Browse Source

big: Add `_private_int_div_recursive`.

Jeroen van Rijn 4 years ago
parent
commit
dc02566a84
3 changed files with 209 additions and 12 deletions
  1. 9 6
      core/math/big/example.odin
  2. 14 2
      core/math/big/internal.odin
  3. 186 4
      core/math/big/private.odin

+ 9 - 6
core/math/big/example.odin

@@ -206,13 +206,16 @@ demo :: proc() {
 	a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
 	defer destroy(a, b, c, d, e, f);
 
-	{
-		SCOPED_TIMING(.rm_trials);
-		for bits in 0..10242 {
-			_ = number_of_rabin_miller_trials(bits);
-		}
+	power_of_two(a, 14_500);
+	print("a: ", a);
+
+	power_of_two(b, 10_500);
+
+	if err := internal_int_divmod(c, d, a, b); err != nil {
+		fmt.printf("Error: %v\n", err);
 	}
-	SCOPED_COUNT_ADD(.rm_trials, 10242);
+	print("c: ", c);
+	print("d: ", d);
 }
 
 main :: proc() {

+ 14 - 2
core/math/big/internal.odin

@@ -260,6 +260,12 @@ internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context
 }
 internal_add :: proc { internal_int_add_signed, internal_int_add_digit, };
 
+
+internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
+	return #force_inline internal_add(dest, dest, 1);
+}
+internal_incr :: proc { internal_int_incr, };
+
 /*
 	Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
 	Handbook of Applied Cryptography, algorithm 14.9.
@@ -458,6 +464,11 @@ internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := co
 
 internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, };
 
+internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) {
+	return #force_inline internal_sub(dest, dest, 1);
+}
+internal_decr :: proc { internal_int_decr, };
+
 /*
 	dest = src  / 2
 	dest = src >> 1
@@ -718,8 +729,9 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
 		return nil;
 	}
 
-	if false && (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
-		// err = _int_div_recursive(quotient, remainder, numerator, denominator);
+	if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
+		err = _private_int_div_recursive(quotient, remainder, numerator, denominator);
+		// err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
 	} else {
 		when true {
 			err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);

+ 186 - 4
core/math/big/private.odin

@@ -430,7 +430,7 @@ _private_int_sqr_toom :: proc(dest, src: ^Int, allocator := context.allocator) -
 	context.allocator = allocator;
 
 	S0, a0, a1, a2 := &Int{}, &Int{}, &Int{}, &Int{};
-	defer destroy(S0, a0, a1, a2);
+	defer internal_destroy(S0, a0, a1, a2);
 
 	/*
 		Init temps.
@@ -752,6 +752,188 @@ _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^In
 	return nil;
 }
 
