|
@@ -0,0 +1,2606 @@
|
|
|
+//+ignore
|
|
|
+package math_big
|
|
|
+
|
|
|
+/*
|
|
|
+ Copyright 2021 Jeroen van Rijn <[email protected]>.
|
|
|
+ Made available under Odin's BSD-2 license.
|
|
|
+
|
|
|
+ A BigInt implementation in Odin.
|
|
|
+ For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
|
|
|
+ The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
|
|
|
+
|
|
|
+ ========================== Low-level routines ==========================
|
|
|
+
|
|
|
+ IMPORTANT: `internal_*` procedures make certain assumptions about their input.
|
|
|
+
|
|
|
+ The public functions that call them are expected to satisfy their sanity check requirements.
|
|
|
+ This allows `internal_*` call `internal_*` without paying this overhead multiple times.
|
|
|
+
|
|
|
+ Where errors can occur, they are of course still checked and returned as appropriate.
|
|
|
+
|
|
|
+ When importing `math:core/big` to implement an involved algorithm of your own, you are welcome
|
|
|
+ to use these procedures instead of their public counterparts.
|
|
|
+
|
|
|
+ Most inputs and outputs are expected to be passed an initialized `Int`, for example.
|
|
|
+ Exceptions include `quotient` and `remainder`, which are allowed to be `nil` when the calling code doesn't need them.
|
|
|
+
|
|
|
+ Check the comments above each `internal_*` implementation to see what constraints it expects to have met.
|
|
|
+
|
|
|
+ We pass the custom allocator to procedures by default using the pattern `context.allocator = allocator`.
|
|
|
+ This way we don't have to add `, allocator` at the end of each call.
|
|
|
+
|
|
|
+ TODO: Handle +/- Infinity and NaN.
|
|
|
+*/
|
|
|
+
|
|
|
+import "core:mem"
|
|
|
+import "core:intrinsics"
|
|
|
+import rnd "core:math/rand"
|
|
|
+
|
|
|
+/*
|
|
|
+ Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7.
|
|
|
+
|
|
|
+ Assumptions:
|
|
|
+ `dest`, `a` and `b` != `nil` and have been initalized.
|
|
|
+*/
|
|
|
+internal_int_add_unsigned :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ dest := dest; x := a; y := b;
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ old_used, min_used, max_used, i: int;
|
|
|
+
|
|
|
+ if x.used < y.used {
|
|
|
+ x, y = y, x;
|
|
|
+ }
|
|
|
+
|
|
|
+ min_used = y.used;
|
|
|
+ max_used = x.used;
|
|
|
+ old_used = dest.used;
|
|
|
+
|
|
|
+ if err = internal_grow(dest, max(max_used + 1, _DEFAULT_DIGIT_COUNT)); err != nil { return err; }
|
|
|
+ dest.used = max_used + 1;
|
|
|
+ /*
|
|
|
+ All parameters have been initialized.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* Zero the carry */
|
|
|
+ carry := DIGIT(0);
|
|
|
+
|
|
|
+ #no_bounds_check for i = 0; i < min_used; i += 1 {
|
|
|
+ /*
|
|
|
+ Compute the sum one _DIGIT at a time.
|
|
|
+ dest[i] = a[i] + b[i] + carry;
|
|
|
+ */
|
|
|
+ dest.digit[i] = x.digit[i] + y.digit[i] + carry;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Compute carry
|
|
|
+ */
|
|
|
+ carry = dest.digit[i] >> _DIGIT_BITS;
|
|
|
+ /*
|
|
|
+ Mask away carry from result digit.
|
|
|
+ */
|
|
|
+ dest.digit[i] &= _MASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ if min_used != max_used {
|
|
|
+ /*
|
|
|
+ Now copy higher words, if any, in A+B.
|
|
|
+ If A or B has more digits, add those in.
|
|
|
+ */
|
|
|
+ #no_bounds_check for ; i < max_used; i += 1 {
|
|
|
+ dest.digit[i] = x.digit[i] + carry;
|
|
|
+ /*
|
|
|
+ Compute carry
|
|
|
+ */
|
|
|
+ carry = dest.digit[i] >> _DIGIT_BITS;
|
|
|
+ /*
|
|
|
+ Mask away carry from result digit.
|
|
|
+ */
|
|
|
+ dest.digit[i] &= _MASK;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Add remaining carry.
|
|
|
+ */
|
|
|
+ dest.digit[i] = carry;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ internal_zero_unused(dest, old_used);
|
|
|
+ /*
|
|
|
+ Adjust dest.used based on leading zeroes.
|
|
|
+ */
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+internal_add_unsigned :: proc { internal_int_add_unsigned, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Low-level addition, signed. Handbook of Applied Cryptography, algorithm 14.7.
|
|
|
+
|
|
|
+ Assumptions:
|
|
|
+ `dest`, `a` and `b` != `nil` and have been initalized.
|
|
|
+*/
|
|
|
+internal_int_add_signed :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ x := a; y := b;
|
|
|
+ context.allocator = allocator;
|
|
|
+ /*
|
|
|
+ Handle both negative or both positive.
|
|
|
+ */
|
|
|
+ if x.sign == y.sign {
|
|
|
+ dest.sign = x.sign;
|
|
|
+ return #force_inline internal_int_add_unsigned(dest, x, y);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ One positive, the other negative.
|
|
|
+ Subtract the one with the greater magnitude from the other.
|
|
|
+ The result gets the sign of the one with the greater magnitude.
|
|
|
+ */
|
|
|
+ if #force_inline internal_cmp_mag(a, b) == -1 {
|
|
|
+ x, y = y, x;
|
|
|
+ }
|
|
|
+
|
|
|
+ dest.sign = x.sign;
|
|
|
+ return #force_inline internal_int_sub_unsigned(dest, x, y);
|
|
|
+}
|
|
|
+internal_add_signed :: proc { internal_int_add_signed, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Low-level addition Int+DIGIT, signed. Handbook of Applied Cryptography, algorithm 14.7.
|
|
|
+
|
|
|
+ Assumptions:
|
|
|
+ `dest` and `a` != `nil` and have been initalized.
|
|
|
+ `dest` is large enough (a.used + 1) to fit result.
|
|
|
+*/
|
|
|
+internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if err = internal_grow(dest, a.used + 1); err != nil { return err; }
|
|
|
+ /*
|
|
|
+ Fast paths for destination and input Int being the same.
|
|
|
+ */
|
|
|
+ if dest == a {
|
|
|
+ /*
|
|
|
+ Fast path for dest.digit[0] + digit fits in dest.digit[0] without overflow.
|
|
|
+ */
|
|
|
+ if dest.sign == .Zero_or_Positive && (dest.digit[0] + digit < _DIGIT_MAX) {
|
|
|
+ dest.digit[0] += digit;
|
|
|
+ dest.used += 1;
|
|
|
+ return internal_clamp(dest);
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Can be subtracted from dest.digit[0] without underflow.
|
|
|
+ */
|
|
|
+ if a.sign == .Negative && (dest.digit[0] > digit) {
|
|
|
+ dest.digit[0] -= digit;
|
|
|
+ dest.used += 1;
|
|
|
+ return internal_clamp(dest);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If `a` is negative and `|a|` >= `digit`, call `dest = |a| - digit`
|
|
|
+ */
|
|
|
+ if a.sign == .Negative && (a.used > 1 || a.digit[0] >= digit) {
|
|
|
+ /*
|
|
|
+ Temporarily fix `a`'s sign.
|
|
|
+ */
|
|
|
+ a.sign = .Zero_or_Positive;
|
|
|
+ /*
|
|
|
+ dest = |a| - digit
|
|
|
+ */
|
|
|
+ if err = #force_inline internal_int_add_digit(dest, a, digit); err != nil {
|
|
|
+ /*
|
|
|
+ Restore a's sign.
|
|
|
+ */
|
|
|
+ a.sign = .Negative;
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Restore sign and set `dest` sign.
|
|
|
+ */
|
|
|
+ a.sign = .Negative;
|
|
|
+ dest.sign = .Negative;
|
|
|
+
|
|
|
+ return internal_clamp(dest);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Remember the currently used number of digits in `dest`.
|
|
|
+ */
|
|
|
+ old_used := dest.used;
|
|
|
+
|
|
|
+ /*
|
|
|
+ If `a` is positive
|
|
|
+ */
|
|
|
+ if a.sign == .Zero_or_Positive {
|
|
|
+ /*
|
|
|
+ Add digits, use `carry`.
|
|
|
+ */
|
|
|
+ i: int;
|
|
|
+ carry := digit;
|
|
|
+ #no_bounds_check for i = 0; i < a.used; i += 1 {
|
|
|
+ dest.digit[i] = a.digit[i] + carry;
|
|
|
+ carry = dest.digit[i] >> _DIGIT_BITS;
|
|
|
+ dest.digit[i] &= _MASK;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Set final carry.
|
|
|
+ */
|
|
|
+ dest.digit[i] = carry;
|
|
|
+ /*
|
|
|
+ Set `dest` size.
|
|
|
+ */
|
|
|
+ dest.used = a.used + 1;
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ `a` was negative and |a| < digit.
|
|
|
+ */
|
|
|
+ dest.used = 1;
|
|
|
+ /*
|
|
|
+ The result is a single DIGIT.
|
|
|
+ */
|
|
|
+ dest.digit[0] = digit - a.digit[0] if a.used == 1 else digit;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Sign is always positive.
|
|
|
+ */
|
|
|
+ dest.sign = .Zero_or_Positive;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ internal_zero_unused(dest, old_used);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Adjust dest.used based on leading zeroes.
|
|
|
+ */
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+internal_add :: proc { internal_int_add_signed, internal_int_add_digit, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
|
|
|
+ Handbook of Applied Cryptography, algorithm 14.9.
|
|
|
+
|
|
|
+ Assumptions:
|
|
|
+ `dest`, `number` and `decrease` != `nil` and have been initalized.
|
|
|
+*/
|
|
|
+internal_int_sub_unsigned :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ dest := dest; x := number; y := decrease;
|
|
|
+ old_used := dest.used;
|
|
|
+ min_used := y.used;
|
|
|
+ max_used := x.used;
|
|
|
+ i: int;
|
|
|
+
|
|
|
+ if err = grow(dest, max(max_used, _DEFAULT_DIGIT_COUNT)); err != nil { return err; }
|
|
|
+ dest.used = max_used;
|
|
|
+ /*
|
|
|
+ All parameters have been initialized.
|
|
|
+ */
|
|
|
+
|
|
|
+ borrow := DIGIT(0);
|
|
|
+
|
|
|
+ #no_bounds_check for i = 0; i < min_used; i += 1 {
|
|
|
+ dest.digit[i] = (x.digit[i] - y.digit[i] - borrow);
|
|
|
+ /*
|
|
|
+ borrow = carry bit of dest[i]
|
|
|
+ Note this saves performing an AND operation since if a carry does occur,
|
|
|
+ it will propagate all the way to the MSB.
