Browse Source

Merge branch 'master' of https://github.com/odin-lang/Odin

gingerBill 4 years ago
parent
commit
9fb486b2ad

+ 0 - 2
core/math/big/api.odin

@@ -9,9 +9,7 @@ package math_big
 	The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
 
 	This file collects public proc maps and their aliases.
-/*
 
-*/
 	=== === === === === === === === === === === === === === === === === === === === === === === ===
 	                                    Basic arithmetic.
 	                                    See `public.odin`.

+ 6 - 6
core/math/big/build.bat

@@ -1,8 +1,8 @@
 @echo off
-odin run . -vet
+:odin run . -vet
 : -o:size
-:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check && python test.py -fast-tests
-:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check  && python test.py -fast-tests
-:odin build . -build-mode:shared -show-timings -o:size  && python test.py -fast-tests
-:odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check && python test.py -fast-tests
-:odin build . -build-mode:shared -show-timings -o:speed && python test.py -fast-tests
+:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
+:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
+:odin build . -build-mode:shared -show-timings -o:size -define:MATH_BIG_EXE=false && python test.py -fast-tests
+odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check -define:MATH_BIG_EXE=false && python test.py -fast-tests
+:odin build . -build-mode:shared -show-timings -o:speed -define:MATH_BIG_EXE=false && python test.py -fast-tests

+ 16 - 4
core/math/big/common.odin

@@ -27,10 +27,22 @@ import "core:intrinsics"
 	`initialize_constants` also replaces the other `_DEFAULT_*` cutoffs with custom compile-time values if so `#config`ured.
 
 */
-MUL_KARATSUBA_CUTOFF := initialize_constants();
-SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
-MUL_TOOM_CUTOFF      := _DEFAULT_MUL_TOOM_CUTOFF;
-SQR_TOOM_CUTOFF      := _DEFAULT_SQR_TOOM_CUTOFF;
+
+/*
+	There is a bug with DLL globals. They don't get set.
+	To allow tests to run we add `-define:MATH_BIG_EXE=false` to hardcode the cutoffs for now.
+*/
+when #config(MATH_BIG_EXE, true) {
+	MUL_KARATSUBA_CUTOFF := initialize_constants();
+	SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
+	MUL_TOOM_CUTOFF      := _DEFAULT_MUL_TOOM_CUTOFF;
+	SQR_TOOM_CUTOFF      := _DEFAULT_SQR_TOOM_CUTOFF;
+} else {
+	MUL_KARATSUBA_CUTOFF := _DEFAULT_MUL_KARATSUBA_CUTOFF;
+	SQR_KARATSUBA_CUTOFF := _DEFAULT_SQR_KARATSUBA_CUTOFF;
+	MUL_TOOM_CUTOFF      := _DEFAULT_MUL_TOOM_CUTOFF;
+	SQR_TOOM_CUTOFF      := _DEFAULT_SQR_TOOM_CUTOFF;	
+}
 
 /*
 	These defaults were tuned on an AMD A8-6600K (64-bit) using libTomMath's `make tune`.

+ 10 - 13
core/math/big/example.odin

@@ -206,19 +206,16 @@ demo :: proc() {
 	a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
 	defer destroy(a, b, c, d, e, f);
 
-	set(a, 64336);
-	fmt.println("--- --- --- ---");
-	int_to_byte(a);
-	fmt.println("--- --- --- ---");
-	int_to_byte_little(a);
-	fmt.println("--- --- --- ---");
-
-	set(b, -64336);
-	fmt.println("--- --- --- ---");
-	int_to_byte(b);
-	fmt.println("--- --- --- ---");
-	int_to_byte_little(b);
-	fmt.println("--- --- --- ---");
+	atoi(a, "12980742146337069150589594264770969721", 10);
+	print("a: ", a, 10, true, true, true);
+	atoi(b, "4611686018427387904", 10);
+	print("b: ", b, 10, true, true, true);
+
+	if err := internal_divmod(c, d, a, b); err != nil {
+		fmt.printf("Error: %v\n", err);
+	}
+	print("c: ", c);
+	print("c: ", d);
 }
 
 main :: proc() {

+ 45 - 4
core/math/big/internal.odin

@@ -36,6 +36,8 @@ import "core:mem"
 import "core:intrinsics"
 import rnd "core:math/rand"
 
+import "core:fmt"
+
 /*
 	Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7.
 
