b86eap-1
|
|
|
+ }
|
|
|
+
|
|
|
+ for d, i in data {
|
|
|
+ assert(i == d.i)
|
|
|
+ r = math.round_f32(d.v)
|
|
|
+ tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
|
|
|
+ }
|
|
|
+
|
|
|
+ v = math.SNAN_F32
|
|
|
+ r = math.round_f32(v)
|
|
|
+ tc.expect(t, math.is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
|
|
|
+
|
|
|
+ v = math.QNAN_F32
|
|
|
+ r = math.round_f32(v)
|
|
|
+ tc.expect(t, math.is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
|
|
|
+}
|
|
|
+
|
|
|
+@test
|
|
|
+test_round_f64 :: proc(t: ^testing.T) {
|
|
|
+ r, v: f64
|
|
|
+
|
|
|
+ Datum :: struct {
|
|
|
+ i: int,
|
|
|
+ v: f64,
|
|
|
+ e: f64,
|
|
|
+ }
|
|
|
+ data := []Datum{
|
|
|
+ { 0, 10.5, 11 }, // Issue #1574 fract in linalg/glm is broken
|
|
|
+ { 1, -10.5, -11 },
|
|
|
+
|
|
|
+ { 2, math.F64_MAX, math.F64_MAX },
|
|
|
+ { 3, -math.F64_MAX, -math.F64_MAX },
|
|
|
+ { 4, math.F64_MIN, 0.0 },
|
|
|
+ { 5, -math.F64_MIN, -0.0 },
|
|
|
+ { 6, 0.0, 0.0 },
|
|
|
+ { 7, -0.0, -0.0 },
|
|
|
+ { 8, 1, 1 },
|
|
|
+ { 9, -1, -1 },
|
|
|
+ { 10, math.INF_F64, math.INF_F64 },
|
|
|
+ { 11, math.NEG_INF_F64, math.NEG_INF_F64 },
|
|
|
+
|
|
|
+ /* From https://en.wikipedia.org/wiki/Double-precision_floating-point_format */
|
|
|
+ { 12, 0h3FF0_0000_0000_0001, 1 }, // 0x1.0000000000001p+0 (smallest > 1)
|
|
|
+ { 13, -0h3FF0_0000_0000_0001, -1 },
|
|
|
+ { 14, 0h3FEF_FFFF_FFFF_FFFF, 1 }, // 0x1.fffffffffffffp-1 (largest < 1)
|
|
|
+ { 15, -0h3FEF_FFFF_FFFF_FFFF, -1 },
|
|
|
+ { 16, 0h0000_0000_0000_0001, 0.0 }, // 0x0.0000000000001p-1022 (smallest subnormal)
|
|
|
+ { 17, -0h0000_0000_0000_0001, -0.0 },
|
|
|
+ { 18, 0h000F_FFFF_FFFF_FFFF, 0.0 }, // 0x0.fffffffffffffp-1022 (largest subnormal)
|
|
|
+ { 19, -0h000F_FFFF_FFFF_FFFF, -0.0 },
|
|
|
+
|
|
|
+ /* From libc-test src/math/sanity/round.h */
|
|
|
+ { 20, 0hC020_2239_F3C6_A8F1, -8 }, // -0x1.02239f3c6a8f1p+3
|
|
|
+ { 21, 0h4011_6186_8E18_BC67, 4 }, // 0x1.161868e18bc67p+2
|
|
|
+ { 22, 0hC020_C34B_3E01_E6E7, -8 }, // -0x1.0c34b3e01e6e7p+3
|
|
|
+ { 23, 0hC01A_206F_0A19_DCC4, -7 }, // -0x1.a206f0a19dcc4p+2
|
|
|
+ { 24, 0h4022_88BB_B0D6_A1E6, 9 }, // 0x1.288bbb0d6a1e6p+3
|
|
|
+ { 25, 0h3FE5_2EFD_0CD8_0497, 1.0 }, // 0x1.52efd0cd80497p-1
|
|
|
+ { 26, 0hBFDA_05CC_7544_81D1, -0.0 }, // -0x1.a05cc754481d1p-2
|
|
|
+ { 27, 0h3FE1_F9EF_9347_45CB, 1.0 }, // 0x1.1f9ef934745cbp-1
|
|
|
+ { 28, 0h3FE8_C5DB_097F_7442, 1.0 }, // 0x1.8c5db097f7442p-1
|
|
|
+ { 29, 0hBFE5_B86E_A811_8A0E, -1.0 }, // -0x1.5b86ea8118a0ep-1
|
|
|
+ }
|
|
|
+
|
|
|
+ for d, i in data {
|
|
|
+ assert(i == d.i)
|
|
|
+ r = math.round_f64(d.v)
|
|
|
+ tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
|
|
|
+ }
|
|
|
+
|
|
|
+ v = math.SNAN_F64
|
|
|
+ r = math.round_f64(v)
|
|
|
+ tc.expect(t, math.is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
|
|
|
+
|
|
|
+ v = math.QNAN_F64
|
|
|
+ r = math.round_f64(v)
|
|
|
+ tc.expect(t, math.is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
|
|
|
+}
|
|
|
+
|
|
|
|
|
|
vf := []f64{
|
|
|
4.9790119248836735e+00,
|