|
|
|
+ As a result a single shift is enough to get the carry.
|
|
|
+ */
|
|
|
+ borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1);
|
|
|
+ /*
|
|
|
+ Clear borrow from dest[i].
|
|
|
+ */
|
|
|
+ dest.digit[i] &= _MASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Now copy higher words if any, e.g. if A has more digits than B
|
|
|
+ */
|
|
|
+ #no_bounds_check for ; i < max_used; i += 1 {
|
|
|
+ dest.digit[i] = x.digit[i] - borrow;
|
|
|
+ /*
|
|
|
+ borrow = carry bit of dest[i]
|
|
|
+ Note this saves performing an AND operation since if a carry does occur,
|
|
|
+ it will propagate all the way to the MSB.
|
|
|
+ As a result a single shift is enough to get the carry.
|
|
|
+ */
|
|
|
+ borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1);
|
|
|
+ /*
|
|
|
+ Clear borrow from dest[i].
|
|
|
+ */
|
|
|
+ dest.digit[i] &= _MASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ internal_zero_unused(dest, old_used);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Adjust dest.used based on leading zeroes.
|
|
|
+ */
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+internal_sub_unsigned :: proc { internal_int_sub_unsigned, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9.
|
|
|
+ dest = number - decrease. Assumes |number| > |decrease|.
|
|
|
+
|
|
|
+ Assumptions:
|
|
|
+ `dest`, `number` and `decrease` != `nil` and have been initalized.
|
|
|
+*/
|
|
|
+internal_int_sub_signed :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ number := number; decrease := decrease;
|
|
|
+ if number.sign != decrease.sign {
|
|
|
+ /*
|
|
|
+ Subtract a negative from a positive, OR subtract a positive from a negative.
|
|
|
+ In either case, ADD their magnitudes and use the sign of the first number.
|
|
|
+ */
|
|
|
+ dest.sign = number.sign;
|
|
|
+ return #force_inline internal_int_add_unsigned(dest, number, decrease);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Subtract a positive from a positive, OR negative from a negative.
|
|
|
+ First, take the difference between their magnitudes, then...
|
|
|
+ */
|
|
|
+ if #force_inline internal_cmp_mag(number, decrease) == -1 {
|
|
|
+ /*
|
|
|
+ The second has a larger magnitude.
|
|
|
+ The result has the *opposite* sign from the first number.
|
|
|
+ */
|
|
|
+ dest.sign = .Negative if number.sign == .Zero_or_Positive else .Zero_or_Positive;
|
|
|
+ number, decrease = decrease, number;
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ The first has a larger or equal magnitude.
|
|
|
+ Copy the sign from the first.
|
|
|
+ */
|
|
|
+ dest.sign = number.sign;
|
|
|
+ }
|
|
|
+ return #force_inline internal_int_sub_unsigned(dest, number, decrease);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9.
|
|
|
+ dest = number - decrease. Assumes |number| > |decrease|.
|
|
|
+
|
|
|
+ Assumptions:
|
|
|
+ `dest`, `number` != `nil` and have been initalized.
|
|
|
+ `dest` is large enough (number.used + 1) to fit result.
|
|
|
+*/
|
|
|
+internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if err = internal_grow(dest, number.used + 1); err != nil { return err; }
|
|
|
+
|
|
|
+ dest := dest; digit := digit;
|
|
|
+ /*
|
|
|
+ All parameters have been initialized.
|
|
|
+
|
|
|
+ Fast paths for destination and input Int being the same.
|
|
|
+ */
|
|
|
+ if dest == number {
|
|
|
+ /*
|
|
|
+ Fast path for `dest` is negative and unsigned addition doesn't overflow the lowest digit.
|
|
|
+ */
|
|
|
+ if dest.sign == .Negative && (dest.digit[0] + digit < _DIGIT_MAX) {
|
|
|
+ dest.digit[0] += digit;
|
|
|
+ return nil;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Can be subtracted from dest.digit[0] without underflow.
|
|
|
+ */
|
|
|
+ if number.sign == .Zero_or_Positive && (dest.digit[0] > digit) {
|
|
|
+ dest.digit[0] -= digit;
|
|
|
+ return nil;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If `a` is negative, just do an unsigned addition (with fudged signs).
|
|
|
+ */
|
|
|
+ if number.sign == .Negative {
|
|
|
+ t := number;
|
|
|
+ t.sign = .Zero_or_Positive;
|
|
|
+
|
|
|
+ err = #force_inline internal_int_add_digit(dest, t, digit);
|
|
|
+ dest.sign = .Negative;
|
|
|
+
|
|
|
+ internal_clamp(dest);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ old_used := dest.used;
|
|
|
+
|
|
|
+ /*
|
|
|
+ if `a`<= digit, simply fix the single digit.
|
|
|
+ */
|
|
|
+ if number.used == 1 && (number.digit[0] <= digit) || number.used == 0 {
|
|
|
+ dest.digit[0] = digit - number.digit[0] if number.used == 1 else digit;
|
|
|
+ dest.sign = .Negative;
|
|
|
+ dest.used = 1;
|
|
|
+ } else {
|
|
|
+ dest.sign = .Zero_or_Positive;
|
|
|
+ dest.used = number.used;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Subtract with carry.
|
|
|
+ */
|
|
|
+ carry := digit;
|
|
|
+
|
|
|
+ #no_bounds_check for i := 0; i < number.used; i += 1 {
|
|
|
+ dest.digit[i] = number.digit[i] - carry;
|
|
|
+ carry = dest.digit[i] >> (_DIGIT_TYPE_BITS - 1);
|
|
|
+ dest.digit[i] &= _MASK;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ internal_zero_unused(dest, old_used);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Adjust dest.used based on leading zeroes.
|
|
|
+ */
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+
|
|
|
+internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, };
|
|
|
+
|
|
|
+/*
|
|
|
+ dest = src / 2
|
|
|
+ dest = src >> 1
|
|
|
+
|
|
|
+ Assumes `dest` and `src` not to be `nil` and have been initialized.
|
|
|
+ We make no allocations here.
|
|
|
+*/
|
|
|
+internal_int_shr1 :: proc(dest, src: ^Int) -> (err: Error) {
|
|
|
+ old_used := dest.used; dest.used = src.used;
|
|
|
+ /*
|
|
|
+ Carry
|
|
|
+ */
|
|
|
+ fwd_carry := DIGIT(0);
|
|
|
+
|
|
|
+ #no_bounds_check for x := dest.used - 1; x >= 0; x -= 1 {
|
|
|
+ /*
|
|
|
+ Get the carry for the next iteration.
|
|
|
+ */
|
|
|
+ src_digit := src.digit[x];
|
|
|
+ carry := src_digit & 1;
|
|
|
+ /*
|
|
|
+ Shift the current digit, add in carry and store.
|
|
|
+ */
|
|
|
+ dest.digit[x] = (src_digit >> 1) | (fwd_carry << (_DIGIT_BITS - 1));
|
|
|
+ /*
|
|
|
+ Forward carry to next iteration.
|
|
|
+ */
|
|
|
+ fwd_carry = carry;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ internal_zero_unused(dest, old_used);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Adjust dest.used based on leading zeroes.
|
|
|
+ */
|
|
|
+ dest.sign = src.sign;
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ dest = src * 2
|
|
|
+ dest = src << 1
|
|
|
+*/
|
|
|
+internal_int_shl1 :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if err = internal_copy(dest, src); err != nil { return err; }
|
|
|
+ /*
|
|
|
+ Grow `dest` to accommodate the additional bits.
|
|
|
+ */
|
|
|
+ digits_needed := dest.used + 1;
|
|
|
+ if err = internal_grow(dest, digits_needed); err != nil { return err; }
|
|
|
+ dest.used = digits_needed;
|
|
|
+
|
|
|
+ mask := (DIGIT(1) << uint(1)) - DIGIT(1);
|
|
|
+ shift := DIGIT(_DIGIT_BITS - 1);
|
|
|
+ carry := DIGIT(0);
|
|
|
+
|
|
|
+ #no_bounds_check for x:= 0; x < dest.used; x+= 1 {
|
|
|
+ fwd_carry := (dest.digit[x] >> shift) & mask;
|
|
|
+ dest.digit[x] = (dest.digit[x] << uint(1) | carry) & _MASK;
|
|
|
+ carry = fwd_carry;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Use final carry.
|
|
|
+ */
|
|
|
+ if carry != 0 {
|
|
|
+ dest.digit[dest.used] = carry;
|
|
|
+ dest.used += 1;
|
|
|
+ }
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Multiply by a DIGIT.
|
|
|
+*/
|
|
|
+internal_int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+ assert_if_nil(dest, src);
|
|
|
+
|
|
|
+ if multiplier == 0 {
|
|
|
+ return internal_zero(dest);
|
|
|
+ }
|
|
|
+ if multiplier == 1 {
|
|
|
+ return internal_copy(dest, src);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Power of two?
|
|
|
+ */
|
|
|
+ if multiplier == 2 {
|
|
|
+ return #force_inline internal_int_shl1(dest, src);
|
|
|
+ }
|
|
|
+ if #force_inline platform_int_is_power_of_two(int(multiplier)) {
|
|
|
+ ix: int;
|
|
|
+ if ix, err = internal_log(multiplier, 2); err != nil { return err; }
|
|
|
+ return internal_shl(dest, src, ix);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Ensure `dest` is big enough to hold `src` * `multiplier`.
|
|
|
+ */
|
|
|
+ if err = grow(dest, max(src.used + 1, _DEFAULT_DIGIT_COUNT)); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Save the original used count.
|
|
|
+ */
|
|
|
+ old_used := dest.used;
|
|
|
+ /*
|
|
|
+ Set the sign.
|
|
|
+ */
|
|
|
+ dest.sign = src.sign;
|
|
|
+ /*
|
|
|
+ Set up carry.
|
|
|
+ */
|
|
|
+ carry := _WORD(0);
|
|
|
+ /*
|
|
|
+ Compute columns.
|
|
|
+ */
|
|
|
+ ix := 0;
|
|
|
+ #no_bounds_check for ; ix < src.used; ix += 1 {
|
|
|
+ /*
|
|
|
+ Compute product and carry sum for this term
|
|
|
+ */
|
|
|
+ product := carry + _WORD(src.digit[ix]) * _WORD(multiplier);
|
|
|
+ /*
|
|
|
+ Mask off higher bits to get a single DIGIT.
|
|
|
+ */
|
|
|
+ dest.digit[ix] = DIGIT(product & _WORD(_MASK));
|
|
|
+ /*
|
|
|
+ Send carry into next iteration
|
|
|
+ */
|
|
|
+ carry = product >> _DIGIT_BITS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Store final carry [if any] and increment used.