@@ -260,6 +262,12 @@ internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context
 }
 internal_add :: proc { internal_int_add_signed, internal_int_add_digit, };
 
+
+internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
+	return #force_inline internal_add(dest, dest, 1);
+}
+internal_incr :: proc { internal_int_incr, };
+
 /*
 	Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
 	Handbook of Applied Cryptography, algorithm 14.9.
@@ -458,6 +466,11 @@ internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := co
 
 internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, };
 
+internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
+	return #force_inline internal_sub(dest, dest, 1);
+}
+internal_decr :: proc { internal_int_decr, };
+
 /*
 	dest = src  / 2
 	dest = src >> 1
@@ -703,7 +716,6 @@ internal_sqr :: proc (dest, src: ^Int, allocator := context.allocator) -> (res:
 */
 internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
 	context.allocator = allocator;
-
 	if denominator.used == 0 { return .Division_by_Zero; }
 	/*
 		If numerator < denominator then quotient = 0, remainder = numerator.
@@ -718,8 +730,10 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
 		return nil;
 	}
 
-	if false && (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
-		// err = _int_div_recursive(quotient, remainder, numerator, denominator);
+	if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used / 3) * 2) {
+		assert(denominator.used >= 160 && numerator.used >= 240, "MUL_KARATSUBA_CUTOFF global not properly set.");
+		err = _private_int_div_recursive(quotient, remainder, numerator, denominator);
+		// err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
 	} else {
 		when true {
 			err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
@@ -1740,6 +1754,29 @@ internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (er
 }
 internal_neg :: proc { internal_int_neg, };
 
+/*
+	hac 14.61, pp608.
+*/
+internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+	context.allocator = allocator;
+	/*
+		For all n in N and n > 0, n = 0 mod 1.
+	*/
+	if internal_is_positive(a) && internal_cmp(b, 1) == 0 { return internal_zero(dest);	}
+
+	/*
+		`b` cannot be negative and has to be > 1
+	*/
+	if internal_is_negative(b) && internal_cmp(b, 1) != 1 { return .Invalid_Argument; }
+
+	/*
+		If the modulus is odd we can use a faster routine instead.
+	*/
+	if internal_is_odd(b) { return _private_inverse_modulo_odd(dest, a, b); }
+
+	return _private_inverse_modulo(dest, a, b);
+}
+internal_invmod :: proc{ internal_int_inverse_modulo, };
 
 /*
 	Helpers to extract values from the `Int`.
@@ -1991,7 +2028,11 @@ internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: T, err: Error) where intr
 internal_get :: proc { internal_int_get, };
 
 internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) {
-	l   := min(a.used, 17); // log2(max(f64)) is approximately 1020, or 17 legs.
+	/*
+		log2(max(f64)) is approximately 1020, or 17 legs with the 64-bit storage.
+	*/
+	legs :: 1020 / _DIGIT_BITS;
+	l   := min(a.used, legs);
 	fac := f64(1 << _DIGIT_BITS);
 	d   := 0.0;
 

