|
@@ -368,12 +368,7 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
|
|
|
when MATH_BIG_USE_FROBENIUS_TEST {
|
|
|
if !internal_int_prime_frobenius_underwood(a) or_return { return; }
|
|
|
} else {
|
|
|
-// if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
|
|
|
-// goto LBL_B;
|
|
|
-// }
|
|
|
-// if (!res) {
|
|
|
-// goto LBL_B;
|
|
|
-// }
|
|
|
+ if !internal_int_prime_strong_lucas_selfridge(a) or_return { return; }
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -540,7 +535,7 @@ internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.all
|
|
|
|
|
|
// Composite if N and (a+4)*(2*a+5) are not coprime.
|
|
|
internal_set(T1z, u32((a + 4) * ((2 * a) + 5)));
|
|
|
- internal_int_gcd_lcm(T1z, nil, T1z, N) or_return;
|
|
|
+ internal_int_gcd(T1z, T1z, N) or_return;
|
|
|
|
|
|
if !(T1z.used == 1 && T1z.digit[0] == 1) {
|
|
|
// Composite.
|
|
@@ -597,6 +592,241 @@ internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.all
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
+
|
|
|
+/*
|
|
|
+ Strong Lucas-Selfridge test.
|
|
|
+ returns true if it is a strong L-S prime, false if it is composite
|
|
|
+
|
|
|
+ Code ported from Thomas Ray Nicely's implementation of the BPSW test at http://www.trnicely.net/misc/bpsw.html
|
|
|
+
|
|
|
+ Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
|
|
|
+ Released into the public domain by the author, who disclaims any legal liability arising from its use.
|
|
|
+
|
|
|
+ The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
|
|
|
+ (If that name sounds familiar, he is the guy who found the fdiv bug in the Pentium CPU.)
|
|
|
+*/
|
|
|
+internal_int_prime_strong_lucas_selfridge :: proc(a: ^Int, allocator := context.allocator) -> (lucas_selfridge: bool, err: Error) {
|
|
|
+ // TODO: choose better variable names!
|
|
|
+
|
|
|
+ Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
+ defer internal_destroy(Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
|
|
|
+ such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
|
|
|
+ indicates that, if N is not a perfect square, D will "nearly
|
|
|
+ always" be "small." Just in case, an overflow trap for D is included.
|
|
|
+ */
|
|
|
+ internal_init_multi(Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz) or_return;
|
|
|
+
|
|
|
+ D := 5;
|
|
|
+ sign := 1;
|
|
|
+ Ds : int;
|
|
|
+
|
|
|
+ for {
|
|
|
+ Ds = sign * D;
|
|
|
+ sign = -sign;
|
|
|
+
|
|
|
+ internal_set(Dz, D) or_return;
|
|
|
+ internal_int_gcd(gcd, a, Dz) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ If 1 < GCD < `N` then `N` is composite with factor "D", and
|
|
|
+ Jacobi(D, N) is technically undefined (but often returned as zero).
|
|
|
+ */
|
|
|
+ if internal_gt(gcd, 1) && internal_lt(gcd, a) { return; }
|
|
|
+ if Ds < 0 { Dz.sign = .Negative; }
|
|
|
+
|
|
|
+ j := internal_int_kronecker(Dz, a) or_return;
|
|
|
+ if j == -1 { break; }
|
|
|
+
|
|
|
+ D += 2;
|
|
|
+ if D > max(int) - 2 { return false, .Invalid_Argument; }
|
|
|
+ }
|
|
|
+
|
|
|
+ Q := (1 - Ds) / 4; /* Required so D = P*P - 4*Q */
|
|
|
+
|
|
|
+ /*
|
|
|
+ NOTE: The conditions (a) N does not divide Q, and
|
|
|
+ (b) D is square-free or not a perfect square, are included by
|
|
|
+ some authors; e.g., "Prime numbers and computer methods for
|
|
|
+ factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
|
|
|
+ p. 130. For this particular application of Lucas sequences,
|
|
|
+ these conditions were found to be immaterial.