|
|
|
+ */
|
|
|
+ dest.digit[ix] = DIGIT(carry);
|
|
|
+ dest.used = src.used + 1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ internal_zero_unused(dest, old_used);
|
|
|
+
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ High level multiplication (handles sign).
|
|
|
+*/
|
|
|
+internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+ /*
|
|
|
+ Early out for `multiplier` is zero; Set `dest` to zero.
|
|
|
+ */
|
|
|
+ if multiplier.used == 0 || src.used == 0 { return internal_zero(dest); }
|
|
|
+
|
|
|
+ if src == multiplier {
|
|
|
+ /*
|
|
|
+ Do we need to square?
|
|
|
+ */
|
|
|
+ if src.used >= SQR_TOOM_CUTOFF {
|
|
|
+ /*
|
|
|
+ Use Toom-Cook?
|
|
|
+ */
|
|
|
+ err = #force_inline _private_int_sqr_toom(dest, src);
|
|
|
+ } else if src.used >= SQR_KARATSUBA_CUTOFF {
|
|
|
+ /*
|
|
|
+ Karatsuba?
|
|
|
+ */
|
|
|
+ err = #force_inline _private_int_sqr_karatsuba(dest, src);
|
|
|
+ } else if ((src.used * 2) + 1) < _WARRAY && src.used < (_MAX_COMBA / 2) {
|
|
|
+ /*
|
|
|
+ Fast comba?
|
|
|
+ */
|
|
|
+ err = #force_inline _private_int_sqr_comba(dest, src);
|
|
|
+ //err = #force_inline _private_int_sqr(dest, src);
|
|
|
+ } else {
|
|
|
+ err = #force_inline _private_int_sqr(dest, src);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ Can we use the balance method? Check sizes.
|
|
|
+ * The smaller one needs to be larger than the Karatsuba cut-off.
|
|
|
+ * The bigger one needs to be at least about one `_MUL_KARATSUBA_CUTOFF` bigger
|
|
|
+ * to make some sense, but it depends on architecture, OS, position of the
|
|
|
+ * stars... so YMMV.
|
|
|
+ * Using it to cut the input into slices small enough for _mul_comba
|
|
|
+ * was actually slower on the author's machine, but YMMV.
|
|
|
+ */
|
|
|
+
|
|
|
+ min_used := min(src.used, multiplier.used);
|
|
|
+ max_used := max(src.used, multiplier.used);
|
|
|
+ digits := src.used + multiplier.used + 1;
|
|
|
+
|
|
|
+ if false && min_used >= MUL_KARATSUBA_CUTOFF &&
|
|
|
+ max_used / 2 >= MUL_KARATSUBA_CUTOFF &&
|
|
|
+ /*
|
|
|
+ Not much effect was observed below a ratio of 1:2, but again: YMMV.
|
|
|
+ */
|
|
|
+ max_used >= 2 * min_used {
|
|
|
+ // err = s_mp_mul_balance(a,b,c);
|
|
|
+ } else if false && min_used >= MUL_TOOM_CUTOFF {
|
|
|
+ // err = s_mp_mul_toom(a, b, c);
|
|
|
+ } else if false && min_used >= MUL_KARATSUBA_CUTOFF {
|
|
|
+ // err = s_mp_mul_karatsuba(a, b, c);
|
|
|
+ } else if digits < _WARRAY && min_used <= _MAX_COMBA {
|
|
|
+ /*
|
|
|
+ Can we use the fast multiplier?
|
|
|
+ * The fast multiplier can be used if the output will
|
|
|
+ * have less than MP_WARRAY digits and the number of
|
|
|
+ * digits won't affect carry propagation
|
|
|
+ */
|
|
|
+ err = #force_inline _private_int_mul_comba(dest, src, multiplier, digits);
|
|
|
+ } else {
|
|
|
+ err = #force_inline _private_int_mul(dest, src, multiplier, digits);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ neg := src.sign != multiplier.sign;
|
|
|
+ dest.sign = .Negative if dest.used > 0 && neg else .Zero_or_Positive;
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+internal_mul :: proc { internal_int_mul, internal_int_mul_digit, };
|
|
|
+
|
|
|
+internal_sqr :: proc (dest, src: ^Int, allocator := context.allocator) -> (res: Error) {
|
|
|
+ /*
|
|
|
+ We call `internal_mul` and not e.g. `_private_int_sqr` because the former
|
|
|
+ will dispatch to the optimal implementation depending on the source.
|
|
|
+ */
|
|
|
+ return #force_inline internal_mul(dest, src, src, allocator);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ divmod.
|
|
|
+ Both the quotient and remainder are optional and may be passed a nil.
|
|
|
+ `numerator` and `denominator` are expected not to be `nil` and have been initialized.
|
|
|
+*/
|
|
|
+internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if denominator.used == 0 { return .Division_by_Zero; }
|
|
|
+ /*
|
|
|
+ If numerator < denominator then quotient = 0, remainder = numerator.
|
|
|
+ */
|
|
|
+ if #force_inline internal_cmp_mag(numerator, denominator) == -1 {
|
|
|
+ if remainder != nil {
|
|
|
+ if err = internal_copy(remainder, numerator); err != nil { return err; }
|
|
|
+ }
|
|
|
+ if quotient != nil {
|
|
|
+ internal_zero(quotient);
|
|
|
+ }
|
|
|
+ return nil;
|
|
|
+ }
|
|
|
+
|
|
|
+ if false && (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
|
|
|
+ // err = _int_div_recursive(quotient, remainder, numerator, denominator);
|
|
|
+ } else {
|
|
|
+ when true {
|
|
|
+ err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator);
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ NOTE(Jeroen): We no longer need or use `_private_int_div_small`.
|
|
|
+ We'll keep it around for a bit until we're reasonably certain div_school is bug free.
|
|
|
+ */
|
|
|
+ err = _private_int_div_small(quotient, remainder, numerator, denominator);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Single digit division (based on routine from MPI).
|
|
|
+ The quotient is optional and may be passed a nil.
|
|
|
+*/
|
|
|
+internal_int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Cannot divide by zero.
|
|
|
+ */
|
|
|
+ if denominator == 0 { return 0, .Division_by_Zero; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Quick outs.
|
|
|
+ */
|
|
|
+ if denominator == 1 || numerator.used == 0 {
|
|
|
+ if quotient != nil {
|
|
|
+ return 0, internal_copy(quotient, numerator);
|
|
|
+ }
|
|
|
+ return 0, err;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Power of two?
|
|
|
+ */
|
|
|
+ if denominator == 2 {
|
|
|
+ if numerator.used > 0 && numerator.digit[0] & 1 != 0 {
|
|
|
+ // Remainder is 1 if numerator is odd.
|
|
|
+ remainder = 1;
|
|
|
+ }
|
|
|
+ if quotient == nil {
|
|
|
+ return remainder, nil;
|
|
|
+ }
|
|
|
+ return remainder, internal_shr(quotient, numerator, 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ ix: int;
|
|
|
+ if platform_int_is_power_of_two(int(denominator)) {
|
|
|
+ ix = 1;
|
|
|
+ for ix < _DIGIT_BITS && denominator != (1 << uint(ix)) {
|
|
|
+ ix += 1;
|
|
|
+ }
|
|
|
+ remainder = numerator.digit[0] & ((1 << uint(ix)) - 1);
|
|
|
+ if quotient == nil {
|
|
|
+ return remainder, nil;
|
|
|
+ }
|
|
|
+
|
|
|
+ return remainder, internal_shr(quotient, numerator, int(ix));
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Three?
|
|
|
+ */
|
|
|
+ if denominator == 3 {
|
|
|
+ return _private_int_div_3(quotient, numerator);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ No easy answer [c'est la vie]. Just division.
|
|
|
+ */
|
|
|
+ q := &Int{};
|
|
|
+
|
|
|
+ if err = internal_grow(q, numerator.used); err != nil { return 0, err; }
|
|
|
+
|
|
|
+ q.used = numerator.used;
|
|
|
+ q.sign = numerator.sign;
|
|
|
+
|
|
|
+ w := _WORD(0);
|
|
|
+
|
|
|
+ for ix = numerator.used - 1; ix >= 0; ix -= 1 {
|
|
|
+ t := DIGIT(0);
|
|
|
+ w = (w << _WORD(_DIGIT_BITS) | _WORD(numerator.digit[ix]));
|
|
|
+ if w >= _WORD(denominator) {
|
|
|
+ t = DIGIT(w / _WORD(denominator));
|
|
|
+ w -= _WORD(t) * _WORD(denominator);
|
|
|
+ }
|
|
|
+ q.digit[ix] = t;
|
|
|
+ }
|
|
|
+ remainder = DIGIT(w);
|
|
|
+
|
|
|
+ if quotient != nil {
|
|
|
+ internal_clamp(q);
|
|
|
+ internal_swap(q, quotient);
|
|
|
+ }
|
|
|
+ internal_destroy(q);
|
|
|
+ return remainder, nil;
|
|
|
+}
|
|
|
+
|
|
|
+internal_divmod :: proc { internal_int_divmod, internal_int_divmod_digit, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Asssumes quotient, numerator and denominator to have been initialized and not to be nil.
|
|
|
+*/
|
|
|
+internal_int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ return #force_inline internal_int_divmod(quotient, nil, numerator, denominator, allocator);
|
|
|
+}
|
|
|
+internal_div :: proc { internal_int_div, };
|
|
|
+
|
|
|
+/*
|
|
|
+ remainder = numerator % denominator.
|
|
|
+ 0 <= remainder < denominator if denominator > 0
|
|
|
+ denominator < remainder <= 0 if denominator < 0
|
|
|
+
|
|
|
+ Asssumes quotient, numerator and denominator to have been initialized and not to be nil.
|
|
|
+*/
|
|
|
+internal_int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ if err = #force_inline internal_int_divmod(nil, remainder, numerator, denominator, allocator); err != nil { return err; }
|
|
|
+
|
|
|
+ if remainder.used == 0 || denominator.sign == remainder.sign { return nil; }
|
|
|
+
|
|
|
+ return #force_inline internal_add(remainder, remainder, numerator, allocator);
|
|
|
+}
|
|
|
+internal_mod :: proc{ internal_int_mod, };
|
|
|
+
|
|
|
+/*
|
|
|
+ remainder = (number + addend) % modulus.
|
|
|
+*/
|
|
|
+internal_int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ if err = #force_inline internal_add(remainder, number, addend, allocator); err != nil { return err; }
|
|
|
+ return #force_inline internal_mod(remainder, remainder, modulus, allocator);
|
|
|
+}
|
|
|
+internal_addmod :: proc { internal_int_addmod, };
|
|
|
+
|
|
|
+/*
|
|
|
+ remainder = (number - decrease) % modulus.
|
|
|
+*/
|
|
|
+internal_int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ if err = #force_inline internal_sub(remainder, number, decrease, allocator); err != nil { return err; }
|
|
|
+ return #force_inline internal_mod(remainder, remainder, modulus, allocator);
|
|
|
+}
|
|
|
+internal_submod :: proc { internal_int_submod, };
|
|
|
+
|
|
|
+/*
|
|
|
+ remainder = (number * multiplicand) % modulus.