+ 45 - 0
core/math/big/prime.odin

@@ -31,3 +31,48 @@ int_prime_is_divisible :: proc(a: ^Int, allocator := context.allocator) -> (res:
 	*/
 	return false, nil;
 }
+
+number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {
+	switch {
+	case bit_size <=    80:
+		return - 1;		/* Use deterministic algorithm for size <= 80 bits */
+	case bit_size >=    81 && bit_size <     96:
+		return 37;		/* max. error = 2^(-96)  */
+	case bit_size >=    96 && bit_size <    128:
+		return 32;		/* max. error = 2^(-96)  */
+	case bit_size >=   128 && bit_size <    160:
+		return 40;		/* max. error = 2^(-112) */
+	case bit_size >=   160 && bit_size <    256:
+		return 35;		/* max. error = 2^(-112) */
+	case bit_size >=   256 && bit_size <    384:
+		return 27;		/* max. error = 2^(-128) */
+	case bit_size >=   384 && bit_size <    512:
+		return 16;		/* max. error = 2^(-128) */
+	case bit_size >=   512 && bit_size <    768:
+		return 18;		/* max. error = 2^(-160) */
+	case bit_size >=   768 && bit_size <    896:
+		return 11;		/* max. error = 2^(-160) */
+	case bit_size >=   896 && bit_size <  1_024:
+		return 10;		/* max. error = 2^(-160) */
+	case bit_size >= 1_024 && bit_size <  1_536:
+		return 12;		/* max. error = 2^(-192) */
+	case bit_size >= 1_536 && bit_size <  2_048:
+		return  8;		/* max. error = 2^(-192) */
+	case bit_size >= 2_048 && bit_size <  3_072:
+		return  6;		/* max. error = 2^(-192) */
+	case bit_size >= 3_072 && bit_size <  4_096:
+		return  4;		/* max. error = 2^(-192) */
+	case bit_size >= 4_096 && bit_size <  5_120:
+		return  5;		/* max. error = 2^(-256) */
+	case bit_size >= 5_120 && bit_size <  6_144:
+		return  4;		/* max. error = 2^(-256) */
+	case bit_size >= 6_144 && bit_size <  8_192:
+		return  4;		/* max. error = 2^(-256) */
+	case bit_size >= 8_192 && bit_size <  9_216:
+		return  3;		/* max. error = 2^(-256) */
+	case bit_size >= 9_216 && bit_size < 10_240:
+		return  3;		/* max. error = 2^(-256) */
+	case:
+		return  2;		/* For keysizes bigger than 10_240 use always at least 2 Rounds */
+	}
+}

+ 478 - 2
core/math/big/private.odin

@@ -430,7 +430,7 @@ _private_int_sqr_toom :: proc(dest, src: ^Int, allocator := context.allocator) -
 	context.allocator = allocator;
 
 	S0, a0, a1, a2 := &Int{}, &Int{}, &Int{}, &Int{};
-	defer destroy(S0, a0, a1, a2);
+	defer internal_destroy(S0, a0, a1, a2);
 
 	/*
 		Init temps.
@@ -752,6 +752,188 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
 	return nil;
 }
 