|
|
|
+ */
|
|
|
+
|
|
|
+ /*
|
|
|
+ Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
|
|
|
+ odd positive integer d and positive integer s for which
|
|
|
+ N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
|
|
|
+ The strong Lucas-Selfridge test then returns N as a strong
|
|
|
+ Lucas probable prime (slprp) if any of the following
|
|
|
+ conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
|
|
|
+ V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
|
|
|
+ (all equalities mod N). Thus d is the highest index of U that
|
|
|
+ must be computed (since V_2m is independent of U), compared
|
|
|
+ to U_{N+1} for the standard Lucas-Selfridge test; and no
|
|
|
+ index of V beyond (N+1)/2 is required, just as in the
|
|
|
+ standard Lucas-Selfridge test. However, the quantity Q^d must
|
|
|
+ be computed for use (if necessary) in the latter stages of
|
|
|
+ the test. The result is that the strong Lucas-Selfridge test
|
|
|
+ has a running time only slightly greater (order of 10 %) than
|
|
|
+ that of the standard Lucas-Selfridge test, while producing
|
|
|
+ only (roughly) 30 % as many pseudoprimes (and every strong
|
|
|
+ Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
|
|
|
+ the evidence indicates that the strong Lucas-Selfridge test is
|
|
|
+ more effective than the standard Lucas-Selfridge test, and a
|
|
|
+ Baillie-PSW test based on the strong Lucas-Selfridge test
|
|
|
+ should be more reliable.
|
|
|
+ */
|
|
|
+ internal_add(Np1, a, 1) or_return;
|
|
|
+ s := internal_count_lsb(Np1) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ This should round towards zero because Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
|
|
|
+ and mp_div_2d() is equivalent. Additionally: dividing an even number by two does not produce
|
|
|
+ any leftovers.
|
|
|
+ */
|
|
|
+ internal_int_shr(Dz, Np1, s) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ We must now compute U_d and V_d. Since d is odd, the accumulated
|
|
|
+ values U and V are initialized to U_1 and V_1 (if the target
|
|
|
+ index were even, U and V would be initialized instead to U_0=0
|
|
|
+ and V_0=2). The values of U_2m and V_2m are also initialized to
|
|
|
+ U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
|
|
|
+ U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
|
|
|
+ (1, 2, 3, ...) of t are on (the zero bit having been accounted
|
|
|
+ for in the initialization of U and V), these values are then
|
|
|
+ combined with the previous totals for U and V, using the
|
|
|
+ composition formulas for addition of indices.
|
|
|
+ */
|
|
|
+ internal_set(Uz, 1) or_return;
|
|
|
+ internal_set(Vz, 1) or_return; // P := 1; /* Selfridge's choice */
|
|
|
+ internal_set(U2mz, 1) or_return;
|
|
|
+ internal_set(V2mz, 1) or_return; // P := 1; /* Selfridge's choice */
|
|
|
+ internal_set(Qmz, Q) or_return;
|
|
|
+
|
|
|
+ internal_int_shl1(Q2mz, Qmz) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Initializes calculation of Q^d.
|
|
|
+ */
|
|
|
+ internal_set(Qkdz, Q) or_return;
|
|
|
+ Nbits := internal_count_bits(Dz);
|
|
|
+
|
|
|
+ for u := 1; u < Nbits; u += 1 { /* zero bit off, already accounted for */
|
|
|
+ /*
|
|
|
+ Formulas for doubling of indices (carried out mod N). Note that
|
|
|
+ the indices denoted as "2m" are actually powers of 2, specifically
|
|
|
+ 2^(ul-1) beginning each loop and 2^ul ending each loop.
|
|
|
+ U_2m = U_m*V_m
|
|
|
+ V_2m = V_m*V_m - 2*Q^m
|
|
|
+ */
|
|
|
+ internal_mul(U2mz, U2mz, V2mz) or_return;
|
|
|
+ internal_mod(U2mz, U2mz, a) or_return;
|
|
|
+ internal_sqr(V2mz, V2mz) or_return;
|
|
|
+ internal_sub(V2mz, V2mz, Q2mz) or_return;
|
|
|
+ internal_mod(V2mz, V2mz, a) or_return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Must calculate powers of Q for use in V_2m, also for Q^d later.
