Răsfoiți Sursa

Add deprecated and require_results attributes to math_functions.odin

gingerBill 1 an în urmă
părinte
comite
d1e114742e
1 a modificat fișierele cu 74 adăugiri și 12 ștergeri
  1. 74 12
      vendor/box2d/math_functions.odin

+ 74 - 12
vendor/box2d/math_functions.odin

@@ -28,155 +28,184 @@ Mat22_zero         :: Mat22{0, 0, 0, 0}
 
 
 // @return the minimum of two floats
+@(deprecated="Prefer the built-in 'min(a, b)'", require_results)
 MinFloat :: proc "c" (a, b: f32) -> f32 {
 	return min(a, b)
 }
 
 // @return the maximum of two floats
+@(deprecated="Prefer the built-in 'max(a, b)'", require_results)
 MaxFloat :: proc "c" (a, b: f32) -> f32 {
 	return max(a, b)
 }
 
 // @return the absolute value of a float
+@(deprecated="Prefer the built-in 'abs(a)'", require_results)
 AbsFloat :: proc "c" (a: f32) -> f32 {
 	return abs(a)
 }
 
 // @return a f32 clamped between a lower and upper bound
+@(deprecated="Prefer the built-in 'clamp(a, lower, upper)'", require_results)
 ClampFloat :: proc "c" (a, lower, upper: f32) -> f32 {
 	return clamp(a, lower, upper)
 }
 
 // @return the minimum of two integers
+@(deprecated="Prefer the built-in 'min(a, b)'", require_results)
 MinInt :: proc "c" (a, b: c.int) -> c.int {
 	return min(a, b)
 }
 
 // @return the maximum of two integers
+@(deprecated="Prefer the built-in 'max(a, b)'", require_results)
 MaxInt :: proc "c" (a, b: c.int) -> c.int {
 	return max(a, b)
 }
 
 // @return the absolute value of an integer
+@(deprecated="Prefer the built-in 'abs(a)'", require_results)
 AbsInt :: proc "c" (a: c.int) -> c.int {
 	return abs(a)
 }
 
 // @return an integer clamped between a lower and upper bound
+@(deprecated="Prefer the built-in 'clamp(a, lower, upper)'", require_results)
 ClampInt :: proc "c" (a, lower, upper: c.int) -> c.int {
 	return clamp(a, lower, upper)
 }
 
 // Vector dot product
+@(require_results)
 Dot :: proc "c" (a, b: Vec2) -> f32 {
 	return a.x * b.x + a.y * b.y
 }
 
 // Vector cross product. In 2D this yields a scalar.
+@(require_results)
 Cross :: proc "c" (a, b: Vec2) -> f32 {
 	return a.x * b.y - a.y * b.x
 }
 
 // Perform the cross product on a vector and a scalar. In 2D this produces a vector.
+@(require_results)
 CrossVS :: proc "c" (v: Vec2, s: f32) -> Vec2 {
 	return {s * v.y, -s * v.x}
 }
 
 // Perform the cross product on a scalar and a vector. In 2D this produces a vector.
+@(require_results)
 CrossSV :: proc "c" (s: f32, v: Vec2) -> Vec2 {
 	return {-s * v.y, s * v.x}
 }
 
 // Get a left pointing perpendicular vector. Equivalent to b2CrossSV(1, v)
+@(require_results)
 LeftPerp :: proc "c" (v: Vec2) -> Vec2 {
 	return {-v.y, v.x}
 }
 
 // Get a right pointing perpendicular vector. Equivalent to b2CrossVS(v, 1)
+@(require_results)
 RightPerp :: proc "c" (v: Vec2) -> Vec2 {
 	return {v.y, -v.x}
 }
 
 // Vector addition
+@(deprecated="Prefer 'a + b'", require_results)
 Add :: proc "c" (a, b: Vec2) -> Vec2 {
 	return a + b
 }
 
 // Vector subtraction
+@(deprecated="Prefer 'a - b'", require_results)
 Sub :: proc "c" (a, b: Vec2) -> Vec2 {
 	return a - b
 }
 
 // Vector negation
+@(deprecated="Prefer '-a'", require_results)
 Neg :: proc "c" (a: Vec2) -> Vec2 {
 	return -a
 }
 
 // Vector linear interpolation
 // https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
+@(require_results)
 Lerp :: proc "c" (a, b: Vec2, t: f32) -> Vec2 {
 	return {(1 - t) * a.x + t * b.x, (1 - t) * a.y + t * b.y}
 }
 