+/*
+	Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from:
+
+		Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
+		Vol. 18. Cambridge University Press, 2010
+		Available online at https://arxiv.org/pdf/1004.4710
+
+	pages 19ff. in the above online document.
+*/
+_private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+	context.allocator = allocator;
+
+	A1, A2, B1, B0, Q1, Q0, R1, R0, t := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+	defer internal_destroy(A1, A2, B1, B0, Q1, Q0, R1, R0, t);
+
+	m := a.used - b.used;
+	k := m / 2;
+
+	if m < MUL_KARATSUBA_CUTOFF { return _private_int_div_school(quotient, remainder, a, b); }
+
+	if err = internal_init_multi(A1, A2, B1, B0, Q1, Q0, R1, R0, t); err != nil { return err; }
+
+	/*
+		`B1` = `b` / `beta`^`k`, `B0` = `b` % `beta`^`k`
+	*/
+	if err = internal_shrmod(B1, B0, b, k * _DIGIT_BITS);            err != nil { return err; }
+
+	/*
+		(Q1, R1) =  RecursiveDivRem(A / beta^(2k), B1)
+	*/
+	if err = internal_shrmod(A1, t, a, 2 * k * _DIGIT_BITS);         err != nil { return err; }
+	if err = _private_div_recursion(Q1, R1, A1, B1);                 err != nil { return err; }
+
+	/*
+		A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k)
+	*/
+	if err = internal_shl_digit(R1, 2 * k);                          err != nil { return err; }
+	if err = internal_add(A1, R1, t);                                err != nil { return err; }
+	if err = internal_mul(t, Q1, B0);                                err != nil { return err; }
+
+	/*
+		While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
+	*/
+	if internal_cmp(A1, 0) == -1 {
+		if internal_shl(t, b, k * _DIGIT_BITS);                      err != nil { return err; }
+
+		for {
+			if err = internal_decr(Q1);                              err != nil { return err; }
+			if err = internal_add(A1, A1, t);                        err != nil { return err; }
+			if internal_cmp(A1, 0) != -1 { break; }
+		}
+	}
+
+	/*
+		(Q0, R0) =  RecursiveDivRem(A1 / beta^(k), B1)
+	*/
+	if internal_shrmod(A1, t, A1, k * _DIGIT_BITS);                  err != nil { return err; }
+	if _private_div_recursion(Q0, R0, A1, B1);                       err != nil { return err; }
+
+	/*
+		A2 = (R0*beta^k) +  (A1 % beta^k) - (Q0*B0)
+	*/
+	if err = internal_shl_digit(R0, k);                              err != nil { return err; }
+	if err = internal_add(A2, R0, t);                                err != nil { return err; } 
+	if err = internal_mul(t, Q0, B0);                                err != nil { return err; }
+	if err = internal_sub(A2, A2, t);                                err != nil { return err; }
+
+	/*
+		While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
+	*/
+	for internal_cmp(A2, 0) == -1 {
+		if err = internal_decr(Q0);                                  err != nil { return err; }
+		if err = internal_add(A2, A2, b);                            err != nil { return err; }
+	}
+
+	/*
+		Return q = (Q1*beta^k) + Q0, r = A2.
+	*/
+	if err = internal_shl_digit(Q1, k);                              err != nil { return err; }
+	if err = internal_add(quotient, Q1, Q0);                         err != nil { return err; }
+
+	return internal_copy(remainder, A2);
+}
+
+_private_int_div_recursive :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+	context.allocator = allocator;
+
+	A, B, Q, Q1, R, A_div, A_mod := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+	defer internal_destroy(A, B, Q, Q1, R, A_div, A_mod);
+
+	if err = internal_init_multi(A, B, Q, Q1, R, A_div, A_mod);      err != nil { return err; }
+
+	/*
+		Most significant bit of a limb.
+		Assumes  _DIGIT_MAX < (sizeof(DIGIT) * sizeof(u8)).
+	*/
+	msb := (_DIGIT_MAX + DIGIT(1)) >> 1;
+	sigma := 0;
+	msb_b := b.digit[b.used - 1];
+	for msb_b < msb {
+		sigma += 1;
+		msb_b <<= 1;
+	}
+
+	/*
+		Use that sigma to normalize B.
+	*/
+	if err = internal_shl(B, b, sigma);                              err != nil { return err; }
+	if err = internal_shl(A, a, sigma);                              err != nil { return err; }
+
+	/*
+		Fix the sign.
+	*/
+	neg := a.sign != b.sign;
+	A.sign = .Zero_or_Positive; B.sign = .Zero_or_Positive;
+
+	/*
+		If the magnitude of "A" is not more more than twice that of "B" we can work
+		on them directly, otherwise we need to work at "A" in chunks.
+	*/
+	n := B.used;
+	m := A.used - B.used;
+
+	/*
+		Q = 0. We already ensured that when we called `internal_init_multi`.
+	*/
+	for m > n {
+		/*
+			(q, r) = RecursiveDivRem(A / (beta^(m-n)), B)
+		*/
+		j := (m - n) * _DIGIT_BITS;
+		if err = internal_shrmod(A_div, A_mod, A, j);                err != nil { return err; }
+		if err = _private_div_recursion(Q1, R, A_div, B);            err != nil { return err; }
+
+		/*
+			Q = (Q*beta!(n)) + q
+		*/
+		if err = internal_shl(Q, Q, n * _DIGIT_BITS);                err != nil { return err; }
+		if err = internal_add(Q, Q, Q1);                             err != nil { return err; }
+
+		/*
+			A = (r * beta^(m-n)) + (A % beta^(m-n))
+		*/
+		if err = internal_shl(R, R, (m - n) * _DIGIT_BITS);          err != nil { return err; }
+		if err = internal_add(A, R, A_mod);                          err != nil { return err; }
+
+		/*
+			m = m - n
+		*/
+		m -= n;
+	}
+
+	/*
+		(q, r) = RecursiveDivRem(A, B)
+	*/
+	if err = _private_div_recursion(Q1, R, A, B);                    err != nil { return err; }
+
+	/*
+		Q = (Q * beta^m) + q, R = r
+	*/
+	if err = internal_shl(Q, Q, m * _DIGIT_BITS);                    err != nil { return err; }
+	if err = internal_add(Q, Q, Q1);                                 err != nil { return err; }
+
+	/*
+		Get sign before writing to dest.
+	*/
+	R.sign = .Zero_or_Positive if internal_is_zero(Q) else a.sign;
+
+	if quotient != nil {
+		swap(quotient, Q);
+		quotient.sign = .Negative if neg else .Zero_or_Positive;
+	}
+	if remainder != nil {
+		/*
+			De-normalize the remainder.
+		*/
+		if err = internal_shrmod(R, nil, R, sigma);                  err != nil { return err; }
+		swap(remainder, R);
+	}
+	return nil;
+}
+
 /*
 	Slower bit-bang division... also smaller.
 */
@@ -1040,7 +1222,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
 */
 _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
 	bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
-	defer destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
+	defer internal_destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
 
