|
@@ -2,8 +2,203 @@ package linalg
|
|
|
|
|
|
import "core:math"
|
|
|
|
|
|
+Euler_Angle_Order :: enum {
|
|
|
+ XYZ,
|
|
|
+ YXZ,
|
|
|
+ XZX,
|
|
|
+ XYX,
|
|
|
+ YXY,
|
|
|
+ YZY,
|
|
|
+ ZYZ,
|
|
|
+ ZXZ,
|
|
|
+ XZY,
|
|
|
+ YZX,
|
|
|
+ ZYX,
|
|
|
+ ZXY,
|
|
|
+}
|
|
|
+
|
|
|
+euler_angles_from_matrix4 :: proc(m: Matrix4, order: Euler_Angle_Order) -> (t1, t2, t3: Float) {
|
|
|
+ switch order {
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m);
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix4(m);
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix4(m);
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix4(m);
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix4(m);
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix4(m);
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix4(m);
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix4(m);
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix4(m);
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix4(m);
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix4(m);
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix4(m);
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+euler_angles_from_quaternion :: proc(m: Quaternion, order: Euler_Angle_Order) -> (t1, t2, t3: Float) {
|
|
|
+ switch order {
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m);
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_quaternion(m);
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_quaternion(m);
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_quaternion(m);
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_quaternion(m);
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_quaternion(m);
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_quaternion(m);
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_quaternion(m);
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_quaternion(m);
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_quaternion(m);
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_quaternion(m);
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_quaternion(m);
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+matrix4_from_euler_angles :: proc(t1, t2, t3: Float, order: Euler_Angle_Order) -> Matrix4 {
|
|
|
+ X :: matrix4_from_euler_angle_x;
|
|
|
+ Y :: matrix4_from_euler_angle_y;
|
|
|
+ Z :: matrix4_from_euler_angle_z;
|
|
|
|
|
|
-euler_angle_x :: proc(angle_x: Float) -> (m: Matrix4) {
|
|
|
+ m1, m2, m3: Matrix4;
|
|
|
+
|
|
|
+ switch order {
|
|
|
+ case .XYZ: m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
+ case .YXZ: m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
+ case .XZX: m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
+ case .XYX: m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
+ case .YXY: m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
+ case .YZY: m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
+ case .ZYZ: m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
+ case .ZXZ: m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
+ case .XZY: m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
+ case .YZX: m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
+ case .ZYX: m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
+ case .ZXY: m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
+ }
|
|
|
+
|
|
|
+ return mul(m1, mul(m2, m3));
|
|
|
+}
|
|
|
+
|
|
|
+quaternion_from_euler_angles :: proc(t1, t2, t3: Float, order: Euler_Angle_Order) -> Quaternion {
|
|
|
+ X :: quaternion_from_euler_angle_x;
|
|
|
+ Y :: quaternion_from_euler_angle_y;
|
|
|
+ Z :: quaternion_from_euler_angle_z;
|
|
|
+
|
|
|
+ m1, m2, m3: Quaternion;
|
|
|
+
|
|
|
+ switch order {
|
|
|
+ case .XYZ: m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
+ case .YXZ: m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
+ case .XZX: m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
+ case .XYX: m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
+ case .YXY: m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
+ case .YZY: m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
+ case .ZYZ: m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
+ case .ZXZ: m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
+ case .XZY: m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
+ case .YZX: m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
+ case .ZYX: m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
+ case .ZXY: m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
+ }
|
|
|
+
|
|
|
+ return m1 * (m2 * m3);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+// Quaternions
|
|
|
+
|
|
|
+quaternion_from_euler_angle_x :: proc(angle_x: Float) -> (q: Quaternion) {
|
|
|
+ return quaternion_angle_axis(angle_x, Vector3{1, 0, 0});
|
|
|
+}
|
|
|
+quaternion_from_euler_angle_y :: proc(angle_y: Float) -> (q: Quaternion) {
|
|
|