 // Component-wise multiplication
+@(deprecated="Prefer 'a * b'", require_results)
 Mul :: proc "c" (a, b: Vec2) -> Vec2 {
 	return a * b
 }
 
 // Multiply a scalar and vector
+@(deprecated="Prefer 's * v'", require_results)
 MulSV :: proc "c" (s: f32, v: Vec2) -> Vec2 {
 	return s * v
 }
 
 // a + s * b
+@(deprecated="Prefer 'a + s * b'", require_results)
 MulAdd :: proc "c" (a: Vec2, s: f32, b: Vec2) -> Vec2 {
 	return a + s * b
 }
 
 // a - s * b
+@(deprecated="Prefer 'a - s * b'", require_results)
 MulSub :: proc "c" (a: Vec2, s: f32, b: Vec2) -> Vec2 {
 	return a - s * b
 }
 
 // Component-wise absolute vector
+@(require_results)
 Abs :: proc "c" (a: Vec2) -> (b: Vec2) {
-	b.x = AbsFloat(a.x)
-	b.y = AbsFloat(a.y)
+	b.x = abs(a.x)
+	b.y = abs(a.y)
 	return
 }
 
 // Component-wise minimum vector
+@(require_results)
 Min :: proc "c" (a, b: Vec2) -> (c: Vec2) {
-	c.x = MinFloat(a.x, b.x)
-	c.y = MinFloat(a.y, b.y)
+	c.x = min(a.x, b.x)
+	c.y = min(a.y, b.y)
 	return
 }
 
 // Component-wise maximum vector
+@(require_results)
 Max :: proc "c" (a, b: Vec2) -> (c: Vec2) {
-	c.x = MaxFloat(a.x, b.x)
-	c.y = MaxFloat(a.y, b.y)
+	c.x = max(a.x, b.x)
+	c.y = max(a.y, b.y)
 	return
 }
 
 // Component-wise clamp vector v into the range [a, b]
+@(require_results)
 Clamp :: proc "c" (v: Vec2, a, b: Vec2) -> (c: Vec2) {
-	c.x = ClampFloat(v.x, a.x, b.x)
-	c.y = ClampFloat(v.y, a.y, b.y)
+	c.x = clamp(v.x, a.x, b.x)
+	c.y = clamp(v.y, a.y, b.y)
 	return
 }
 
 // Get the length of this vector (the norm)
+@(require_results)
 Length :: proc "c" (v: Vec2) -> f32 {
 	return math.sqrt(v.x * v.x + v.y * v.y)
 }
 
 // Get the length squared of this vector
+@(require_results)
 LengthSquared :: proc "c" (v: Vec2) -> f32 {
 	return v.x * v.x + v.y * v.y
 }
 
 // Get the distance between two points
+@(require_results)
 Distance :: proc "c" (a, b: Vec2) -> f32 {
 	dx := b.x - a.x
 	dy := b.y - a.y
@@ -184,18 +213,21 @@ Distance :: proc "c" (a, b: Vec2) -> f32 {
 }
 
 // Get the distance squared between points
+@(require_results)
 DistanceSquared :: proc "c" (a, b: Vec2) -> f32 {
 	c := Vec2{b.x - a.x, b.y - a.y}
 	return c.x * c.x + c.y * c.y
 }
 
 // Make a rotation using an angle in radians
+@(require_results)
 MakeRot :: proc "c" (angle: f32) -> Rot {
 	// todo determinism
 	return {math.cos(angle), math.sin(angle)}
 }
 
 // Normalize rotation
+@(require_results)
 NormalizeRot :: proc "c" (q: Rot) -> Rot {
 	mag := math.sqrt(q.s * q.s + q.c * q.c)
 	invMag := f32(mag > 0.0 ? 1.0 / mag : 0.0)
@@ -203,6 +235,7 @@ NormalizeRot :: proc "c" (q: Rot) -> Rot {
 }
 
 // Is this rotation normalized?
+@(require_results)
 IsNormalized :: proc "c" (q: Rot) -> bool {
 	// larger tolerance due to failure on mingw 32-bit
 	qq := q.s * q.s + q.c * q.c
@@ -211,6 +244,7 @@ IsNormalized :: proc "c" (q: Rot) -> bool {
 