 	ic := #force_inline internal_cmp(a, base);
 	if ic == -1 || ic == 0 {
@@ -1100,6 +1282,300 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
 	return;
 }
 
+
+/*
+	hac 14.61, pp608
+*/
+_private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+	context.allocator = allocator;
+	x, y, u, v, A, B, C, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+	defer internal_destroy(x, y, u, v, A, B, C, D);
+
+	/*
+		`b` cannot be negative.
+	*/
+	if b.sign == .Negative || internal_is_zero(b)                    { return .Invalid_Argument; }
+
+	/*
+		init temps.
+	*/
+	if err = internal_init_multi(x, y, u, v, A, B, C, D); err != nil { return err; }
+
+	/*
+		`x` = `a` % `b`, `y` = `b`
+	*/
+	if err = internal_mod(x, a, b);                       err != nil { return err; }
+	if err = internal_copy(y, b);                         err != nil { return err; }
+
+	/*
+		2. [modified] if x,y are both even then return an error!
+	*/
+	if internal_is_even(x) && internal_is_even(y)                    { return .Invalid_Argument; }
+
+	/*
+		3. u=x, v=y, A=1, B=0, C=0, D=1
+	*/
+	if err = internal_copy(u, x);                         err != nil { return err; }
+	if err = internal_copy(v, y);                         err != nil { return err; }
+	if err = internal_one(A);                             err != nil { return err; }
+	if err = internal_one(D);                             err != nil { return err; }
+
+	for {
+		/*
+			4.  while `u` is even do:
+		*/
+		for internal_is_even(u) {
+			/*
+				4.1 `u` = `u` / 2
+			*/
+			if err = internal_int_shr1(u, u);             err != nil { return err; }
+
+			/*
+				4.2 if `A` or `B` is odd then:
+			*/
+			if internal_is_odd(A) || internal_is_odd(B) {
+				/*
+					`A` = (`A`+`y`) / 2, `B` = (`B`-`x`) / 2
+				*/
+				if err = internal_add(A, A, y);           err != nil { return err; }
+				if err = internal_add(B, B, x);           err != nil { return err; }
+			}
+			/*
+				`A` = `A` / 2, `B` = `B` / 2
+			*/
+			if err = internal_int_shr1(A, A);             err != nil { return err; }
+			if err = internal_int_shr1(B, B);             err != nil { return err; }
+		}
+
+		/*
+			5.  while `v` is even do:
+		*/
+		for internal_is_even(v) {
+			/*
+				5.1 `v` = `v` / 2
+			*/
+			if err = internal_int_shr1(v, v);             err != nil { return err; }
+
+			/*
+				5.2 if `C` or `D` is odd then:
+			*/
+			if internal_is_odd(C) || internal_is_odd(D) {
+				/*
+					`C` = (`C`+`y`) / 2, `D` = (`D`-`x`) / 2
+				*/
+				if err = internal_add(C, C, y);           err != nil { return err; }
+				if err = internal_add(D, D, x);           err != nil { return err; }
+			}
+			/*
+				`C` = `C` / 2, `D` = `D` / 2
+			*/
+			if err = internal_int_shr1(C, C);             err != nil { return err; }
+			if err = internal_int_shr1(D, D);             err != nil { return err; }
+		}
+
+		/*
+			6.  if `u` >= `v` then:
+		*/
+		if internal_cmp(u, v) != -1 {
+			/*
+				`u` = `u` - `v`, `A` = `A` - `C`, `B` = `B` - `D`
+			*/
+			if err = internal_sub(u, u, v);               err != nil { return err; }
+			if err = internal_sub(A, A, C);               err != nil { return err; }
+			if err = internal_sub(B, B, D);               err != nil { return err; }
+		} else {
+			/* v - v - u, C = C - A, D = D - B */
+			if err = internal_sub(v, v, u);               err != nil { return err; }
+			if err = internal_sub(C, C, A);               err != nil { return err; }
+			if err = internal_sub(D, D, B);               err != nil { return err; }
+		}
+
+		/*
+			If not zero goto step 4
+		*/
+		if internal_is_zero(u)                                       { break; }
+	}
+
+	/*
+		Now `a` = `C`, `b` = `D`, `gcd` == `g`*`v`
+	*/
+
+	/*
+		If `v` != `1` then there is no inverse.
+	*/
+	if internal_cmp(v, 1) !=  0                                      { return .Invalid_Argument; }
+
+	/*
+		If its too low.
+	*/
+	if internal_cmp(C, 0) == -1 {
+		if err = internal_add(C, C, b); err != nil                   { return err; }