|
|
|
+*/
|
|
|
+internal_int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ if err = #force_inline internal_mul(remainder, number, multiplicand, allocator); err != nil { return err; }
|
|
|
+ return #force_inline internal_mod(remainder, remainder, modulus, allocator);
|
|
|
+}
|
|
|
+internal_mulmod :: proc { internal_int_mulmod, };
|
|
|
+
|
|
|
+/*
|
|
|
+ remainder = (number * number) % modulus.
|
|
|
+*/
|
|
|
+internal_int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ if err = #force_inline internal_sqr(remainder, number, allocator); err != nil { return err; }
|
|
|
+ return #force_inline internal_mod(remainder, remainder, modulus, allocator);
|
|
|
+}
|
|
|
+internal_sqrmod :: proc { internal_int_sqrmod, };
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ TODO: Use Sterling's Approximation to estimate log2(N!) to size the result.
|
|
|
+ This way we'll have to reallocate less, possibly not at all.
|
|
|
+*/
|
|
|
+internal_int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if n >= FACTORIAL_BINARY_SPLIT_CUTOFF {
|
|
|
+ return #force_inline _private_int_factorial_binary_split(res, n);
|
|
|
+ }
|
|
|
+
|
|
|
+ i := len(_factorial_table);
|
|
|
+ if n < i {
|
|
|
+ return #force_inline internal_set(res, _factorial_table[n]);
|
|
|
+ }
|
|
|
+
|
|
|
+ if err = #force_inline internal_set(res, _factorial_table[i - 1]); err != nil { return err; }
|
|
|
+ for {
|
|
|
+ if err = #force_inline internal_mul(res, res, DIGIT(i)); err != nil || i == n { return err; }
|
|
|
+ i += 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Returns GCD, LCM or both.
|
|
|
+
|
|
|
+ Assumes `a` and `b` to have been initialized.
|
|
|
+ `res_gcd` and `res_lcm` can be nil or ^Int depending on which results are desired.
|
|
|
+*/
|
|
|
+internal_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ if res_gcd == nil && res_lcm == nil { return nil; }
|
|
|
+
|
|
|
+ return #force_inline _private_int_gcd_lcm(res_gcd, res_lcm, a, b, allocator);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ remainder = numerator % (1 << bits)
|
|
|
+
|
|
|
+ Assumes `remainder` and `numerator` both not to be `nil` and `bits` to be >= 0.
|
|
|
+*/
|
|
|
+internal_int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ /*
|
|
|
+ Everything is divisible by 1 << 0 == 1, so this returns 0.
|
|
|
+ */
|
|
|
+ if bits == 0 { return internal_zero(remainder); }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If the modulus is larger than the value, return the value.
|
|
|
+ */
|
|
|
+ err = internal_copy(remainder, numerator);
|
|
|
+ if bits >= (numerator.used * _DIGIT_BITS) || err != nil {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero digits above the last digit of the modulus.
|
|
|
+ */
|
|
|
+ zero_count := (bits / _DIGIT_BITS);
|
|
|
+ zero_count += 0 if (bits % _DIGIT_BITS == 0) else 1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder. Special case, can't use `internal_zero_unused`.
|
|
|
+ */
|
|
|
+ if zero_count > 0 {
|
|
|
+ mem.zero_slice(remainder.digit[zero_count:]);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Clear the digit that is not completely outside/inside the modulus.
|
|
|
+ */
|
|
|
+ remainder.digit[bits / _DIGIT_BITS] &= DIGIT(1 << DIGIT(bits % _DIGIT_BITS)) - DIGIT(1);
|
|
|
+ return internal_clamp(remainder);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ ============================= Low-level helpers =============================
|
|
|
+
|
|
|
+
|
|
|
+ `internal_*` helpers don't return an `Error` like their public counterparts do,
|
|
|
+ because they expect not to be passed `nil` or uninitialized inputs.
|
|
|
+
|
|
|
+ This makes them more suitable for `internal_*` functions and some of the
|
|
|
+ public ones that have already satisfied these constraints.
|
|
|
+*/
|
|
|
+
|
|
|
+/*
|
|
|
+ This procedure will return `true` if the `Int` is initialized, `false` if not.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_is_initialized :: #force_inline proc(a: ^Int) -> (initialized: bool) {
|
|
|
+ raw := transmute(mem.Raw_Dynamic_Array)a.digit;
|
|
|
+ return raw.cap >= _MIN_DIGIT_COUNT;
|
|
|
+}
|
|
|
+internal_is_initialized :: proc { internal_int_is_initialized, };
|
|
|
+
|
|
|
+/*
|
|
|
+ This procedure will return `true` if the `Int` is zero, `false` if not.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_is_zero :: #force_inline proc(a: ^Int) -> (zero: bool) {
|
|
|
+ return a.used == 0;
|
|
|
+}
|
|
|
+internal_is_zero :: proc { internal_int_is_zero, };
|
|
|
+
|
|
|
+/*
|
|
|
+ This procedure will return `true` if the `Int` is positive, `false` if not.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_is_positive :: #force_inline proc(a: ^Int) -> (positive: bool) {
|
|
|
+ return a.sign == .Zero_or_Positive;
|
|
|
+}
|
|
|
+internal_is_positive :: proc { internal_int_is_positive, };
|
|
|
+
|
|
|
+/*
|
|
|
+ This procedure will return `true` if the `Int` is negative, `false` if not.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_is_negative :: #force_inline proc(a: ^Int) -> (negative: bool) {
|
|
|
+ return a.sign == .Negative;
|
|
|
+}
|
|
|
+internal_is_negative :: proc { internal_int_is_negative, };
|
|
|
+
|
|
|
+/*
|
|
|
+ This procedure will return `true` if the `Int` is even, `false` if not.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_is_even :: #force_inline proc(a: ^Int) -> (even: bool) {
|
|
|
+ if internal_is_zero(a) { return true; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ `a.used` > 0 here, because the above handled `is_zero`.
|
|
|
+ We don't need to explicitly test it.
|
|
|
+ */
|
|
|
+ return a.digit[0] & 1 == 0;
|
|
|
+}
|
|
|
+internal_is_even :: proc { internal_int_is_even, };
|
|
|
+
|
|
|
+/*
|
|
|
+ This procedure will return `true` if the `Int` is even, `false` if not.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_is_odd :: #force_inline proc(a: ^Int) -> (odd: bool) {
|
|
|
+ return !internal_int_is_even(a);
|
|
|
+}
|
|
|
+internal_is_odd :: proc { internal_int_is_odd, };
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ This procedure will return `true` if the `Int` is a power of two, `false` if not.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_is_power_of_two :: #force_inline proc(a: ^Int) -> (power_of_two: bool) {
|
|
|
+ /*
|
|
|
+ Early out for Int == 0.
|
|
|
+ */
|
|
|
+ if #force_inline internal_is_zero(a) { return true; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ For an `Int` to be a power of two, its bottom limb has to be a power of two.
|
|
|
+ */
|
|
|
+ if ! #force_inline platform_int_is_power_of_two(int(a.digit[a.used - 1])) { return false; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ We've established that the bottom limb is a power of two.
|
|
|
+ If it's the only limb, that makes the entire Int a power of two.
|
|
|
+ */
|
|
|
+ if a.used == 1 { return true; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ For an `Int` to be a power of two, all limbs except the top one have to be zero.
|
|
|
+ */
|
|
|
+ for i := 1; i < a.used && a.digit[i - 1] != 0; i += 1 { return false; }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+internal_is_power_of_two :: proc { internal_int_is_power_of_two, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Compare two `Int`s, signed.
|
|
|
+ Returns -1 if `a` < `b`, 0 if `a` == `b` and 1 if `b` > `a`.
|
|
|
+
|
|
|
+ Expects `a` and `b` both to be valid `Int`s, i.e. initialized and not `nil`.
|
|
|
+*/
|
|
|
+internal_int_compare :: #force_inline proc(a, b: ^Int) -> (comparison: int) {
|
|
|
+ a_is_negative := #force_inline internal_is_negative(a);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Compare based on sign.
|
|
|
+ */
|
|
|
+ if a.sign != b.sign { return -1 if a_is_negative else +1; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If `a` is negative, compare in the opposite direction */
|
|
|
+ if a_is_negative { return #force_inline internal_compare_magnitude(b, a); }
|
|
|
+
|
|
|
+ return #force_inline internal_compare_magnitude(a, b);
|
|
|
+}
|
|
|
+internal_compare :: proc { internal_int_compare, internal_int_compare_digit, };
|
|
|
+internal_cmp :: internal_compare;
|
|
|
+
|
|
|
+/*
|
|
|
+ Compare an `Int` to an unsigned number upto `DIGIT & _MASK`.
|
|
|
+ Returns -1 if `a` < `b`, 0 if `a` == `b` and 1 if `b` > `a`.
|
|
|
+
|
|
|
+ Expects: `a` and `b` both to be valid `Int`s, i.e. initialized and not `nil`.
|
|
|
+*/
|
|
|
+internal_int_compare_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (comparison: int) {
|
|
|
+ a_is_negative := #force_inline internal_is_negative(a);
|
|
|
+
|
|
|
+ switch {
|
|
|
+ /*
|
|
|
+ Compare based on sign first.
|
|
|
+ */
|
|
|
+ case a_is_negative: return -1;
|
|
|
+ /*
|
|
|
+ Then compare on magnitude.
|
|
|
+ */
|
|
|
+ case a.used > 1: return +1;
|
|
|
+ /*
|
|
|
+ We have only one digit. Compare it against `b`.
|
|
|
+ */
|
|
|
+ case a.digit[0] < b: return -1;
|
|
|
+ case a.digit[0] == b: return 0;
|
|
|
+ case a.digit[0] > b: return +1;
|
|
|
+ /*
|
|
|
+ Unreachable.
|
|
|
+ Just here because Odin complains about a missing return value at the bottom of the proc otherwise.
|
|
|
+ */
|
|
|
+ case: return;
|
|
|
+ }
|
|
|
+}
|
|
|
+internal_compare_digit :: proc { internal_int_compare_digit, };
|
|
|
+internal_cmp_digit :: internal_compare_digit;
|
|
|
+
|
|
|
+/*
|
|
|
+ Compare the magnitude of two `Int`s, unsigned.
|
|
|
+*/
|
|
|
+internal_int_compare_magnitude :: #force_inline proc(a, b: ^Int) -> (comparison: int) {
|
|
|
+ /*
|
|
|
+ Compare based on used digits.
|
|
|
+ */
|
|
|
+ if a.used != b.used {
|
|
|
+ if a.used > b.used {
|
|
|
+ return +1;
|
|
|
+ }
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Same number of used digits, compare based on their value.