+/*
+	Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from:
+
+		Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
+		Vol. 18. Cambridge University Press, 2010
+		Available online at https://arxiv.org/pdf/1004.4710
+
+	pages 19ff. in the above online document.
+*/
+_private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+	context.allocator = allocator;
+
+	A1, A2, B1, B0, Q1, Q0, R1, R0, t := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+	defer internal_destroy(A1, A2, B1, B0, Q1, Q0, R1, R0, t);
+
+	m := a.used - b.used;
+	k := m / 2;
+
+	if m < MUL_KARATSUBA_CUTOFF { return _private_int_div_school(quotient, remainder, a, b); }
+
+	if err = internal_init_multi(A1, A2, B1, B0, Q1, Q0, R1, R0, t); err != nil { return err; }
+
+	/*
+		`B1` = `b` / `beta`^`k`, `B0` = `b` % `beta`^`k`
+	*/
+	if err = internal_shrmod(B1, B0, b, k * _DIGIT_BITS);            err != nil { return err; }
+
+	/*
+		(Q1, R1) =  RecursiveDivRem(A / beta^(2k), B1)
+	*/
+	if err = internal_shrmod(A1, t, a, 2 * k * _DIGIT_BITS);         err != nil { return err; }
+	if err = _private_div_recursion(Q1, R1, A1, B1);                 err != nil { return err; }
+
+	/*
+		A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k)
+	*/
+	if err = internal_shl_digit(R1, 2 * k);                          err != nil { return err; }
+	if err = internal_add(A1, R1, t);                                err != nil { return err; }
+	if err = internal_mul(t, Q1, B0);                                err != nil { return err; }
+
+	/*
+		While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
+	*/
+	if internal_cmp(A1, 0) == -1 {
+		if internal_shl(t, b, k * _DIGIT_BITS);                      err != nil { return err; }
+
+		for {
+			if err = internal_decr(Q1);                              err != nil { return err; }
+			if err = internal_add(A1, A1, t);                        err != nil { return err; }
+			if internal_cmp(A1, 0) != -1 { break; }
+		}
+	}
+
+	/*
+		(Q0, R0) =  RecursiveDivRem(A1 / beta^(k), B1)
+	*/
+	if internal_shrmod(A1, t, A1, k * _DIGIT_BITS);                  err != nil { return err; }
+	if _private_div_recursion(Q0, R0, A1, B1);                       err != nil { return err; }
+
+	/*
+		A2 = (R0*beta^k) +  (A1 % beta^k) - (Q0*B0)
+	*/
+	if err = internal_shl_digit(R0, k);                              err != nil { return err; }
+	if err = internal_add(A2, R0, t);                                err != nil { return err; } 
+	if err = internal_mul(t, Q0, B0);                                err != nil { return err; }
+	if err = internal_sub(A2, A2, t);                                err != nil { return err; }
+
+	/*
+		While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
+	*/
+	for internal_cmp(A2, 0) == -1 {
+		if err = internal_decr(Q0);                                  err != nil { return err; }
+		if err = internal_add(A2, A2, b);                            err != nil { return err; }
+	}
+
+	/*
+		Return q = (Q1*beta^k) + Q0, r = A2.
+	*/
+	if err = internal_shl_digit(Q1, k);                              err != nil { return err; }
+	if err = internal_add(quotient, Q1, Q0);                         err != nil { return err; }
+
+	return internal_copy(remainder, A2);
+}
+
+_private_int_div_recursive :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+	context.allocator = allocator;
+
+	A, B, Q, Q1, R, A_div, A_mod := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+	defer internal_destroy(A, B, Q, Q1, R, A_div, A_mod);
+
+	if err = internal_init_multi(A, B, Q, Q1, R, A_div, A_mod);      err != nil { return err; }
+
+	/*
+		Most significant bit of a limb.
+		Assumes  _DIGIT_MAX < (sizeof(DIGIT) * sizeof(u8)).
+	*/
+	msb := (_DIGIT_MAX + DIGIT(1)) >> 1;
+	sigma := 0;
+	msb_b := b.digit[b.used - 1];
+	for msb_b < msb {
+		sigma += 1;
+		msb_b <<= 1;
+	}
+
+	/*
+		Use that sigma to normalize B.
+	*/
+	if err = internal_shl(B, b, sigma);                              err != nil { return err; }
+	if err = internal_shl(A, a, sigma);                              err != nil { return err; }
+
+	/*
+		Fix the sign.
+	*/
+	neg := a.sign != b.sign;
+	A.sign = .Zero_or_Positive; B.sign = .Zero_or_Positive;
+
+	/*
+		If the magnitude of "A" is not more more than twice that of "B" we can work
+		on them directly, otherwise we need to work at "A" in chunks.
+	*/
+	n := B.used;
+	m := A.used - B.used;
+
+	/*
+		Q = 0. We already ensured that when we called `internal_init_multi`.
+	*/
+	for m > n {
+		/*
+			(q, r) = RecursiveDivRem(A / (beta^(m-n)), B)
+		*/
+		j := (m - n) * _DIGIT_BITS;
+		if err = internal_shrmod(A_div, A_mod, A, j);                err != nil { return err; }
+		if err = _private_div_recursion(Q1, R, A_div, B);            err != nil { return err; }
+
+		/*
+			Q = (Q*beta!(n)) + q
+		*/
+		if err = internal_shl(Q, Q, n * _DIGIT_BITS);                err != nil { return err; }
+		if err = internal_add(Q, Q, Q1);                             err != nil { return err; }
+
+		/*
+			A = (r * beta^(m-n)) + (A % beta^(m-n))
+		*/
+		if err = internal_shl(R, R, (m - n) * _DIGIT_BITS);          err != nil { return err; }
+		if err = internal_add(A, R, A_mod);                          err != nil { return err; }
+
+		/*
+			m = m - n
+		*/
+		m -= n;
+	}
+
+	/*
+		(q, r) = RecursiveDivRem(A, B)
+	*/
+	if err = _private_div_recursion(Q1, R, A, B);                    err != nil { return err; }
+
+	/*
+		Q = (Q * beta^m) + q, R = r
+	*/
+	if err = internal_shl(Q, Q, m * _DIGIT_BITS);                    err != nil { return err; }
+	if err = internal_add(Q, Q, Q1);                                 err != nil { return err; }
+
+	/*
+		Get sign before writing to dest.
+	*/
+	R.sign = .Zero_or_Positive if internal_is_zero(Q) else a.sign;
+
+	if quotient != nil {
+		swap(quotient, Q);
+		quotient.sign = .Negative if neg else .Zero_or_Positive;
+	}
+	if remainder != nil {
+		/*
+			De-normalize the remainder.
+		*/
+		if err = internal_shrmod(R, nil, R, sigma);                  err != nil { return err; }
+		swap(remainder, R);
+	}
+	return nil;
+}
+
 /*
 	Slower bit-bang division... also smaller.
 */
@@ -1040,7 +1222,7 @@ _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
 */
 _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
 	bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
-	defer destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
+	defer internal_destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
 
 	ic := #force_inline internal_cmp(a, base);
 	if ic == -1 || ic == 0 {
@@ -1107,7 +1289,7 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
 _private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
 	context.allocator = allocator;
 	x, y, u, v, A, B, C, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
-	defer destroy(x, y, u, v, A, B, C, D);
+	defer internal_destroy(x, y, u, v, A, B, C, D);
 
 	/*
 		`b` cannot be negative.
@@ -1254,7 +1436,7 @@ _private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator
 _private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
 	context.allocator = allocator;
 	x, y, u, v, B, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
-	defer destroy(x, y, u, v, B, D);
+	defer internal_destroy(x, y, u, v, B, D);
 
 	sign: Sign;