+ return quaternion_angle_axis(angle_y, Vector3{0, 1, 0});
|
|
|
+}
|
|
|
+quaternion_from_euler_angle_z :: proc(angle_z: Float) -> (q: Quaternion) {
|
|
|
+ return quaternion_angle_axis(angle_z, Vector3{0, 0, 1});
|
|
|
+}
|
|
|
+
|
|
|
+quaternion_from_pitch_yaw_roll :: proc(pitch, yaw, roll: Float) -> Quaternion {
|
|
|
+ a, b, c := pitch, yaw, roll;
|
|
|
+
|
|
|
+ ca, sa := math.cos(a*0.5), math.sin(a*0.5);
|
|
|
+ cb, sb := math.cos(b*0.5), math.sin(b*0.5);
|
|
|
+ cc, sc := math.cos(c*0.5), math.sin(c*0.5);
|
|
|
+
|
|
|
+ q: Quaternion;
|
|
|
+ q.x = sa*cb*cc - ca*sb*sc;
|
|
|
+ q.y = ca*sb*cc + sa*cb*sc;
|
|
|
+ q.z = ca*cb*sc - sa*sb*cc;
|
|
|
+ q.w = ca*cb*cc + sa*sb*sc;
|
|
|
+ return q;
|
|
|
+}
|
|
|
+
|
|
|
+roll_from_quaternion :: proc(q: Quaternion) -> Float {
|
|
|
+ return math.atan2(2 * q.x*q.y + q.w*q.z, q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z);
|
|
|
+}
|
|
|
+
|
|
|
+pitch_from_quaternion :: proc(q: Quaternion) -> Float {
|
|
|
+ y := 2 * (q.y*q.z + q.w*q.w);
|
|
|
+ x := q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z;
|
|
|
+
|
|
|
+ if abs(x) <= FLOAT_EPSILON && abs(y) <= FLOAT_EPSILON {
|
|
|
+ return 2 * math.atan2(q.x, q.w);
|
|
|
+ }
|
|
|
+
|
|
|
+ return math.atan2(y, x);
|
|
|
+}
|
|
|
+
|
|
|
+yaw_from_quaternion :: proc(q: Quaternion) -> Float {
|
|
|
+ return math.asin(clamp(-2 * (q.x*q.z - q.w*q.y), -1, 1));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+pitch_yaw_roll_from_quaternion :: proc(q: Quaternion) -> (pitch, yaw, roll: Float) {
|
|
|
+ pitch = pitch_from_quaternion(q);
|
|
|
+ yaw = yaw_from_quaternion(q);
|
|
|
+ roll = roll_from_quaternion(q);
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+euler_angles_xyz_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_xyz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_yxz_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_yxz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_xzx_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_xzx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_xyx_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_xyx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_yxy_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_yxy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_yzy_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_yzy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_zyz_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_zyz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_zxz_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_zxz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_xzy_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_xzy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_yzx_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_yzx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_zyx_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_zyx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+euler_angles_zxy_from_quaternion :: proc(q: Quaternion) -> (t1, t2, t3: Float) {
|
|
|
+ return euler_angles_zxy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+// Matrices
|
|
|
+
|
|
|
+
|
|
|
+matrix4_from_euler_angle_x :: proc(angle_x: Float) -> (m: Matrix4) {
|
|
|
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
m[0][0] = 1;
|
|
|
m[1][1] = +cos_x;
|
|
@@ -13,7 +208,7 @@ euler_angle_x :: proc(angle_x: Float) -> (m: Matrix4) {
|
|
|
m[3][3] = 1;
|
|
|
return;
|
|
|
}
|
|
|
-euler_angle_y :: proc(angle_y: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_y :: proc(angle_y: Float) -> (m: Matrix4) {
|
|
|
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
m[0][0] = +cos_y;
|
|
|
m[2][0] = -sin_y;
|
|
@@ -23,7 +218,7 @@ euler_angle_y :: proc(angle_y: Float) -> (m: Matrix4) {
|
|
|
m[3][3] = 1;
|
|
|
return;
|
|
|
}
|
|
|
-euler_angle_z :: proc(angle_z: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_z :: proc(angle_z: Float) -> (m: Matrix4) {
|
|
|
cos_z, sin_z := math.cos(angle_z), math.sin(angle_z);
|
|
|
m[0][0] = +cos_z;
|
|
|
m[1][0] = +sin_z;
|
|
@@ -35,7 +230,7 @@ euler_angle_z :: proc(angle_z: Float) -> (m: Matrix4) {
|
|
|
}
|
|
|
|
|
|
|
|
|
-derived_euler_angle_x :: proc(angle_x: Float, angular_velocity_x: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_derived_euler_angle_x :: proc(angle_x: Float, angular_velocity_x: Float) -> (m: Matrix4) {
|
|
|
cos_x := math.cos(angle_x) * angular_velocity_x;
|
|
|
sin_x := math.sin(angle_x) * angular_velocity_x;
|
|
|
m[0][0] = 1;
|
|
@@ -46,7 +241,7 @@ derived_euler_angle_x :: proc(angle_x: Float, angular_velocity_x: Float) -> (m:
|
|
|
m[3][3] = 1;
|
|
|
return;
|
|
|
}
|
|
|
-derived_euler_angle_y :: proc(angle_y: Float, angular_velocity_y: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_derived_euler_angle_y :: proc(angle_y: Float, angular_velocity_y: Float) -> (m: Matrix4) {
|
|
|
cos_y := math.cos(angle_y) * angular_velocity_y;
|