|
|
|
+ */
|
|
|
+ #no_bounds_check for n := a.used - 1; n >= 0; n -= 1 {
|
|
|
+ if a.digit[n] != b.digit[n] {
|
|
|
+ if a.digit[n] > b.digit[n] {
|
|
|
+ return +1;
|
|
|
+ }
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+internal_compare_magnitude :: proc { internal_int_compare_magnitude, };
|
|
|
+internal_cmp_mag :: internal_compare_magnitude;
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ ========================= Logs, powers and roots ============================
|
|
|
+*/
|
|
|
+
|
|
|
+/*
|
|
|
+ Returns log_base(a).
|
|
|
+ Assumes `a` to not be `nil` and have been iniialized.
|
|
|
+*/
|
|
|
+internal_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {
|
|
|
+ if base < 2 || DIGIT(base) > _DIGIT_MAX { return -1, .Invalid_Argument; }
|
|
|
+
|
|
|
+ if internal_is_negative(a) { return -1, .Math_Domain_Error; }
|
|
|
+ if internal_is_zero(a) { return -1, .Math_Domain_Error; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Fast path for bases that are a power of two.
|
|
|
+ */
|
|
|
+ if platform_int_is_power_of_two(int(base)) { return _private_log_power_of_two(a, base); }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Fast path for `Int`s that fit within a single `DIGIT`.
|
|
|
+ */
|
|
|
+ if a.used == 1 { return internal_log(a.digit[0], DIGIT(base)); }
|
|
|
+
|
|
|
+ return _private_int_log(a, base);
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Returns log_base(a), where `a` is a DIGIT.
|
|
|
+*/
|
|
|
+internal_digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {
|
|
|
+ /*
|
|
|
+ If the number is smaller than the base, it fits within a fraction.
|
|
|
+ Therefore, we return 0.
|
|
|
+ */
|
|
|
+ if a < base { return 0, nil; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If a number equals the base, the log is 1.
|
|
|
+ */
|
|
|
+ if a == base { return 1, nil; }
|
|
|
+
|
|
|
+ N := _WORD(a);
|
|
|
+ bracket_low := _WORD(1);
|
|
|
+ bracket_high := _WORD(base);
|
|
|
+ high := 1;
|
|
|
+ low := 0;
|
|
|
+
|
|
|
+ for bracket_high < N {
|
|
|
+ low = high;
|
|
|
+ bracket_low = bracket_high;
|
|
|
+ high <<= 1;
|
|
|
+ bracket_high *= bracket_high;
|
|
|
+ }
|
|
|
+
|
|
|
+ for high - low > 1 {
|
|
|
+ mid := (low + high) >> 1;
|
|
|
+ bracket_mid := bracket_low * #force_inline internal_small_pow(_WORD(base), _WORD(mid - low));
|
|
|
+
|
|
|
+ if N < bracket_mid {
|
|
|
+ high = mid;
|
|
|
+ bracket_high = bracket_mid;
|
|
|
+ }
|
|
|
+ if N > bracket_mid {
|
|
|
+ low = mid;
|
|
|
+ bracket_low = bracket_mid;
|
|
|
+ }
|
|
|
+ if N == bracket_mid {
|
|
|
+ return mid, nil;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if bracket_high == N {
|
|
|
+ return high, nil;
|
|
|
+ } else {
|
|
|
+ return low, nil;
|
|
|
+ }
|
|
|
+}
|
|
|
+internal_log :: proc { internal_int_log, internal_digit_log, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Calculate dest = base^power using a square-multiply algorithm.
|
|
|
+ Assumes `dest` and `base` not to be `nil` and to have been initialized.
|
|
|
+*/
|
|
|
+internal_int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ power := power;
|
|
|
+ /*
|
|
|
+ Early outs.
|
|
|
+ */
|
|
|
+ if #force_inline internal_is_zero(base) {
|
|
|
+ /*
|
|
|
+ A zero base is a special case.
|
|
|
+ */
|
|
|
+ if power < 0 {
|
|
|
+ if err = internal_zero(dest); err != nil { return err; }
|
|
|
+ return .Math_Domain_Error;
|
|
|
+ }
|
|
|
+ if power == 0 { return internal_one(dest); }
|
|
|
+ if power > 0 { return internal_zero(dest); }
|
|
|
+
|
|
|
+ }
|
|
|
+ if power < 0 {
|
|
|
+ /*
|
|
|
+ Fraction, so we'll return zero.
|
|
|
+ */
|
|
|
+ return internal_zero(dest);
|
|
|
+ }
|
|
|
+ switch(power) {
|
|
|
+ case 0:
|
|
|
+ /*
|
|
|
+ Any base to the power zero is one.
|
|
|
+ */
|
|
|
+ return #force_inline internal_one(dest);
|
|
|
+ case 1:
|
|
|
+ /*
|
|
|
+ Any base to the power one is itself.
|
|
|
+ */
|
|
|
+ return copy(dest, base);
|
|
|
+ case 2:
|
|
|
+ return #force_inline internal_sqr(dest, base);
|
|
|
+ }
|
|
|
+
|
|
|
+ g := &Int{};
|
|
|
+ if err = internal_copy(g, base); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Set initial result.
|
|
|
+ */
|
|
|
+ if err = internal_one(dest); err != nil { return err; }
|
|
|
+
|
|
|
+ loop: for power > 0 {
|
|
|
+ /*
|
|
|
+ If the bit is set, multiply.
|
|
|
+ */
|
|
|
+ if power & 1 != 0 {
|
|
|
+ if err = internal_mul(dest, g, dest); err != nil {
|
|
|
+ break loop;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Square.
|
|
|
+ */
|
|
|
+ if power > 1 {
|
|
|
+ if err = #force_inline internal_sqr(g, g); err != nil {
|
|
|
+ break loop;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* shift to next bit */
|
|
|
+ power >>= 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ internal_destroy(g);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Calculate `dest = base^power`.
|
|
|
+ Assumes `dest` not to be `nil` and to have been initialized.
|
|
|
+*/
|
|
|
+internal_int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ base_t := &Int{};
|
|
|
+ defer internal_destroy(base_t);
|
|
|
+
|
|
|
+ if err = internal_set(base_t, base); err != nil { return err; }
|
|
|
+
|
|
|
+ return #force_inline internal_int_pow(dest, base_t, power);
|
|
|
+}
|
|
|
+
|
|
|
+internal_pow :: proc { internal_int_pow, internal_int_pow_int, };
|
|
|
+internal_exp :: pow;
|
|
|
+
|
|
|
+/*
|
|
|
+
|
|
|
+*/
|
|
|
+internal_small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {
|
|
|
+ exponent := exponent; base := base;
|
|
|
+ result = _WORD(1);
|
|
|
+
|
|
|
+ for exponent != 0 {
|
|
|
+ if exponent & 1 == 1 {
|
|
|
+ result *= base;
|
|
|
+ }
|
|
|
+ exponent >>= 1;
|
|
|
+ base *= base;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ This function is less generic than `root_n`, simpler and faster.
|
|
|
+ Assumes `dest` and `src` not to be `nil` and to have been initialized.
|
|
|
+*/
|
|
|
+internal_int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Must be positive.
|
|
|
+ */
|
|
|
+ if #force_inline internal_is_negative(src) { return .Invalid_Argument; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Easy out. If src is zero, so is dest.
|
|
|
+ */
|
|
|
+ if #force_inline internal_is_zero(src) { return internal_zero(dest); }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Set up temporaries.
|
|
|
+ */
|
|
|
+ x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
+ defer internal_destroy(x, y, t1, t2);
|
|
|
+
|
|
|
+ count := #force_inline internal_count_bits(src);
|
|
|
+
|
|
|
+ a, b := count >> 1, count & 1;
|
|
|
+ if err = internal_int_power_of_two(x, a+b, allocator); err != nil { return err; }
|
|
|
+
|
|
|
+ for {
|
|
|
+ /*
|
|
|
+ y = (x + n // x) // 2
|
|
|
+ */
|
|
|
+ if err = internal_div(t1, src, x); err != nil { return err; }
|
|
|
+ if err = internal_add(t2, t1, x); err != nil { return err; }
|
|
|
+ if err = internal_shr(y, t2, 1); err != nil { return err; }
|
|
|
+
|
|
|
+ if c := internal_cmp(y, x); c == 0 || c == 1 {
|
|
|
+ internal_swap(dest, x);
|
|
|
+ return nil;
|
|
|
+ }
|
|
|
+ internal_swap(x, y);
|
|
|
+ }
|
|
|
+
|
|
|
+ internal_swap(dest, x);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+internal_sqrt :: proc { internal_int_sqrt, };
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ Find the nth root of an Integer.
|
|
|
+ Result found such that `(dest)**n <= src` and `(dest+1)**n > src`
|
|
|
+
|
|
|
+ This algorithm uses Newton's approximation `x[i+1] = x[i] - f(x[i])/f'(x[i])`,
|
|
|
+ which will find the root in `log(n)` time where each step involves a fair bit.
|
|
|
+
|
|
|
+ Assumes `dest` and `src` not to be `nil` and have been initialized.
|
|
|
+*/
|
|
|
+internal_int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Fast path for n == 2
|
|
|
+ */
|
|
|
+ if n == 2 { return #force_inline internal_sqrt(dest, src); }
|
|
|
+
|
|
|
+ if n < 0 || n > int(_DIGIT_MAX) { return .Invalid_Argument; }
|
|
|
+
|
|
|
+ if n & 1 == 0 && #force_inline internal_is_negative(src) { return .Invalid_Argument; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Set up temporaries.
|
|
|
+ */
|
|
|
+ t1, t2, t3, a := &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
+ defer internal_destroy(t1, t2, t3);
|
|
|
+
|
|
|
+ /*
|
|
|
+ If `src` is negative fudge the sign but keep track.
|
|
|
+ */
|
|
|
+ a.sign = .Zero_or_Positive;
|
|
|
+ a.used = src.used;
|
|
|
+ a.digit = src.digit;
|
|
|
+
|
|
|
+ /*
|
|
|
+ If "n" is larger than INT_MAX it is also larger than
|
|
|
+ log_2(src) because the bit-length of the "src" is measured
|
|
|
+ with an int and hence the root is always < 2 (two).
|
|
|
+ */
|
|
|
+ if n > max(int) / 2 {
|
|
|
+ err = set(dest, 1);
|
|
|
+ dest.sign = a.sign;
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Compute seed: 2^(log_2(src)/n + 2)
|
|
|
+ */
|
|
|
+ ilog2 := internal_count_bits(src);
|
|
|
+
|
|
|
+ /*
|
|
|
+ "src" is smaller than max(int), we can cast safely.
|
|
|
+ */
|
|
|
+ if ilog2 < n {
|
|
|
+ err = internal_one(dest);
|
|
|
+ dest.sign = a.sign;
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ ilog2 /= n;
|
|
|
+ if ilog2 == 0 {
|
|
|
+ err = internal_one(dest);
|
|
|
+ dest.sign = a.sign;
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Start value must be larger than root.
