|
@@ -0,0 +1,410 @@
|
|
|
+package math
|
|
|
+
|
|
|
+// The original C code and the long comment below are
|
|
|
+// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
|
|
|
+// came with this notice.
|
|
|
+//
|
|
|
+// ====================================================
|
|
|
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
+//
|
|
|
+// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
+// Permission to use, copy, modify, and distribute this
|
|
|
+// software is freely granted, provided that this notice
|
|
|
+// is preserved.
|
|
|
+// ====================================================
|
|
|
+//
|
|
|
+//
|
|
|
+// double erf(double x)
|
|
|
+// double erfc(double x)
|
|
|
+// x
|
|
|
+// 2 |\
|
|
|
+// erf(x) = --------- | exp(-t*t)dt
|
|
|
+// sqrt(pi) \|
|
|
|
+// 0
|
|
|
+//
|
|
|
+// erfc(x) = 1-erf(x)
|
|
|
+// Note that
|
|
|
+// erf(-x) = -erf(x)
|
|
|
+// erfc(-x) = 2 - erfc(x)
|
|
|
+//
|
|
|
+// Method:
|
|
|
+// 1. For |x| in [0, 0.84375]
|
|
|
+// erf(x) = x + x*R(x**2)
|
|
|
+// erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
|
|
+// = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
|
|
+// where R = P/Q where P is an odd poly of degree 8 and
|
|
|
+// Q is an odd poly of degree 10.
|
|
|
+// -57.90
|
|
|
+// | R - (erf(x)-x)/x | <= 2
|
|
|
+//
|
|
|
+//
|
|
|
+// Remark. The formula is derived by noting
|
|
|
+// erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
|
|
|
+// and that
|
|
|
+// 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
|
|
+// is close to one. The interval is chosen because the fix
|
|
|
+// point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
|
|
+// near 0.6174), and by some experiment, 0.84375 is chosen to
|
|
|
+// guarantee the error is less than one ulp for erf.
|
|
|
+//
|
|
|
+// 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
|
|
+// c = 0.84506291151 rounded to single (24 bits)
|
|
|
+// erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
|
|
+// erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
|
|
+// 1+(c+P1(s)/Q1(s)) if x < 0
|
|
|
+// |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
|
|
+// Remark: here we use the taylor series expansion at x=1.
|
|
|
+// erf(1+s) = erf(1) + s*Poly(s)
|
|
|
+// = 0.845.. + P1(s)/Q1(s)
|
|
|
+// That is, we use rational approximation to approximate
|
|
|
+// erf(1+s) - (c = (single)0.84506291151)
|
|
|
+// Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
|
|
+// where
|
|
|
+// P1(s) = degree 6 poly in s
|
|
|
+// Q1(s) = degree 6 poly in s
|
|
|
+//
|
|
|
+// 3. For x in [1.25,1/0.35(~2.857143)],
|
|
|
+// erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
|
|
+// erf(x) = 1 - erfc(x)
|
|
|
+// where
|
|
|
+// R1(z) = degree 7 poly in z, (z=1/x**2)
|
|
|
+// S1(z) = degree 8 poly in z
|
|
|
+//
|
|
|
+// 4. For x in [1/0.35,28]
