|
@@ -113,7 +113,7 @@ _private_int_mul_toom :: proc(dest, a, b: ^Int, allocator := context.allocator)
|
|
|
context.allocator = allocator;
|
|
|
|
|
|
S1, S2, T1, a0, a1, a2, b0, b1, b2 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
- defer destroy(S1, S2, T1, a0, a1, a2, b0, b1, b2);
|
|
|
+ defer internal_destroy(S1, S2, T1, a0, a1, a2, b0, b1, b2);
|
|
|
|
|
|
/*
|
|
|
Init temps.
|
|
@@ -258,7 +258,7 @@ _private_int_mul_karatsuba :: proc(dest, a, b: ^Int, allocator := context.alloca
|
|
|
context.allocator = allocator;
|
|
|
|
|
|
x0, x1, y0, y1, t1, x0y0, x1y1 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
- defer destroy(x0, x1, y0, y1, t1, x0y0, x1y1);
|
|
|
+ defer internal_destroy(x0, x1, y0, y1, t1, x0y0, x1y1);
|
|
|
|
|
|
/*
|
|
|
min # of digits, divided by two.
|
|
@@ -426,6 +426,195 @@ _private_int_mul_comba :: proc(dest, a, b: ^Int, digits: int, allocator := conte
|
|
|
return internal_clamp(dest);
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ Multiplies |a| * |b| and does not compute the lower digs digits
|
|
|
+ [meant to get the higher part of the product]
|
|
|
+*/
|
|
|
+_private_int_mul_high :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Can we use the fast multiplier?
|
|
|
+ */
|
|
|
+ if a.used + b.used + 1 < _WARRAY && min(a.used, b.used) < _MAX_COMBA {
|
|
|
+ return _private_int_mul_high_comba(dest, a, b, digits);
|
|
|
+ }
|
|
|
+
|
|
|
+ internal_grow(dest, a.used + b.used + 1) or_return;
|
|
|
+ dest.used = a.used + b.used + 1;
|
|
|
+
|
|
|
+ pa := a.used;
|
|
|
+ pb := b.used;
|
|
|
+ for ix := 0; ix < pa; ix += 1 {
|
|
|
+ carry := DIGIT(0);
|
|
|
+
|
|
|
+ for iy := digits - ix; iy < pb; iy += 1 {
|
|
|
+ /*
|
|
|
+ Calculate the double precision result.
|
|
|
+ */
|
|
|
+ r := _WORD(dest.digit[ix + iy]) + _WORD(a.digit[ix]) * _WORD(b.digit[iy]) + _WORD(carry);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Get the lower part.
|
|
|
+ */
|
|
|
+ dest.digit[ix + iy] = DIGIT(r & _WORD(_MASK));
|
|
|
+
|
|
|
+ /*
|
|
|
+ Carry the carry.
|
|
|
+ */
|
|
|
+ carry = DIGIT(r >> _WORD(_DIGIT_BITS));
|
|
|
+ }
|
|
|
+ dest.digit[ix + pb] = carry;
|
|
|
+ }
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ This is a modified version of `_private_int_mul_comba` that only produces output digits *above* `digits`.
|
|
|
+ See the comments for `_private_int_mul_comba` to see how it works.
|
|
|
+
|
|
|
+ This is used in the Barrett reduction since for one of the multiplications
|
|
|
+ only the higher digits were needed. This essentially halves the work.
|
|
|
+
|
|
|
+ Based on Algorithm 14.12 on pp.595 of HAC.
|
|
|
+*/
|
|
|
+_private_int_mul_high_comba :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ W: [_WARRAY]DIGIT = ---;
|
|
|
+ _W: _WORD = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Number of output digits to produce. Grow the destination as required.
|
|
|
+ */
|
|
|
+ pa := a.used + b.used;
|
|
|
+ internal_grow(dest, pa) or_return;
|
|
|
+
|
|
|
+ ix: int;
|
|
|
+ for ix = digits; ix < pa; ix += 1 {
|
|
|
+ /*
|
|
|
+ Get offsets into the two bignums.