|
|
sin_y := math.sin(angle_y) * angular_velocity_y;
|
|
|
m[0][0] = +cos_y;
|
|
@@ -57,7 +252,7 @@ derived_euler_angle_y :: proc(angle_y: Float, angular_velocity_y: Float) -> (m:
|
|
|
m[3][3] = 1;
|
|
|
return;
|
|
|
}
|
|
|
-derived_euler_angle_z :: proc(angle_z: Float, angular_velocity_z: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_derived_euler_angle_z :: proc(angle_z: Float, angular_velocity_z: Float) -> (m: Matrix4) {
|
|
|
cos_z := math.cos(angle_z) * angular_velocity_z;
|
|
|
sin_z := math.sin(angle_z) * angular_velocity_z;
|
|
|
m[0][0] = +cos_z;
|
|
@@ -70,7 +265,7 @@ derived_euler_angle_z :: proc(angle_z: Float, angular_velocity_z: Float) -> (m:
|
|
|
}
|
|
|
|
|
|
|
|
|
-euler_angle_xy :: proc(angle_x, angle_y: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_xy :: proc(angle_x, angle_y: Float) -> (m: Matrix4) {
|
|
|
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
m[0][0] = cos_y;
|
|
@@ -86,7 +281,7 @@ euler_angle_xy :: proc(angle_x, angle_y: Float) -> (m: Matrix4) {
|
|
|
}
|
|
|
|
|
|
|
|
|
-euler_angle_yx :: proc(angle_y, angle_x: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_yx :: proc(angle_y, angle_x: Float) -> (m: Matrix4) {
|
|
|
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
m[0][0] = cos_y;
|
|
@@ -101,21 +296,21 @@ euler_angle_yx :: proc(angle_y, angle_x: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_xz :: proc(angle_x, angle_z: Float) -> (m: Matrix4) {
|
|
|
- return mul(euler_angle_x(angle_x), euler_angle_z(angle_z));
|
|
|
+matrix4_from_euler_angle_xz :: proc(angle_x, angle_z: Float) -> (m: Matrix4) {
|
|
|
+ return mul(matrix4_from_euler_angle_x(angle_x), matrix4_from_euler_angle_z(angle_z));
|
|
|
}
|
|
|
-euler_angle_zx :: proc(angle_z, angle_x: Float) -> (m: Matrix4) {
|
|
|
- return mul(euler_angle_z(angle_z), euler_angle_x(angle_x));
|
|
|
+matrix4_from_euler_angle_zx :: proc(angle_z, angle_x: Float) -> (m: Matrix4) {
|
|
|
+ return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_x(angle_x));
|
|
|
}
|
|
|
-euler_angle_yz :: proc(angle_y, angle_z: Float) -> (m: Matrix4) {
|
|
|
- return mul(euler_angle_y(angle_y), euler_angle_z(angle_z));
|
|
|
+matrix4_from_euler_angle_yz :: proc(angle_y, angle_z: Float) -> (m: Matrix4) {
|
|
|
+ return mul(matrix4_from_euler_angle_y(angle_y), matrix4_from_euler_angle_z(angle_z));
|
|
|
}
|
|
|
-euler_angle_zy :: proc(angle_z, angle_y: Float) -> (m: Matrix4) {
|
|
|
- return mul(euler_angle_z(angle_z), euler_angle_y(angle_y));
|
|
|
+matrix4_from_euler_angle_zy :: proc(angle_z, angle_y: Float) -> (m: Matrix4) {
|
|
|
+ return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_y(angle_y));
|
|
|
}
|
|
|
|
|
|
|
|
|
-euler_angle_xyz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_xyz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(-t1);
|
|
|
c2 := math.cos(-t2);
|
|
|
c3 := math.cos(-t3);
|
|
@@ -142,7 +337,7 @@ euler_angle_xyz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_yxz :: proc(yaw, pitch, roll: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_yxz :: proc(yaw, pitch, roll: Float) -> (m: Matrix4) {
|
|
|
ch := math.cos(yaw);
|
|
|
sh := math.sin(yaw);
|
|
|
cp := math.cos(pitch);
|
|
@@ -169,7 +364,7 @@ euler_angle_yxz :: proc(yaw, pitch, roll: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_xzx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_xzx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -196,7 +391,7 @@ euler_angle_xzx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_xyx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_xyx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -223,7 +418,7 @@ euler_angle_xyx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_yxy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_yxy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -250,7 +445,7 @@ euler_angle_yxy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_yzy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_yzy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -277,7 +472,7 @@ euler_angle_yzy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_zyz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_zyz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -304,7 +499,7 @@ euler_angle_zyz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_zxz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_zxz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -332,7 +527,7 @@ euler_angle_zxz :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
}
|
|
|
|
|
|
|
|
|
-euler_angle_xzy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_xzy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -359,7 +554,7 @@ euler_angle_xzy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_yzx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angle_yzx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -386,7 +581,7 @@ euler_angle_yzx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_zyx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angles_zyx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -413,7 +608,7 @@ euler_angle_zyx :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-euler_angle_zxy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_euler_angles_zxy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