|
|
|
+// erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
|
|
+// = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
|
|
+// = 2.0 - tiny (if x <= -6)
|
|
|
+// erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
|
|
+// erf(x) = sign(x)*(1.0 - tiny)
|
|
|
+// where
|
|
|
+// R2(z) = degree 6 poly in z, (z=1/x**2)
|
|
|
+// S2(z) = degree 7 poly in z
|
|
|
+//
|
|
|
+// Note1:
|
|
|
+// To compute exp(-x*x-0.5625+R/S), let s be a single
|
|
|
+// precision number and s := x; then
|
|
|
+// -x*x = -s*s + (s-x)*(s+x)
|
|
|
+// exp(-x*x-0.5626+R/S) =
|
|
|
+// exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
|
|
+// Note2:
|
|
|
+// Here 4 and 5 make use of the asymptotic series
|
|
|
+// exp(-x*x)
|
|
|
+// erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
|
|
|
+// x*sqrt(pi)
|
|
|
+// We use rational approximation to approximate
|
|
|
+// g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
|
|
|
+// Here is the error bound for R1/S1 and R2/S2
|
|
|
+// |R1/S1 - f(x)| < 2**(-62.57)
|
|
|
+// |R2/S2 - f(x)| < 2**(-61.52)
|
|
|
+//
|
|
|
+// 5. For inf > x >= 28
|
|
|
+// erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
|
|
+// erfc(x) = tiny*tiny (raise underflow) if x > 0
|
|
|
+// = 2 - tiny if x<0
|
|
|
+//
|
|
|
+// 7. Special case:
|
|
|
+// erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
|
|
+// erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
|
|
+// erfc/erf(NaN) is NaN
|
|
|
+
|
|
|
+erf :: proc{
|
|
|
+ erf_f16,
|
|
|
+ erf_f16le,
|
|
|
+ erf_f16be,
|
|
|
+ erf_f32,
|
|
|
+ erf_f32le,
|
|
|
+ erf_f32be,
|
|
|
+ erf_f64,
|
|
|
+}
|
|
|
+
|
|
|
+erf_f16 :: proc "contextless" (x: f16) -> f16 { return f16(erf_f64(f64(x))) }
|
|
|
+erf_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(erf_f64(f64(x))) }
|
|
|
+erf_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(erf_f64(f64(x))) }
|
|
|
+erf_f32 :: proc "contextless" (x: f32) -> f32 { return f32(erf_f64(f64(x))) }
|
|
|
+erf_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(erf_f64(f64(x))) }
|
|
|
+erf_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(erf_f64(f64(x))) }
|
|
|
+
|
|
|
+erf_f64 :: proc "contextless" (x: f64) -> f64 {
|
|
|
+ erx :: 0h3FEB0AC160000000
|
|
|
+ // Coefficients for approximation to erf in [0, 0.84375]
|
|
|
+ efx :: 0h3FC06EBA8214DB69
|
|
|
+ efx8 :: 0h3FF06EBA8214DB69
|
|
|
+ pp0 :: 0h3FC06EBA8214DB68
|
|
|
+ pp1 :: 0hBFD4CD7D691CB913
|
|
|
+ pp2 :: 0hBF9D2A51DBD7194F
|
|
|
+ pp3 :: 0hBF77A291236668E4
|
|
|
+ pp4 :: 0hBEF8EAD6120016AC
|
|
|
+ qq1 :: 0h3FD97779CDDADC09
|
|
|
+ qq2 :: 0h3FB0A54C5536CEBA
|
|
|
+ qq3 :: 0h3F74D022C4D36B0F
|
|
|
+ qq4 :: 0h3F215DC9221C1A10
|
|
|
+ qq5 :: 0hBED09C4342A26120
|
|
|
+ // Coefficients for approximation to erf in [0.84375, 1.25]
|
|
|
+ pa0 :: 0hBF6359B8BEF77538
|
|
|
+ pa1 :: 0h3FDA8D00AD92B34D
|