|
|
|
+ */
|
|
|
+ ilog2 += 2;
|
|
|
+ if err = internal_int_power_of_two(t2, ilog2); err != nil { return err; }
|
|
|
+
|
|
|
+ c: int;
|
|
|
+ iterations := 0;
|
|
|
+ for {
|
|
|
+ /* t1 = t2 */
|
|
|
+ if err = internal_copy(t1, t2); err != nil { return err; }
|
|
|
+
|
|
|
+ /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
|
|
|
+
|
|
|
+ /* t3 = t1**(b-1) */
|
|
|
+ if err = internal_pow(t3, t1, n-1); err != nil { return err; }
|
|
|
+
|
|
|
+ /* numerator */
|
|
|
+ /* t2 = t1**b */
|
|
|
+ if err = internal_mul(t2, t1, t3); err != nil { return err; }
|
|
|
+
|
|
|
+ /* t2 = t1**b - a */
|
|
|
+ if err = internal_sub(t2, t2, a); err != nil { return err; }
|
|
|
+
|
|
|
+ /* denominator */
|
|
|
+ /* t3 = t1**(b-1) * b */
|
|
|
+ if err = internal_mul(t3, t3, DIGIT(n)); err != nil { return err; }
|
|
|
+
|
|
|
+ /* t3 = (t1**b - a)/(b * t1**(b-1)) */
|
|
|
+ if err = internal_div(t3, t2, t3); err != nil { return err; }
|
|
|
+ if err = internal_sub(t2, t1, t3); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Number of rounds is at most log_2(root). If it is more it
|
|
|
+ got stuck, so break out of the loop and do the rest manually.
|
|
|
+ */
|
|
|
+ if ilog2 -= 1; ilog2 == 0 { break; }
|
|
|
+ if internal_cmp(t1, t2) == 0 { break; }
|
|
|
+
|
|
|
+ iterations += 1;
|
|
|
+ if iterations == MAX_ITERATIONS_ROOT_N {
|
|
|
+ return .Max_Iterations_Reached;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Result can be off by a few so check. */
|
|
|
+ /* Loop beneath can overshoot by one if found root is smaller than actual root. */
|
|
|
+
|
|
|
+ iterations = 0;
|
|
|
+ for {
|
|
|
+ if err = internal_pow(t2, t1, n); err != nil { return err; }
|
|
|
+
|
|
|
+ c = internal_cmp(t2, a);
|
|
|
+ if c == 0 {
|
|
|
+ swap(dest, t1);
|
|
|
+ return nil;
|
|
|
+ } else if c == -1 {
|
|
|
+ if err = internal_add(t1, t1, DIGIT(1)); err != nil { return err; }
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ iterations += 1;
|
|
|
+ if iterations == MAX_ITERATIONS_ROOT_N {
|
|
|
+ return .Max_Iterations_Reached;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ iterations = 0;
|
|
|
+ /*
|
|
|
+ Correct overshoot from above or from recurrence.
|
|
|
+ */
|
|
|
+ for {
|
|
|
+ if err = internal_pow(t2, t1, n); err != nil { return err; }
|
|
|
+
|
|
|
+ if internal_cmp(t2, a) != 1 { break; }
|
|
|
+
|
|
|
+ if err = internal_sub(t1, t1, DIGIT(1)); err != nil { return err; }
|
|
|
+
|
|
|
+ iterations += 1;
|
|
|
+ if iterations == MAX_ITERATIONS_ROOT_N {
|
|
|
+ return .Max_Iterations_Reached;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Set the result.
|
|
|
+ */
|
|
|
+ internal_swap(dest, t1);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Set the sign of the result.
|
|
|
+ */
|
|
|
+ dest.sign = src.sign;
|
|
|
+
|
|
|
+ return err;
|
|
|
+}
|
|
|
+internal_root_n :: proc { internal_int_root_n, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Other internal helpers
|
|
|
+*/
|
|
|
+
|
|
|
+/*
|
|
|
+ Deallocates the backing memory of one or more `Int`s.
|
|
|
+ Asssumes none of the `integers` to be a `nil`.
|
|
|
+*/
|
|
|
+internal_int_destroy :: proc(integers: ..^Int) {
|
|
|
+ integers := integers;
|
|
|
+
|
|
|
+ for a in &integers {
|
|
|
+ raw := transmute(mem.Raw_Dynamic_Array)a.digit;
|
|
|
+ if raw.cap > 0 {
|
|
|
+ mem.zero_slice(a.digit[:]);
|
|
|
+ free(&a.digit[0]);
|
|
|
+ }
|
|
|
+ a = &Int{};
|
|
|
+ }
|
|
|
+}
|
|
|
+internal_destroy :: proc{ internal_int_destroy, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Helpers to set an `Int` to a specific value.
|
|
|
+*/
|
|
|
+internal_int_set_from_integer :: proc(dest: ^Int, src: $T, minimize := false, allocator := context.allocator) -> (err: Error)
|
|
|
+ where intrinsics.type_is_integer(T) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ src := src;
|
|
|
+
|
|
|
+ if err = internal_error_if_immutable(dest); err != nil { return err; }
|
|
|
+ /*
|
|
|
+ Most internal procs asssume an Int to have already been initialize,
|
|
|
+ but as this is one of the procs that initializes, we have to check the following.
|
|
|
+ */
|
|
|
+ if err = internal_clear_if_uninitialized_single(dest); err != nil { return err; }
|
|
|
+
|
|
|
+ dest.flags = {}; // We're not -Inf, Inf, NaN or Immutable.
|
|
|
+
|
|
|
+ dest.used = 0;
|
|
|
+ dest.sign = .Zero_or_Positive if src >= 0 else .Negative;
|
|
|
+ src = internal_abs(src);
|
|
|
+
|
|
|
+ #no_bounds_check for src != 0 {
|
|
|
+ dest.digit[dest.used] = DIGIT(src) & _MASK;
|
|
|
+ dest.used += 1;
|
|
|
+ src >>= _DIGIT_BITS;
|
|
|
+ }
|
|
|
+ internal_zero_unused(dest);
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+internal_set :: proc { internal_int_set_from_integer, internal_int_copy };
|
|
|
+
|
|
|
+internal_copy_digits :: #force_inline proc(dest, src: ^Int, digits: int) -> (err: Error) {
|
|
|
+ if err = #force_inline internal_error_if_immutable(dest); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If dest == src, do nothing
|
|
|
+ */
|
|
|
+ if (dest == src) { return nil; }
|
|
|
+
|
|
|
+ #force_inline mem.copy_non_overlapping(&dest.digit[0], &src.digit[0], size_of(DIGIT) * digits);
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Copy one `Int` to another.
|
|
|
+*/
|
|
|
+internal_int_copy :: proc(dest, src: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ If dest == src, do nothing
|
|
|
+ */
|
|
|
+ if (dest == src) { return nil; }
|
|
|
+
|
|
|
+ if err = internal_error_if_immutable(dest); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Grow `dest` to fit `src`.
|
|
|
+ If `dest` is not yet initialized, it will be using `allocator`.
|
|
|
+ */
|
|
|
+ needed := src.used if minimize else max(src.used, _DEFAULT_DIGIT_COUNT);
|
|
|
+
|
|
|
+ if err = internal_grow(dest, needed, minimize); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Copy everything over and zero high digits.
|
|
|
+ */
|
|
|
+ internal_copy_digits(dest, src, src.used);
|
|
|
+
|
|
|
+ dest.used = src.used;
|
|
|
+ dest.sign = src.sign;
|
|
|
+ dest.flags = src.flags &~ {.Immutable};
|
|
|
+
|
|
|
+ internal_zero_unused(dest);
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+internal_copy :: proc { internal_int_copy, };
|
|
|
+
|
|
|
+/*
|
|
|
+ In normal code, you can also write `a, b = b, a`.
|
|
|
+ However, that only swaps within the current scope.
|
|
|
+ This helper swaps completely.
|
|
|
+*/
|
|
|
+internal_int_swap :: #force_inline proc(a, b: ^Int) {
|
|
|
+ a := a; b := b;
|
|
|
+
|
|
|
+ a.used, b.used = b.used, a.used;
|
|
|
+ a.sign, b.sign = b.sign, a.sign;
|
|
|
+ a.digit, b.digit = b.digit, a.digit;
|
|
|
+}
|
|
|
+internal_swap :: proc { internal_int_swap, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Set `dest` to |`src`|.
|
|
|
+*/
|
|
|
+internal_int_abs :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ If `dest == src`, just fix `dest`'s sign.
|
|
|
+ */
|
|
|
+ if (dest == src) {
|
|
|
+ dest.sign = .Zero_or_Positive;
|
|
|
+ return nil;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Copy `src` to `dest`
|
|
|
+ */
|
|
|
+ if err = internal_copy(dest, src); err != nil {
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Fix sign.
|
|
|
+ */
|
|
|
+ dest.sign = .Zero_or_Positive;
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+internal_platform_abs :: proc(n: $T) -> T where intrinsics.type_is_integer(T) {
|
|
|
+ return n if n >= 0 else -n;
|
|
|
+}
|
|
|
+internal_abs :: proc{ internal_int_abs, internal_platform_abs, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Set `dest` to `-src`.
|
|
|
+*/
|
|
|
+internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ If `dest == src`, just fix `dest`'s sign.
|
|
|
+ */
|
|
|
+ sign := Sign.Negative;
|
|
|
+ if #force_inline internal_is_zero(src) || #force_inline internal_is_negative(src) {
|
|
|
+ sign = .Zero_or_Positive;
|
|
|
+ }
|
|
|
+ if dest == src {
|
|
|
+ dest.sign = sign;
|
|
|
+ return nil;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Copy `src` to `dest`
|
|
|
+ */
|
|
|
+ if err = internal_copy(dest, src); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Fix sign.
|
|
|
+ */
|
|
|
+ dest.sign = sign;
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+internal_neg :: proc { internal_int_neg, };
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ Helpers to extract values from the `Int`.
|
|
|
+*/
|
|
|
+internal_int_bitfield_extract_single :: proc(a: ^Int, offset: int) -> (bit: _WORD, err: Error) {
|
|
|
+ return #force_inline int_bitfield_extract(a, offset, 1);
|
|
|
+}
|
|
|
+
|
|
|
+internal_int_bitfield_extract :: proc(a: ^Int, offset, count: int) -> (res: _WORD, err: Error) #no_bounds_check {
|
|
|
+ /*
|
|
|
+ Early out for single bit.
|
|
|
+ */
|
|
|
+ if count == 1 {
|
|
|
+ limb := offset / _DIGIT_BITS;
|
|
|
+ if limb < 0 || limb >= a.used { return 0, .Invalid_Argument; }
|
|
|
+ i := _WORD(1 << _WORD((offset % _DIGIT_BITS)));
|
|
|
+ return 1 if ((_WORD(a.digit[limb]) & i) != 0) else 0, nil;
|
|
|
+ }
|
|
|
+
|
|
|
+ if count > _WORD_BITS || count < 1 { return 0, .Invalid_Argument; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ There are 3 possible cases.