|
|
|
+ */
|
|
|
+ internal_sqr(Qmz, Qmz) or_return;
|
|
|
+
|
|
|
+ /* Prevents overflow. Still necessary without a fixed prealloc'd mem.? */
|
|
|
+ internal_mod(Qmz, Qmz, a) or_return;
|
|
|
+ internal_int_shl1(Q2mz, Qmz) or_return;
|
|
|
+
|
|
|
+ if internal_int_bitfield_extract_bool(Dz, u) or_return {
|
|
|
+ /*
|
|
|
+ Formulas for addition of indices (carried out mod N);
|
|
|
+ U_(m+n) = (U_m*V_n + U_n*V_m)/2
|
|
|
+ V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
|
|
|
+ Be careful with division by 2 (mod N)!
|
|
|
+ */
|
|
|
+ internal_mul(T1z, U2mz, Vz) or_return;
|
|
|
+ internal_mul(T2z, Uz, V2mz) or_return;
|
|
|
+ internal_mul(T3z, V2mz, Vz) or_return;
|
|
|
+ internal_mul(T4z, U2mz, Uz) or_return;
|
|
|
+ internal_mul(T4z, T4z, Ds) or_return;
|
|
|
+
|
|
|
+ internal_add(Uz, T1z, T2z) or_return;
|
|
|
+
|
|
|
+ if internal_is_odd(Uz) {
|
|
|
+ internal_add(Uz, Uz, a) or_return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ This should round towards negative infinity because Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
|
|
|
+ But `internal_shr1` does not do so, it is truncating instead.
|
|
|
+ */
|
|
|
+ oddness := internal_is_odd(Uz);
|
|
|
+ internal_int_shr1(Uz, Uz) or_return;
|
|
|
+ if internal_is_negative(Uz) && oddness {
|
|
|
+ internal_sub(Uz, Uz, 1) or_return;
|
|
|
+ }
|
|
|
+ internal_add(Vz, T3z, T4z) or_return;
|
|
|
+ if internal_is_odd(Vz) {
|
|
|
+ internal_add(Vz, Vz, a) or_return;
|
|
|
+ }
|
|
|
+
|
|
|
+ oddness = internal_is_odd(Vz);
|
|
|
+ internal_int_shr1(Vz, Vz) or_return;
|
|
|
+ if internal_is_negative(Vz) && oddness {
|
|
|
+ internal_sub(Vz, Vz, 1) or_return;
|
|
|
+ }
|
|
|
+ internal_mod(Uz, Uz, a) or_return;
|
|
|
+ internal_mod(Vz, Vz, a) or_return;
|
|
|
+
|
|
|
+ /* Calculating Q^d for later use */
|
|
|
+ internal_mul(Qkdz, Qkdz, Qmz) or_return;
|
|
|
+ internal_mod(Qkdz, Qkdz, a) or_return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If U_d or V_d is congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */
|
|
|
+ if internal_is_zero(Uz) || internal_is_zero(Vz) {
|
|
|
+ return true, nil;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
|
|
|
+ 1995/6) omits the condition V0 on p.142, but includes it on
|
|
|
+ p. 130. The condition is NECESSARY; otherwise the test will
|
|
|
+ return false negatives---e.g., the primes 29 and 2000029 will be
|
|
|
+ returned as composite.
|
|
|
+ */
|
|
|
+
|
|
|
+ /*
|
|
|
+ Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
|
|
|
+ by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
|
|
|
+ these are congruent to 0 mod N, then N is a prime or a strong
|
|
|
+ Lucas pseudoprime.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* Initialize 2*Q^(d*2^r) for V_2m */
|
|
|
+ internal_int_shr1(Q2kdz, Qkdz) or_return;
|
|
|
+
|
|
|
+ for r := 1; r < s; r += 1 {
|
|
|
+ internal_sqr(Vz, Vz) or_return;
|
|
|
+ internal_sub(Vz, Vz, Q2kdz) or_return;
|
|
|
+ internal_mod(Vz, Vz, a) or_return;
|
|
|
+ if internal_is_zero(Vz) {
|
|
|
+ return true, nil;
|
|
|
+ }
|
|
|
+ /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
|
|
|
+ if r < (s - 1) {
|
|
|
+ internal_sqr(Qkdz, Qkdz) or_return;
|
|
|
+ internal_mod(Qkdz, Qkdz, a) or_return;
|
|
|
+ internal_int_shl1(Q2kdz, Qkdz) or_return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return false, nil;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
/*
|
|
|
Returns the number of Rabin-Miller trials needed for a given bit size.
|
|
|
*/
|