|
|
+ pa2 :: 0hBFD7D240FBB8C3F1
|
|
|
+ pa3 :: 0h3FD45FCA805120E4
|
|
|
+ pa4 :: 0hBFBC63983D3E28EC
|
|
|
+ pa5 :: 0h3FA22A36599795EB
|
|
|
+ pa6 :: 0hBF61BF380A96073F
|
|
|
+ qa1 :: 0h3FBB3E6618EEE323
|
|
|
+ qa2 :: 0h3FE14AF092EB6F33
|
|
|
+ qa3 :: 0h3FB2635CD99FE9A7
|
|
|
+ qa4 :: 0h3FC02660E763351F
|
|
|
+ qa5 :: 0h3F8BEDC26B51DD1C
|
|
|
+ qa6 :: 0h3F888B545735151D
|
|
|
+ // Coefficients for approximation to erfc in [1.25, 1/0.35]
|
|
|
+ ra0 :: 0hBF843412600D6435
|
|
|
+ ra1 :: 0hBFE63416E4BA7360
|
|
|
+ ra2 :: 0hC0251E0441B0E726
|
|
|
+ ra3 :: 0hC04F300AE4CBA38D
|
|
|
+ ra4 :: 0hC0644CB184282266
|
|
|
+ ra5 :: 0hC067135CEBCCABB2
|
|
|
+ ra6 :: 0hC054526557E4D2F2
|
|
|
+ ra7 :: 0hC023A0EFC69AC25C
|
|
|
+ sa1 :: 0h4033A6B9BD707687
|
|
|
+ sa2 :: 0h4061350C526AE721
|
|
|
+ sa3 :: 0h407B290DD58A1A71
|
|
|
+ sa4 :: 0h40842B1921EC2868
|
|
|
+ sa5 :: 0h407AD02157700314
|
|
|
+ sa6 :: 0h405B28A3EE48AE2C
|
|
|
+ sa7 :: 0h401A47EF8E484A93
|
|
|
+ sa8 :: 0hBFAEEFF2EE749A62
|
|
|
+ // Coefficients for approximation to erfc in [1/.35, 28]
|
|
|
+ rb0 :: 0hBF84341239E86F4A
|
|
|
+ rb1 :: 0hBFE993BA70C285DE
|
|
|
+ rb2 :: 0hC031C209555F995A
|
|
|
+ rb3 :: 0hC064145D43C5ED98
|
|
|
+ rb4 :: 0hC083EC881375F228
|
|
|
+ rb5 :: 0hC09004616A2E5992
|
|
|
+ rb6 :: 0hC07E384E9BDC383F
|
|
|
+ sb1 :: 0h403E568B261D5190
|
|
|
+ sb2 :: 0h40745CAE221B9F0A
|
|
|
+ sb3 :: 0h409802EB189D5118
|
|
|
+ sb4 :: 0h40A8FFB7688C246A
|
|
|
+ sb5 :: 0h40A3F219CEDF3BE6
|
|
|
+ sb6 :: 0h407DA874E79FE763
|
|
|
+ sb7 :: 0hC03670E242712D62
|
|
|
+
|
|
|
+
|
|
|
+ VERY_TINY :: 0h0080000000000000
|
|
|
+ SMALL :: 1.0 / (1 << 28) // 2**-28
|
|
|
+
|
|
|
+ // special cases
|
|
|
+ switch {
|
|
|
+ case is_nan(x):
|
|
|
+ return nan_f64()
|
|
|
+ case is_inf(x, 1):
|
|
|
+ return 1
|
|
|
+ case is_inf(x, -1):
|
|
|
+ return -1
|
|
|
+ }
|
|
|
+ x := x
|
|
|
+ sign := false
|
|
|
+ if x < 0 {
|
|
|
+ x = -x
|
|
|
+ sign = true
|
|
|
+ }
|
|
|
+ if x < 0.84375 { // |x| < 0.84375
|
|
|
+ temp: f64
|
|
|
+ if x < SMALL { // |x| < 2**-28
|
|
|
+ if x < VERY_TINY {
|
|
|
+ temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
|
|
|
+ } else {
|
|
|
+ temp = x + efx*x
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ z := x * x
|
|
|
+ r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
|
|
|
+ s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
|
|
|
+ y := r / s
|
|
|
+ temp = x + x*y
|
|
|
+ }
|
|
|
+ if sign {
|
|
|
+ return -temp
|
|
|
+ }
|
|
|
+ return temp
|
|
|
+ }
|
|
|
+ if x < 1.25 { // 0.84375 <= |x| < 1.25
|
|
|
+ s := x - 1
|
|
|
+ P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
|
|
|
+ Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
|
|
|
+ if sign {
|
|
|
+ return -erx - P/Q
|
|
|
+ }
|
|
|
+ return erx + P/Q
|
|
|
+ }
|
|
|
+ if x >= 6 { // inf > |x| >= 6
|
|
|
+ if sign {
|
|
|
+ return -1
|
|
|
+ }