 // Normalized linear interpolation
 // https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
+@(require_results)
 NLerp :: proc "c" (q1: Rot, q2: Rot, t: f32) -> Rot {
 	omt := 1 - t
 	return NormalizeRot({
@@ -222,6 +256,7 @@ NLerp :: proc "c" (q1: Rot, q2: Rot, t: f32) -> Rot {
 // Integration rotation from angular velocity
 //	@param q1 initial rotation
 //	@param deltaAngle the angular displacement in radians
+@(require_results)
 IntegrateRotation :: proc "c" (q1: Rot, deltaAngle: f32) -> Rot {
 	// dc/dt = -omega * sin(t)
 	// ds/dt = omega * cos(t)
@@ -237,6 +272,7 @@ IntegrateRotation :: proc "c" (q1: Rot, deltaAngle: f32) -> Rot {
 //	@param q1 initial rotation
 //	@param q2 final rotation
 //	@param inv_h inverse time step
+@(require_results)
 ComputeAngularVelocity :: proc "c" (q1: Rot, q2: Rot, inv_h: f32) -> f32 {
 	// ds/dt = omega * cos(t)
 	// dc/dt = -omega * sin(t)
@@ -253,22 +289,26 @@ ComputeAngularVelocity :: proc "c" (q1: Rot, q2: Rot, inv_h: f32) -> f32 {
 }
 
 // Get the angle in radians in the range [-pi, pi]
+@(require_results)
 Rot_GetAngle :: proc "c" (q: Rot) -> f32 {
 	// todo determinism
 	return math.atan2(q.s, q.c)
 }
 
 // Get the x-axis
+@(require_results)
 Rot_GetXAxis :: proc "c" (q: Rot) -> Vec2 {
 	return {q.c, q.s}
 }
 
 // Get the y-axis
+@(require_results)
 Rot_GetYAxis :: proc "c" (q: Rot) -> Vec2 {
 	return {-q.s, q.c}
 }
 
 // Multiply two rotations: q * r
+@(require_results)
 MulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
 	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
 	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc]
@@ -280,6 +320,7 @@ MulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
 }
 
 // Transpose multiply two rotations: qT * r
+@(require_results)
 InvMulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
 	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
 	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc]
@@ -291,6 +332,7 @@ InvMulRot :: proc "c" (q, r: Rot) -> (qr: Rot) {
 }
 
 // relative angle between b and a (rot_b * inv(rot_a))
+@(require_results)
 RelativeAngle :: proc "c" (b, a: Rot) -> f32 {
 	// sin(b - a) = bs * ac - bc * as
 	// cos(b - a) = bc * ac + bs * as
@@ -300,6 +342,7 @@ RelativeAngle :: proc "c" (b, a: Rot) -> f32 {
 }
 
 // Convert an angle in the range [-2*pi, 2*pi] into the range [-pi, pi]
+@(require_results)
 UnwindAngle :: proc "c" (angle: f32) -> f32 {
 	if angle < -pi {
 		return angle + 2.0 * pi
@@ -310,16 +353,19 @@ UnwindAngle :: proc "c" (angle: f32) -> f32 {
 }
 
 // Rotate a vector
+@(require_results)
 RotateVector :: proc "c" (q: Rot, v: Vec2) -> Vec2 {
 	return {q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y}
 }
 
 // Inverse rotate a vector
+@(require_results)
 InvRotateVector :: proc "c" (q: Rot, v: Vec2) -> Vec2 {
 	return {q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y}
 }
 
 // Transform a point (e.g. local space to world space)
+@(require_results)
 TransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
 	x := (t.q.c * p.x - t.q.s * p.y) + t.p.x
 	y := (t.q.s * p.x + t.q.c * p.y) + t.p.y
@@ -327,6 +373,7 @@ TransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
 }
 
 // Inverse transform a point (e.g. world space to local space)
+@(require_results)
 InvTransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
 	vx := p.x - t.p.x
 	vy := p.y - t.p.y
@@ -335,6 +382,7 @@ InvTransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 {
 
 // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
 //    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
+@(require_results)
 MulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
 	C.q = MulRot(A.q, B.q)
 	C.p = RotateVector(A.q, B.p) + A.p
@@ -343,6 +391,7 @@ MulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
 
 // v2 = A.q' * (B.q * v1 + B.p - A.p)
 //    = A.q' * B.q * v1 + A.q' * (B.p - A.p)
+@(require_results)
 InvMulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
 	C.q = InvMulRot(A.q, B.q)
 	C.p = InvRotateVector(A.q, B.p-A.p)
@@ -350,11 +399,13 @@ InvMulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) {
 }
 