|
|
|
+ */
|
|
|
+ ty := min(b.used - 1, ix);
|
|
|
+ tx := ix - ty;
|
|
|
+
|
|
|
+ /*
|
|
|
+ This is the number of times the loop will iterrate, essentially it's
|
|
|
+ while (tx++ < a->used && ty-- >= 0) { ... }
|
|
|
+ */
|
|
|
+ iy := min(a.used - tx, ty + 1);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Execute loop.
|
|
|
+ */
|
|
|
+ for iz := 0; iz < iy; iz += 1 {
|
|
|
+ _W += _WORD(a.digit[tx + iz]) * _WORD(b.digit[ty - iz]);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Store term.
|
|
|
+ */
|
|
|
+ W[ix] = DIGIT(_W) & DIGIT(_MASK);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Make next carry.
|
|
|
+ */
|
|
|
+ _W = _W >> _WORD(_DIGIT_BITS);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Setup dest
|
|
|
+ */
|
|
|
+ old_used := dest.used;
|
|
|
+ dest.used = pa;
|
|
|
+
|
|
|
+ for ix = digits; ix < pa; ix += 1 {
|
|
|
+ /*
|
|
|
+ Now extract the previous digit [below the carry].
|
|
|
+ */
|
|
|
+ dest.digit[ix] = W[ix];
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ internal_zero_unused(dest, old_used);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Adjust dest.used based on leading zeroes.
|
|
|
+ */
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Single-digit multiplication with the smaller number as the single-digit.
|
|
|
+*/
|
|
|
+_private_int_mul_balance :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+ a, b := a, b;
|
|
|
+
|
|
|
+ a0, tmp, r := &Int{}, &Int{}, &Int{};
|
|
|
+ defer internal_destroy(a0, tmp, r);
|
|
|
+
|
|
|
+ b_size := min(a.used, b.used);
|
|
|
+ n_blocks := max(a.used, b.used) / b_size;
|
|
|
+
|
|
|
+ internal_grow(a0, b_size + 2) or_return;
|
|
|
+ internal_init_multi(tmp, r) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Make sure that `a` is the larger one.
|
|
|
+ */
|
|
|
+ if a.used < b.used {
|
|
|
+ a, b = b, a;
|
|
|
+ }
|
|
|
+ assert(a.used >= b.used);
|
|
|
+
|
|
|
+ i, j := 0, 0;
|
|
|
+ for ; i < n_blocks; i += 1 {
|
|
|
+ /*
|
|
|
+ Cut a slice off of `a`.
|
|
|
+ */
|
|
|
+
|
|
|
+ a0.used = b_size;
|
|
|
+ internal_copy_digits(a0, a, a0.used, j);
|
|
|
+ j += a0.used;
|
|
|
+ internal_clamp(a0);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Multiply with `b`.
|
|
|
+ */
|
|
|
+ internal_mul(tmp, a0, b) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Shift `tmp` to the correct position.
|
|
|
+ */
|
|
|
+ internal_shl_digit(tmp, b_size * i) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Add to output. No carry needed.
|
|
|
+ */
|
|
|
+ internal_add(r, r, tmp) or_return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ The left-overs; there are always left-overs.
|
|
|
+ */
|
|
|
+ if j < a.used {
|
|
|
+ a0.used = a.used - j;
|
|
|
+ internal_copy_digits(a0, a, a0.used, j);
|
|
|
+ j += a0.used;
|
|
|
+ internal_clamp(a0);
|
|
|
+
|
|
|
+ internal_mul(tmp, a0, b) or_return;
|
|
|
+ internal_shl_digit(tmp, b_size * i) or_return;
|
|
|
+ internal_add(r, r, tmp) or_return;
|
|
|
+ }
|
|
|
+
|
|
|
+ internal_swap(dest, r);
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
Low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
|
|
|
Assumes `dest` and `src` to not be `nil`, and `src` to have been initialized.