|
|
|
+ - [offset:][:count] covers 1 DIGIT,
|
|
|
+ e.g. offset: 0, count: 60 = bits 0..59
|
|
|
+ - [offset:][:count] covers 2 DIGITS,
|
|
|
+ e.g. offset: 5, count: 60 = bits 5..59, 0..4
|
|
|
+ e.g. offset: 0, count: 120 = bits 0..59, 60..119
|
|
|
+ - [offset:][:count] covers 3 DIGITS,
|
|
|
+ e.g. offset: 40, count: 100 = bits 40..59, 0..59, 0..19
|
|
|
+ e.g. offset: 40, count: 120 = bits 40..59, 0..59, 0..39
|
|
|
+ */
|
|
|
+
|
|
|
+ limb := offset / _DIGIT_BITS;
|
|
|
+ bits_left := count;
|
|
|
+ bits_offset := offset % _DIGIT_BITS;
|
|
|
+
|
|
|
+ num_bits := min(bits_left, _DIGIT_BITS - bits_offset);
|
|
|
+
|
|
|
+ shift := offset % _DIGIT_BITS;
|
|
|
+ mask := (_WORD(1) << uint(num_bits)) - 1;
|
|
|
+ res = (_WORD(a.digit[limb]) >> uint(shift)) & mask;
|
|
|
+
|
|
|
+ bits_left -= num_bits;
|
|
|
+ if bits_left == 0 { return res, nil; }
|
|
|
+
|
|
|
+ res_shift := num_bits;
|
|
|
+ num_bits = min(bits_left, _DIGIT_BITS);
|
|
|
+ mask = (1 << uint(num_bits)) - 1;
|
|
|
+
|
|
|
+ res |= (_WORD(a.digit[limb + 1]) & mask) << uint(res_shift);
|
|
|
+
|
|
|
+ bits_left -= num_bits;
|
|
|
+ if bits_left == 0 { return res, nil; }
|
|
|
+
|
|
|
+ mask = (1 << uint(bits_left)) - 1;
|
|
|
+ res_shift += _DIGIT_BITS;
|
|
|
+
|
|
|
+ res |= (_WORD(a.digit[limb + 2]) & mask) << uint(res_shift);
|
|
|
+
|
|
|
+ return res, nil;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Resize backing store.
|
|
|
+ We don't need to pass the allocator, because the storage itself stores it.
|
|
|
+
|
|
|
+ Assumes `a` not to be `nil`, and to have already been initialized.
|
|
|
+*/
|
|
|
+internal_int_shrink :: proc(a: ^Int) -> (err: Error) {
|
|
|
+ needed := max(_MIN_DIGIT_COUNT, a.used);
|
|
|
+
|
|
|
+ if a.used != needed { return internal_grow(a, needed, true); }
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+internal_shrink :: proc { internal_int_shrink, };
|
|
|
+
|
|
|
+internal_int_grow :: proc(a: ^Int, digits: int, allow_shrink := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ raw := transmute(mem.Raw_Dynamic_Array)a.digit;
|
|
|
+
|
|
|
+ /*
|
|
|
+ We need at least _MIN_DIGIT_COUNT or a.used digits, whichever is bigger.
|
|
|
+ The caller is asking for `digits`. Let's be accomodating.
|
|
|
+ */
|
|
|
+ needed := max(_MIN_DIGIT_COUNT, a.used, digits);
|
|
|
+ if !allow_shrink {
|
|
|
+ needed = max(needed, raw.cap);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If not yet iniialized, initialize the `digit` backing with the allocator we were passed.
|
|
|
+ */
|
|
|
+ if raw.cap == 0 {
|
|
|
+ a.digit = mem.make_dynamic_array_len_cap([dynamic]DIGIT, needed, needed, allocator);
|
|
|
+ } else if raw.cap != needed {
|
|
|
+ /*
|
|
|
+ `[dynamic]DIGIT` already knows what allocator was used for it, so resize will do the right thing.
|
|
|
+ */
|
|
|
+ resize(&a.digit, needed);
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ Let's see if the allocation/resize worked as expected.
|
|
|
+ */
|
|
|
+ if len(a.digit) != needed {
|
|
|
+ return .Out_Of_Memory;
|
|
|
+ }
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+internal_grow :: proc { internal_int_grow, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Clear `Int` and resize it to the default size.
|
|
|
+ Assumes `a` not to be `nil`.
|
|
|
+*/
|
|
|
+internal_int_clear :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ raw := transmute(mem.Raw_Dynamic_Array)a.digit;
|
|
|
+ if raw.cap != 0 {
|
|
|
+ mem.zero_slice(a.digit[:a.used]);
|
|
|
+ }
|
|
|
+ a.sign = .Zero_or_Positive;
|
|
|
+ a.used = 0;
|
|
|
+
|
|
|
+ return #force_inline internal_grow(a, a.used, minimize, allocator);
|
|
|
+}
|
|
|
+internal_clear :: proc { internal_int_clear, };
|
|
|
+internal_zero :: internal_clear;
|
|
|
+
|
|
|
+/*
|
|
|
+ Set the `Int` to 1 and optionally shrink it to the minimum backing size.
|
|
|
+*/
|
|
|
+internal_int_one :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ return internal_copy(a, INT_ONE, minimize, allocator);
|
|
|
+}
|
|
|
+internal_one :: proc { internal_int_one, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Set the `Int` to -1 and optionally shrink it to the minimum backing size.
|
|
|
+*/
|
|
|
+internal_int_minus_one :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ return internal_copy(a, INT_MINUS_ONE, minimize, allocator);
|
|
|
+}
|
|
|
+internal_minus_one :: proc { internal_int_minus_one, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Set the `Int` to Inf and optionally shrink it to the minimum backing size.
|
|
|
+*/
|
|
|
+internal_int_inf :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ return internal_copy(a, INT_INF, minimize, allocator);
|
|
|
+}
|
|
|
+internal_inf :: proc { internal_int_inf, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Set the `Int` to -Inf and optionally shrink it to the minimum backing size.
|
|
|
+*/
|
|
|
+internal_int_minus_inf :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ return internal_copy(a, INT_MINUS_INF, minimize, allocator);
|
|
|
+}
|
|
|
+internal_minus_inf :: proc { internal_int_inf, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Set the `Int` to NaN and optionally shrink it to the minimum backing size.
|
|
|
+*/
|
|
|
+internal_int_nan :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) {
|
|
|
+ return internal_copy(a, INT_NAN, minimize, allocator);
|
|
|
+}
|
|
|
+internal_nan :: proc { internal_int_nan, };
|
|
|
+
|
|
|
+internal_int_power_of_two :: proc(a: ^Int, power: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if power < 0 || power > _MAX_BIT_COUNT { return .Invalid_Argument; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Grow to accomodate the single bit.
|
|
|
+ */
|
|
|
+ a.used = (power / _DIGIT_BITS) + 1;
|
|
|
+ if err = internal_grow(a, a.used); err != nil { return err; }
|
|
|
+ /*
|
|
|
+ Zero the entirety.
|
|
|
+ */
|
|
|
+ mem.zero_slice(a.digit[:]);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Set the bit.
|
|
|
+ */
|
|
|
+ a.digit[power / _DIGIT_BITS] = 1 << uint((power % _DIGIT_BITS));
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+internal_int_get_u128 :: proc(a: ^Int) -> (res: u128, err: Error) {
|
|
|
+ return internal_int_get(a, u128);
|
|
|
+}
|
|
|
+internal_get_u128 :: proc { internal_int_get_u128, };
|
|
|
+
|
|
|
+internal_int_get_i128 :: proc(a: ^Int) -> (res: i128, err: Error) {
|
|
|
+ return internal_int_get(a, i128);
|
|
|
+}
|
|
|
+internal_get_i128 :: proc { internal_int_get_i128, };
|
|
|
+
|
|
|
+internal_int_get_u64 :: proc(a: ^Int) -> (res: u64, err: Error) {
|
|
|
+ return internal_int_get(a, u64);
|
|
|
+}
|
|
|
+internal_get_u64 :: proc { internal_int_get_u64, };
|
|
|
+
|
|
|
+internal_int_get_i64 :: proc(a: ^Int) -> (res: i64, err: Error) {
|
|
|
+ return internal_int_get(a, i64);
|
|
|
+}
|
|
|
+internal_get_i64 :: proc { internal_int_get_i64, };
|
|
|
+
|
|
|
+internal_int_get_u32 :: proc(a: ^Int) -> (res: u32, err: Error) {
|
|
|
+ return internal_int_get(a, u32);
|
|
|
+}
|
|
|
+internal_get_u32 :: proc { internal_int_get_u32, };
|
|
|
+
|
|
|
+internal_int_get_i32 :: proc(a: ^Int) -> (res: i32, err: Error) {
|
|
|
+ return internal_int_get(a, i32);
|
|
|
+}
|
|
|
+internal_get_i32 :: proc { internal_int_get_i32, };
|
|
|
+
|
|
|
+/*
|
|
|
+ TODO: Think about using `count_bits` to check if the value could be returned completely,
|
|
|
+ and maybe return max(T), .Integer_Overflow if not?
|
|
|
+*/
|
|
|
+internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: T, err: Error) where intrinsics.type_is_integer(T) {
|
|
|
+ size_in_bits := int(size_of(T) * 8);
|
|
|
+ i := int((size_in_bits + _DIGIT_BITS - 1) / _DIGIT_BITS);
|
|
|
+ i = min(int(a.used), i);
|
|
|
+
|
|
|
+ #no_bounds_check for ; i >= 0; i -= 1 {
|
|
|
+ res <<= uint(0) if size_in_bits <= _DIGIT_BITS else _DIGIT_BITS;
|
|
|
+ res |= T(a.digit[i]);
|
|
|
+ if size_in_bits <= _DIGIT_BITS {
|
|
|
+ break;
|
|
|
+ };
|
|
|
+ }
|
|
|
+
|
|
|
+ when !intrinsics.type_is_unsigned(T) {
|
|
|
+ /*
|
|
|
+ Mask off sign bit.
|
|
|
+ */
|
|
|
+ res ~= 1 << uint(size_in_bits - 1);
|
|
|
+ /*
|
|
|
+ Set the sign.
|
|
|
+ */
|
|
|
+ if a.sign == .Negative { res = -res; }
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+internal_get :: proc { internal_int_get, };
|
|
|
+
|
|
|
+internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) {
|
|
|
+ l := min(a.used, 17); // log2(max(f64)) is approximately 1020, or 17 legs.