|
|
|
+ return 1
|
|
|
+ }
|
|
|
+ s := 1 / (x * x)
|
|
|
+ R, S: f64
|
|
|
+ if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
|
|
|
+ R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
|
|
|
+ S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
|
|
|
+ } else { // |x| >= 1 / 0.35 ~ 2.857143
|
|
|
+ R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
|
|
|
+ S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
|
|
|
+ }
|
|
|
+ z := transmute(f64)(0xffffffff00000000 & transmute(u64)x) // pseudo-single (20-bit) precision x
|
|
|
+ r := exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S)
|
|
|
+ if sign {
|
|
|
+ return r/x - 1
|
|
|
+ }
|
|
|
+ return 1 - r/x
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+erfc :: proc{
|
|
|
+ erfc_f16,
|
|
|
+ erfc_f16le,
|
|
|
+ erfc_f16be,
|
|
|
+ erfc_f32,
|
|
|
+ erfc_f32le,
|
|
|
+ erfc_f32be,
|
|
|
+ erfc_f64,
|
|
|
+}
|
|
|
+
|
|
|
+erfc_f16 :: proc "contextless" (x: f16) -> f16 { return f16(erfc_f64(f64(x))) }
|
|
|
+erfc_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(erfc_f64(f64(x))) }
|
|
|
+erfc_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(erfc_f64(f64(x))) }
|
|
|
+erfc_f32 :: proc "contextless" (x: f32) -> f32 { return f32(erfc_f64(f64(x))) }
|
|
|
+erfc_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(erfc_f64(f64(x))) }
|
|
|
+erfc_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(erfc_f64(f64(x))) }
|
|
|
+
|
|
|
+erfc_f64 :: proc "contextless" (x: f64) -> f64 {
|
|
|
+ erx :: 0h3FEB0AC160000000
|
|
|
+ // Coefficients for approximation to erf in [0, 0.84375]
|
|
|
+ efx :: 0h3FC06EBA8214DB69
|
|
|
+ efx8 :: 0h3FF06EBA8214DB69
|
|
|
+ pp0 :: 0h3FC06EBA8214DB68
|
|
|
+ pp1 :: 0hBFD4CD7D691CB913
|
|
|
+ pp2 :: 0hBF9D2A51DBD7194F
|
|
|
+ pp3 :: 0hBF77A291236668E4
|
|
|
+ pp4 :: 0hBEF8EAD6120016AC
|
|
|
+ qq1 :: 0h3FD97779CDDADC09
|
|
|
+ qq2 :: 0h3FB0A54C5536CEBA
|
|
|
+ qq3 :: 0h3F74D022C4D36B0F
|
|
|
+ qq4 :: 0h3F215DC9221C1A10
|
|
|
+ qq5 :: 0hBED09C4342A26120
|
|
|
+ // Coefficients for approximation to erf in [0.84375, 1.25]
|
|
|
+ pa0 :: 0hBF6359B8BEF77538
|
|
|
+ pa1 :: 0h3FDA8D00AD92B34D
|
|
|
+ pa2 :: 0hBFD7D240FBB8C3F1
|
|
|
+ pa3 :: 0h3FD45FCA805120E4
|
|
|
+ pa4 :: 0hBFBC63983D3E28EC
|
|
|
+ pa5 :: 0h3FA22A36599795EB
|
|
|
+ pa6 :: 0hBF61BF380A96073F
|
|
|
+ qa1 :: 0h3FBB3E6618EEE323
|
|
|
+ qa2 :: 0h3FE14AF092EB6F33
|
|
|
+ qa3 :: 0h3FB2635CD99FE9A7
|
|
|
+ qa4 :: 0h3FC02660E763351F
|
|
|
+ qa5 :: 0h3F8BEDC26B51DD1C
|
|
|
+ qa6 :: 0h3F888B545735151D
|
|
|
+ // Coefficients for approximation to erfc in [1.25, 1/0.35]
|
|
|
+ ra0 :: 0hBF843412600D6435
|
|
|
+ ra1 :: 0hBFE63416E4BA7360
|
|
|
+ ra2 :: 0hC0251E0441B0E726
|
|
|
+ ra3 :: 0hC04F300AE4CBA38D
|
|
|
+ ra4 :: 0hC0644CB184282266
|
|
|
+ ra5 :: 0hC067135CEBCCABB2
|
|
|
+ ra6 :: 0hC054526557E4D2F2
|
|
|
+ ra7 :: 0hC023A0EFC69AC25C