|
|
@@ -1188,7 +1377,7 @@ _private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int
|
|
|
|
|
|
ta, tb, tq, q := &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
c: int;
|
|
|
- defer destroy(ta, tb, tq, q);
|
|
|
+ defer internal_destroy(ta, tb, tq, q);
|
|
|
|
|
|
for {
|
|
|
internal_one(tq) or_return;
|
|
@@ -1241,31 +1430,34 @@ _private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int
|
|
|
Binary split factorial algo due to: http://www.luschny.de/math/factorial/binarysplitfact.html
|
|
|
*/
|
|
|
_private_int_factorial_binary_split :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
|
|
|
inner, outer, start, stop, temp := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
defer internal_destroy(inner, outer, start, stop, temp);
|
|
|
|
|
|
- internal_one(inner, false, allocator) or_return;
|
|
|
- internal_one(outer, false, allocator) or_return;
|
|
|
+ internal_one(inner, false) or_return;
|
|
|
+ internal_one(outer, false) or_return;
|
|
|
|
|
|
bits_used := int(_DIGIT_TYPE_BITS - intrinsics.count_leading_zeros(n));
|
|
|
|
|
|
for i := bits_used; i >= 0; i -= 1 {
|
|
|
start := (n >> (uint(i) + 1)) + 1 | 1;
|
|
|
stop := (n >> uint(i)) + 1 | 1;
|
|
|
- _private_int_recursive_product(temp, start, stop, 0, allocator) or_return;
|
|
|
- internal_mul(inner, inner, temp, allocator) or_return;
|
|
|
- internal_mul(outer, outer, inner, allocator) or_return;
|
|
|
+ _private_int_recursive_product(temp, start, stop, 0) or_return;
|
|
|
+ internal_mul(inner, inner, temp) or_return;
|
|
|
+ internal_mul(outer, outer, inner) or_return;
|
|
|
}
|
|
|
shift := n - intrinsics.count_ones(n);
|
|
|
|
|
|
- return internal_shl(res, outer, int(shift), allocator);
|
|
|
+ return internal_shl(res, outer, int(shift));
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Recursive product used by binary split factorial algorithm.
|
|
|
*/
|
|
|
_private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int(0), allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
t1, t2 := &Int{}, &Int{};
|
|
|
defer internal_destroy(t1, t2);
|
|
|
|
|
@@ -1275,28 +1467,28 @@ _private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int
|
|
|
|
|
|
num_factors := (stop - start) >> 1;
|
|
|
if num_factors == 2 {
|
|
|
- internal_set(t1, start, false, allocator) or_return;
|
|
|
+ internal_set(t1, start, false) or_return;
|
|
|
when true {
|
|
|
- internal_grow(t2, t1.used + 1, false, allocator) or_return;
|
|
|
- internal_add(t2, t1, 2, allocator) or_return;
|
|
|
+ internal_grow(t2, t1.used + 1, false) or_return;
|
|
|
+ internal_add(t2, t1, 2) or_return;
|
|
|
} else {
|
|
|
- add(t2, t1, 2) or_return;
|
|
|
+ internal_add(t2, t1, 2) or_return;
|
|
|
}
|
|
|
- return internal_mul(res, t1, t2, allocator);
|
|
|
+ return internal_mul(res, t1, t2);
|
|
|
}
|
|
|
|
|
|
if num_factors > 1 {
|
|
|
mid := (start + num_factors) | 1;
|
|
|
- _private_int_recursive_product(t1, start, mid, level + 1, allocator) or_return;
|
|
|
- _private_int_recursive_product(t2, mid, stop, level + 1, allocator) or_return;
|
|
|
- return internal_mul(res, t1, t2, allocator);
|
|
|
+ _private_int_recursive_product(t1, start, mid, level + 1) or_return;
|
|
|
+ _private_int_recursive_product(t2, mid, stop, level + 1) or_return;
|
|
|
+ return internal_mul(res, t1, t2);
|
|
|
}
|
|
|
|
|
|
if num_factors == 1 {
|
|
|
- return #force_inline internal_set(res, start, true, allocator);
|
|
|
+ return #force_inline internal_set(res, start, true);
|
|
|
}
|
|
|
|
|
|
- return #force_inline internal_one(res, true, allocator);
|
|
|
+ return #force_inline internal_one(res, true);
|
|
|
}
|
|
|
|
|
|
/*
|