+	}
+
+	/*
+		Too big.
+	*/
+	if internal_cmp(C, 0) != -1 {
+		if err = internal_sub(C, C, b); err != nil                   { return err; }
+	}
+
+	/*
+		`C` is now the inverse.
+	*/
+	swap(dest, C);
+
+	return;
+}
+
+/*
+	Computes the modular inverse via binary extended Euclidean algorithm, that is `dest` = 1 / `a` mod `b`.
+
+	Based on slow invmod except this is optimized for the case where `b` is odd,
+	as per HAC Note 14.64 on pp. 610.
+*/
+_private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+	context.allocator = allocator;
+	x, y, u, v, B, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+	defer internal_destroy(x, y, u, v, B, D);
+
+	sign: Sign;
+
+	/*
+		2. [modified] `b` must be odd.
+	*/
+	if internal_is_even(b)                                           { return .Invalid_Argument; }
+
+	/*
+		Init all our temps.
+	*/
+	if err = internal_init_multi(x, y, u, v, B, D); err != nil       { return err; }
+
+	/*
+		`x` == modulus, `y` == value to invert.
+	*/
+	if err = internal_copy(x, b);                   err != nil       { return err; }
+
+	/*
+		We need `y` = `|a|`.
+	*/
+	if err = internal_mod(y, a, b);                 err != nil       { return err; }
+
+	/*
+		If one of `x`, `y` is zero return an error!
+	*/
+	if internal_is_zero(x) || internal_is_zero(y)                    { return .Invalid_Argument; }
+
+	/*
+		3. `u` = `x`, `v` = `y`, `A` = 1, `B` = 0, `C` = 0, `D` = 1
+	*/
+	if err = internal_copy(u, x);                   err != nil       { return err; }
+	if err = internal_copy(v, y);                   err != nil       { return err; }
+
+	if err = internal_one(D);                       err != nil       { return err; }
+
+	for {
+		/*
+			4.  while `u` is even do.
+		*/
+		for internal_is_even(u) {
+			/*
+				4.1 `u` = `u` / 2
+			*/
+			if err = internal_int_shr1(u, u);       err != nil       { return err; }
+
+			/*
+				4.2 if `B` is odd then:
+			*/
+			if internal_is_odd(B) {
+				/*
+					`B` = (`B` - `x`) / 2
+				*/
+				if err = internal_sub(B, B, x);     err != nil       { return err; }
+			}
+
+			/*
+				`B` = `B` / 2
+			*/
+			if err = internal_int_shr1(B, B);       err != nil       { return err; }
+		}
+
+		/*
+			5.  while `v` is even do:
+		*/
+		for internal_is_even(v) {
+			/*
+				5.1 `v` = `v` / 2
+			*/
+			if err = internal_int_shr1(v, v);       err != nil       { return err; }
+
+			/*
+				5.2 if `D` is odd then:
+			*/
+			if internal_is_odd(D) {
+				/*
+					`D` = (`D` - `x`) / 2
+				*/
+				if err = internal_sub(D, D, x);     err != nil       { return err; }
+			}
+			/*
+				`D` = `D` / 2
+			*/
+			if err = internal_int_shr1(D, D);       err != nil       { return err; }
+		}
+
+		/*
+			6.  if `u` >= `v` then:
+		*/
+		if internal_cmp(u, v) != -1 {
+			/*
+				`u` = `u` - `v`, `B` = `B` - `D`
+			*/
+			if err = internal_sub(u, u, v);         err != nil       { return err; }
+			if err = internal_sub(B, B, D);         err != nil       { return err; }
+		} else {
+			/*
+				`v` - `v` - `u`, `D` = `D` - `B`
+			*/
+			if err = internal_sub(v, v, u);         err != nil       { return err; }
+			if err = internal_sub(D, D, B);         err != nil       { return err; }
+		}
+
+		/*
+			If not zero goto step 4.
+		*/
+		if internal_is_zero(u)                                       { break; }
+	}
+
+	/*
+		Now `a` = C, `b` = D, gcd == g*v
+	*/
+
+	/*
+		if `v` != 1 then there is no inverse
+	*/
+	if internal_cmp(v, 1) != 0                                       { return .Invalid_Argument; }
+
+	/*
+		`b` is now the inverse.
+	*/
+	sign = a.sign;
+	for internal_int_is_negative(D) {
+		if err = internal_add(D, D, b);             err != nil       { return err; }
+	}
+
+	/*
+		Too big.
+	*/
+	for internal_cmp_mag(D, b) != -1 {
+		if err = internal_sub(D, D, b);             err != nil       { return err; }
+	}
+
+	swap(dest, D);
+	dest.sign = sign;
+	return nil;
+}
+
+
 /*
 	Returns the log2 of an `Int`.
 	Assumes `a` not to be `nil` and to have been initialized.