c1 := math.cos(t1);
|
|
|
s1 := math.sin(t1);
|
|
|
c2 := math.cos(t2);
|
|
@@ -441,7 +636,7 @@ euler_angle_zxy :: proc(t1, t2, t3: Float) -> (m: Matrix4) {
|
|
|
}
|
|
|
|
|
|
|
|
|
-yaw_pitch_roll :: proc(yaw, pitch, roll: Float) -> (m: Matrix4) {
|
|
|
+matrix4_from_yaw_pitch_roll :: proc(yaw, pitch, roll: Float) -> (m: Matrix4) {
|
|
|
ch := math.cos(yaw);
|
|
|
sh := math.sin(yaw);
|
|
|
cp := math.cos(pitch);
|
|
@@ -468,7 +663,7 @@ yaw_pitch_roll :: proc(yaw, pitch, roll: Float) -> (m: Matrix4) {
|
|
|
return m;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_xyz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_xyz_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[2][1], m[2][2]);
|
|
|
C2 := math.sqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0]);
|
|
|
T2 := math.atan2(-m[2][0], C2);
|
|
@@ -481,7 +676,7 @@ extract_euler_angle_xyz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_yxz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_yxz_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[2][0], m[2][2]);
|
|
|
C2 := math.sqrt(m[0][1]*m[0][1] + m[1][1]*m[1][1]);
|
|
|
T2 := math.atan2(-m[2][1], C2);
|
|
@@ -494,7 +689,7 @@ extract_euler_angle_yxz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_xzx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_xzx_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[0][2], m[0][1]);
|
|
|
S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
T2 := math.atan2(S2, m[0][0]);
|
|
@@ -507,7 +702,7 @@ extract_euler_angle_xzx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_xyx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_xyx_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[0][1], -m[0][2]);
|
|
|
S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
T2 := math.atan2(S2, m[0][0]);
|
|
@@ -520,7 +715,7 @@ extract_euler_angle_xyx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_yxy :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_yxy_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[1][0], m[1][2]);
|
|
|
S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
T2 := math.atan2(S2, m[1][1]);
|
|
@@ -533,7 +728,7 @@ extract_euler_angle_yxy :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_yzy :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_yzy_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[1][2], -m[1][0]);
|
|
|
S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
T2 := math.atan2(S2, m[1][1]);
|
|
@@ -545,7 +740,7 @@ extract_euler_angle_yzy :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
t3 = T3;
|
|
|
return;
|
|
|
}
|
|
|
-extract_euler_angle_zyz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_zyz_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[2][1], m[2][0]);
|
|
|
S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
T2 := math.atan2(S2, m[2][2]);
|
|
@@ -558,7 +753,7 @@ extract_euler_angle_zyz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_zxz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_zxz_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[2][0], -m[2][1]);
|
|
|
S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
T2 := math.atan2(S2, m[2][2]);
|
|
@@ -571,7 +766,7 @@ extract_euler_angle_zxz :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_xzy :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_xzy_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[1][2], m[1][1]);
|
|
|
C2 := math.sqrt(m[0][0]*m[0][0] + m[2][0]*m[2][0]);
|
|
|
T2 := math.atan2(-m[1][0], C2);
|
|
@@ -584,7 +779,7 @@ extract_euler_angle_xzy :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_yzx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_yzx_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(-m[0][2], m[0][0]);
|
|
|
C2 := math.sqrt(m[1][1]*m[1][1] + m[2][1]*m[2][1]);
|
|
|
T2 := math.atan2(m[0][1], C2);
|
|
@@ -597,7 +792,7 @@ extract_euler_angle_yzx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_zyx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_zyx_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(m[0][1], m[0][0]);
|
|
|
C2 := math.sqrt(m[1][2]*m[1][2] + m[2][2]*m[2][2]);
|
|
|
T2 := math.atan2(-m[0][2], C2);
|
|
@@ -610,7 +805,7 @@ extract_euler_angle_zyx :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-extract_euler_angle_zxy :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
+euler_angles_zxy_from_matrix4 :: proc(m: Matrix4) -> (t1, t2, t3: Float) {
|
|
|
T1 := math.atan2(-m[1][0], m[1][1]);
|
|
|
C2 := math.sqrt(m[0][2]*m[0][2] + m[2][2]*m[2][2]);
|
|
|
T2 := math.atan2(m[1][2], C2);
|