 // Multiply a 2-by-2 matrix times a 2D vector
+@(deprecated="Prefer 'A * v'", require_results)
 MulMV :: proc "c" (A: Mat22, v: Vec2) -> Vec2 {
 	return A * v
 }
 
 // Get the inverse of a 2-by-2 matrix
+@(require_results)
 GetInverse22 :: proc "c" (A: Mat22) -> Mat22 {
 	a := A[0, 0]
 	b := A[0, 1]
@@ -373,6 +424,7 @@ GetInverse22 :: proc "c" (A: Mat22) -> Mat22 {
 
 // Solve A * x = b, where b is a column vector. This is more efficient
 // than computing the inverse in one-shot cases.
+@(require_results)
 Solve22 :: proc "c" (A: Mat22, b: Vec2) -> Vec2 {
 	a11 := A[0, 0]
 	a12 := A[0, 1]
@@ -386,6 +438,7 @@ Solve22 :: proc "c" (A: Mat22, b: Vec2) -> Vec2 {
 }
 
 // Does a fully contain b
+@(require_results)
 AABB_Contains :: proc "c" (a, b: AABB) -> bool {
 	(a.lowerBound.x <= b.lowerBound.x) or_return
 	(a.lowerBound.y <= b.lowerBound.y) or_return
@@ -395,42 +448,49 @@ AABB_Contains :: proc "c" (a, b: AABB) -> bool {
 }
 
 // Get the center of the AABB.
+@(require_results)
 AABB_Center :: proc "c" (a: AABB) -> Vec2 {
 	return {0.5 * (a.lowerBound.x + a.upperBound.x), 0.5 * (a.lowerBound.y + a.upperBound.y)}
 }
 
 // Get the extents of the AABB (half-widths).
+@(require_results)
 AABB_Extents :: proc "c" (a: AABB) -> Vec2 {
 	return {0.5 * (a.upperBound.x - a.lowerBound.x), 0.5 * (a.upperBound.y - a.lowerBound.y)}
 }
 
 // Union of two AABBs
+@(require_results)
 AABB_Union :: proc "c" (a, b: AABB) -> (c: AABB) {
-	c.lowerBound.x = MinFloat(a.lowerBound.x, b.lowerBound.x)
-	c.lowerBound.y = MinFloat(a.lowerBound.y, b.lowerBound.y)
-	c.upperBound.x = MaxFloat(a.upperBound.x, b.upperBound.x)
-	c.upperBound.y = MaxFloat(a.upperBound.y, b.upperBound.y)
+	c.lowerBound.x = min(a.lowerBound.x, b.lowerBound.x)
+	c.lowerBound.y = min(a.lowerBound.y, b.lowerBound.y)
+	c.upperBound.x = max(a.upperBound.x, b.upperBound.x)
+	c.upperBound.y = max(a.upperBound.y, b.upperBound.y)
 	return
 }
 
+@(require_results)
 Float_IsValid :: proc "c" (a: f32) -> bool {
 	math.is_nan(a) or_return
 	math.is_inf(a) or_return
 	return true
 }
 
+@(require_results)
 Vec2_IsValid :: proc "c" (v: Vec2) -> bool {
 	(math.is_nan(v.x) || math.is_nan(v.y)) or_return
 	(math.is_inf(v.x) || math.is_inf(v.y)) or_return
 	return true
 }
 
+@(require_results)
 Rot_IsValid :: proc "c" (q: Rot) -> bool {
 	(math.is_nan(q.s) || math.is_nan(q.c)) or_return
 	(math.is_inf(q.s) || math.is_inf(q.c)) or_return
 	return IsNormalized(q)
 }
 
+@(require_results)
 Normalize :: proc "c" (v: Vec2) -> Vec2 {
 	length := Length(v)
 	if length < 1e-23 {
@@ -440,6 +500,7 @@ Normalize :: proc "c" (v: Vec2) -> Vec2 {
 	return invLength * v
 }
 
+@(require_results)
 NormalizeChecked :: proc "odin" (v: Vec2) -> Vec2 {
 	length := Length(v)
 	if length < 1e-23 {
@@ -449,6 +510,7 @@ NormalizeChecked :: proc "odin" (v: Vec2) -> Vec2 {
 	return invLength * v
 }
 
+@(require_results)
 GetLengthAndNormalize :: proc "c" (v: Vec2) -> (length: f32, vn: Vec2) {
 	length = Length(v)
 	if length < 1e-23 {