+ 3 - 1
core/math/big/test.odin

@@ -26,7 +26,9 @@ PyRes :: struct {
 
 @export test_initialize_constants :: proc "c" () -> (res: u64) {
 	context = runtime.default_context();
-	return u64(initialize_constants());
+	res = u64(initialize_constants());
+	//assert(MUL_KARATSUBA_CUTOFF >= 40);
+	return res;
 }
 
 @export test_error_string :: proc "c" (err: Error) -> (res: cstring) {

+ 11 - 4
core/math/big/test.py

@@ -66,6 +66,8 @@ timed_or_fast.add_argument(
 
 args = parser.parse_args()
 
+EXIT_ON_FAIL = args.exit_on_fail
+
 #
 # How many iterations of each random test do we want to run?
 #
@@ -153,7 +155,7 @@ class Res(Structure):
 	_fields_ = [("res", c_char_p), ("err", c_uint64)]
 
 initialize_constants = load(l.test_initialize_constants, [], c_uint64)
-initialize_constants()
+print("initialize_constants: ", initialize_constants())
 
 error_string = load(l.test_error_string, [c_byte], c_char_p)
 
@@ -211,7 +213,7 @@ def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expecte
 			print(error, flush=True)
 			passed = False
 
-	if args.exit_on_fail and not passed: exit(res.err)
+	if EXIT_ON_FAIL and not passed: exit(res.err)
 
 	return passed
 
@@ -257,7 +259,7 @@ def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
 	try:
 		res  = sqr(*args)
 	except OSError as e:
-		print("{} while trying to square {} x {}.".format(e, a))
+		print("{} while trying to square {}.".format(e, a))
 		if EXIT_ON_FAIL: exit(3)
 		return False
 
@@ -268,7 +270,12 @@ def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
 
 def test_div(a = 0, b = 0, expected_error = Error.Okay):
 	args = [arg_to_odin(a), arg_to_odin(b)]
-	res  = div(*args)
+	try:
+		res  = div(*args)
+	except OSError as e:
+		print("{} while trying divide to {} / {}.".format(e, a, b))
+		if EXIT_ON_FAIL: exit(3)
+		return False
 	expected_result = None
 	if expected_error == Error.Okay:
 		#

+ 1 - 0
core/math/big/tune.odin

@@ -23,6 +23,7 @@ Category :: enum {
 	ctz,
 	sqr,
 	bitfield_extract,
+	rm_trials,
 };
 
 Event :: struct {