|
|
|
+ sa1 :: 0h4033A6B9BD707687
|
|
|
+ sa2 :: 0h4061350C526AE721
|
|
|
+ sa3 :: 0h407B290DD58A1A71
|
|
|
+ sa4 :: 0h40842B1921EC2868
|
|
|
+ sa5 :: 0h407AD02157700314
|
|
|
+ sa6 :: 0h405B28A3EE48AE2C
|
|
|
+ sa7 :: 0h401A47EF8E484A93
|
|
|
+ sa8 :: 0hBFAEEFF2EE749A62
|
|
|
+ // Coefficients for approximation to erfc in [1/.35, 28]
|
|
|
+ rb0 :: 0hBF84341239E86F4A
|
|
|
+ rb1 :: 0hBFE993BA70C285DE
|
|
|
+ rb2 :: 0hC031C209555F995A
|
|
|
+ rb3 :: 0hC064145D43C5ED98
|
|
|
+ rb4 :: 0hC083EC881375F228
|
|
|
+ rb5 :: 0hC09004616A2E5992
|
|
|
+ rb6 :: 0hC07E384E9BDC383F
|
|
|
+ sb1 :: 0h403E568B261D5190
|
|
|
+ sb2 :: 0h40745CAE221B9F0A
|
|
|
+ sb3 :: 0h409802EB189D5118
|
|
|
+ sb4 :: 0h40A8FFB7688C246A
|
|
|
+ sb5 :: 0h40A3F219CEDF3BE6
|
|
|
+ sb6 :: 0h407DA874E79FE763
|
|
|
+ sb7 :: 0hC03670E242712D62
|
|
|
+
|
|
|
+ TINY :: 1.0 / (1 << 56) // 2**-56
|
|
|
+ // special cases
|
|
|
+ switch {
|
|
|
+ case is_nan(x):
|
|
|
+ return nan_f64()
|
|
|
+ case is_inf(x, 1):
|
|
|
+ return 0
|
|
|
+ case is_inf(x, -1):
|
|
|
+ return 2
|
|
|
+ }
|
|
|
+ x := x
|
|
|
+ sign := false
|
|
|
+ if x < 0 {
|
|
|
+ x = -x
|
|
|
+ sign = true
|
|
|
+ }
|
|
|
+ if x < 0.84375 { // |x| < 0.84375
|
|
|
+ temp: f64
|
|
|
+ if x < TINY { // |x| < 2**-56
|
|
|
+ temp = x
|
|
|
+ } else {
|
|
|
+ z := x * x
|
|
|
+ r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
|
|
|
+ s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
|
|
|
+ y := r / s
|
|
|
+ if x < 0.25 { // |x| < 1/4
|
|
|
+ temp = x + x*y
|
|
|
+ } else {
|
|
|
+ temp = 0.5 + (x*y + (x - 0.5))
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if sign {
|
|
|
+ return 1 + temp
|
|
|
+ }
|
|
|
+ return 1 - temp
|
|
|
+ }
|
|
|
+ if x < 1.25 { // 0.84375 <= |x| < 1.25
|
|
|
+ s := x - 1
|
|
|
+ P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
|
|
|
+ Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
|
|
|
+ if sign {
|
|
|
+ return 1 + erx + P/Q
|
|
|
+ }
|
|
|
+ return 1 - erx - P/Q
|
|
|
+
|
|
|
+ }
|
|
|
+ if x < 28 { // |x| < 28
|
|
|
+ s := 1 / (x * x)
|
|
|
+ R, S: f64
|
|
|
+ if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
|
|
|
+ R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
|
|
|
+ S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
|
|
|
+ } else { // |x| >= 1 / 0.35 ~ 2.857143
|
|
|
+ if sign && x > 6 {
|
|
|
+ return 2 // x < -6
|
|
|
+ }
|
|
|
+ R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
|
|
|
+ S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
|
|
|
+ }
|
|
|
+ z := transmute(f64)(0xffffffff00000000 & transmute(u64)x) // pseudo-single (20-bit) precision x
|
|
|
+ r := exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S)
|
|
|
+ if sign {
|
|
|
+ return 2 - r/x
|
|
|
+ }
|
|
|
+ return r / x
|
|
|
+ }
|
|
|
+ if sign {
|
|
|
+ return 2
|
|
|
+ }
|
|
|
+ return 0
|
|
|
+}
|