|
|
|
+ fac := f64(1 << _DIGIT_BITS);
|
|
|
+ d := 0.0;
|
|
|
+
|
|
|
+ #no_bounds_check for i := l; i >= 0; i -= 1 {
|
|
|
+ d = (d * fac) + f64(a.digit[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ res = -d if a.sign == .Negative else d;
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ The `and`, `or` and `xor` binops differ in two lines only.
|
|
|
+ We could handle those with a switch, but that adds overhead.
|
|
|
+
|
|
|
+ TODO: Implement versions that take a DIGIT immediate.
|
|
|
+*/
|
|
|
+
|
|
|
+/*
|
|
|
+ 2's complement `and`, returns `dest = a & b;`
|
|
|
+*/
|
|
|
+internal_int_and :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ used := max(a.used, b.used) + 1;
|
|
|
+ /*
|
|
|
+ Grow the destination to accomodate the result.
|
|
|
+ */
|
|
|
+ if err = internal_grow(dest, used); err != nil { return err; }
|
|
|
+
|
|
|
+ neg_a := #force_inline internal_is_negative(a);
|
|
|
+ neg_b := #force_inline internal_is_negative(b);
|
|
|
+ neg := neg_a && neg_b;
|
|
|
+
|
|
|
+ ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1);
|
|
|
+
|
|
|
+ #no_bounds_check for i := 0; i < used; i += 1 {
|
|
|
+ x, y: DIGIT;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to 2's complement if negative.
|
|
|
+ */
|
|
|
+ if neg_a {
|
|
|
+ ac += _MASK if i >= a.used else (~a.digit[i] & _MASK);
|
|
|
+ x = ac & _MASK;
|
|
|
+ ac >>= _DIGIT_BITS;
|
|
|
+ } else {
|
|
|
+ x = 0 if i >= a.used else a.digit[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to 2's complement if negative.
|
|
|
+ */
|
|
|
+ if neg_b {
|
|
|
+ bc += _MASK if i >= b.used else (~b.digit[i] & _MASK);
|
|
|
+ y = bc & _MASK;
|
|
|
+ bc >>= _DIGIT_BITS;
|
|
|
+ } else {
|
|
|
+ y = 0 if i >= b.used else b.digit[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ dest.digit[i] = x & y;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to to sign-magnitude if negative.
|
|
|
+ */
|
|
|
+ if neg {
|
|
|
+ cc += ~dest.digit[i] & _MASK;
|
|
|
+ dest.digit[i] = cc & _MASK;
|
|
|
+ cc >>= _DIGIT_BITS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ dest.used = used;
|
|
|
+ dest.sign = .Negative if neg else .Zero_or_Positive;
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+internal_and :: proc { internal_int_and, };
|
|
|
+
|
|
|
+/*
|
|
|
+ 2's complement `or`, returns `dest = a | b;`
|
|
|
+*/
|
|
|
+internal_int_or :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ used := max(a.used, b.used) + 1;
|
|
|
+ /*
|
|
|
+ Grow the destination to accomodate the result.
|
|
|
+ */
|
|
|
+ if err = internal_grow(dest, used); err != nil { return err; }
|
|
|
+
|
|
|
+ neg_a := #force_inline internal_is_negative(a);
|
|
|
+ neg_b := #force_inline internal_is_negative(b);
|
|
|
+ neg := neg_a || neg_b;
|
|
|
+
|
|
|
+ ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1);
|
|
|
+
|
|
|
+ #no_bounds_check for i := 0; i < used; i += 1 {
|
|
|
+ x, y: DIGIT;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to 2's complement if negative.
|
|
|
+ */
|
|
|
+ if neg_a {
|
|
|
+ ac += _MASK if i >= a.used else (~a.digit[i] & _MASK);
|
|
|
+ x = ac & _MASK;
|
|
|
+ ac >>= _DIGIT_BITS;
|
|
|
+ } else {
|
|
|
+ x = 0 if i >= a.used else a.digit[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to 2's complement if negative.
|
|
|
+ */
|
|
|
+ if neg_b {
|
|
|
+ bc += _MASK if i >= b.used else (~b.digit[i] & _MASK);
|
|
|
+ y = bc & _MASK;
|
|
|
+ bc >>= _DIGIT_BITS;
|
|
|
+ } else {
|
|
|
+ y = 0 if i >= b.used else b.digit[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ dest.digit[i] = x | y;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to to sign-magnitude if negative.
|
|
|
+ */
|
|
|
+ if neg {
|
|
|
+ cc += ~dest.digit[i] & _MASK;
|
|
|
+ dest.digit[i] = cc & _MASK;
|
|
|
+ cc >>= _DIGIT_BITS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ dest.used = used;
|
|
|
+ dest.sign = .Negative if neg else .Zero_or_Positive;
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+internal_or :: proc { internal_int_or, };
|
|
|
+
|
|
|
+/*
|
|
|
+ 2's complement `xor`, returns `dest = a ~ b;`
|
|
|
+*/
|
|
|
+internal_int_xor :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ used := max(a.used, b.used) + 1;
|
|
|
+ /*
|
|
|
+ Grow the destination to accomodate the result.
|
|
|
+ */
|
|
|
+ if err = internal_grow(dest, used); err != nil { return err; }
|
|
|
+
|
|
|
+ neg_a := #force_inline internal_is_negative(a);
|
|
|
+ neg_b := #force_inline internal_is_negative(b);
|
|
|
+ neg := neg_a != neg_b;
|
|
|
+
|
|
|
+ ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1);
|
|
|
+
|
|
|
+ #no_bounds_check for i := 0; i < used; i += 1 {
|
|
|
+ x, y: DIGIT;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to 2's complement if negative.
|
|
|
+ */
|
|
|
+ if neg_a {
|
|
|
+ ac += _MASK if i >= a.used else (~a.digit[i] & _MASK);
|
|
|
+ x = ac & _MASK;
|
|
|
+ ac >>= _DIGIT_BITS;
|
|
|
+ } else {
|
|
|
+ x = 0 if i >= a.used else a.digit[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to 2's complement if negative.
|
|
|
+ */
|
|
|
+ if neg_b {
|
|
|
+ bc += _MASK if i >= b.used else (~b.digit[i] & _MASK);
|
|
|
+ y = bc & _MASK;
|
|
|
+ bc >>= _DIGIT_BITS;
|
|
|
+ } else {
|
|
|
+ y = 0 if i >= b.used else b.digit[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ dest.digit[i] = x ~ y;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Convert to to sign-magnitude if negative.
|
|
|
+ */
|
|
|
+ if neg {
|
|
|
+ cc += ~dest.digit[i] & _MASK;
|
|
|
+ dest.digit[i] = cc & _MASK;
|
|
|
+ cc >>= _DIGIT_BITS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ dest.used = used;
|
|
|
+ dest.sign = .Negative if neg else .Zero_or_Positive;
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+internal_xor :: proc { internal_int_xor, };
|
|
|
+
|
|
|
+/*
|
|
|
+ dest = ~src
|
|
|
+*/
|
|
|
+internal_int_complement :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Temporarily fix sign.
|
|
|
+ */
|
|
|
+ old_sign := src.sign;
|
|
|
+
|
|
|
+ neg := #force_inline internal_is_zero(src) || #force_inline internal_is_positive(src);
|
|
|
+
|
|
|
+ src.sign = .Negative if neg else .Zero_or_Positive;
|
|
|
+
|
|
|
+ err = #force_inline internal_sub(dest, src, 1);
|
|
|
+ /*
|
|
|
+ Restore sign.
|
|
|
+ */
|
|
|
+ src.sign = old_sign;
|
|
|
+
|
|
|
+ return err;
|
|
|
+}
|
|
|
+internal_complement :: proc { internal_int_complement, };
|
|
|
+
|
|
|
+/*
|
|
|
+ quotient, remainder := numerator >> bits;
|
|
|
+ `remainder` is allowed to be passed a `nil`, in which case `mod` won't be computed.
|
|
|
+*/
|
|
|
+internal_int_shrmod :: proc(quotient, remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ bits := bits;
|
|
|
+ if bits < 0 { return .Invalid_Argument; }
|
|
|
+
|
|
|
+ if err = internal_copy(quotient, numerator); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Shift right by a certain bit count (store quotient and optional remainder.)
|
|
|
+ `numerator` should not be used after this.
|
|
|
+ */
|
|
|
+ if remainder != nil {
|
|
|
+ if err = internal_int_mod_bits(remainder, numerator, bits); err != nil { return err; }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Shift by as many digits in the bit count.
|
|
|
+ */
|
|
|
+ if bits >= _DIGIT_BITS {
|
|
|
+ if err = internal_shr_digit(quotient, bits / _DIGIT_BITS); err != nil { return err; }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Shift any bit count < _DIGIT_BITS.
|
|
|
+ */
|
|
|
+ bits %= _DIGIT_BITS;
|
|
|
+ if bits != 0 {
|
|
|
+ mask := DIGIT(1 << uint(bits)) - 1;
|
|
|
+ shift := DIGIT(_DIGIT_BITS - bits);
|
|
|
+ carry := DIGIT(0);
|
|
|
+
|
|
|
+ #no_bounds_check for x := quotient.used - 1; x >= 0; x -= 1 {
|
|
|
+ /*
|
|
|
+ Get the lower bits of this word in a temp.
|
|
|
+ */
|
|
|
+ fwd_carry := quotient.digit[x] & mask;
|
|
|
+
|
|
|
+ /*
|
|
|
+ Shift the current word and mix in the carry bits from the previous word.
|
|
|
+ */
|
|
|
+ quotient.digit[x] = (quotient.digit[x] >> uint(bits)) | (carry << shift);
|
|
|
+
|
|
|
+ /*
|
|
|
+ Update carry from forward carry.
|
|
|
+ */
|
|
|
+ carry = fwd_carry;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+ return internal_clamp(numerator);
|
|
|
+}
|
|
|
+internal_shrmod :: proc { internal_int_shrmod, };
|
|
|
+
|
|
|
+internal_int_shr :: proc(dest, source: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ return #force_inline internal_shrmod(dest, nil, source, bits, allocator);
|
|
|
+}
|
|
|
+internal_shr :: proc { internal_int_shr, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Shift right by `digits` * _DIGIT_BITS bits.
|
|
|
+*/
|
|
|
+internal_int_shr_digit :: proc(quotient: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if digits <= 0 { return nil; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ If digits > used simply zero and return.
|
|
|
+ */
|
|
|
+ if digits > quotient.used { return internal_zero(quotient); }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Much like `int_shl_digit`, this is implemented using a sliding window,
|
|
|
+ except the window goes the other way around.
|
|
|
+
|
|
|
+ b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
|
|
+ /\ | ---->
|
|
|
+ \-------------------/ ---->
|
|
|
+ */
|
|
|
+
|
|
|
+ #no_bounds_check for x := 0; x < (quotient.used - digits); x += 1 {
|
|
|
+ quotient.digit[x] = quotient.digit[x + digits];
|
|
|
+ }
|
|
|
+ quotient.used -= digits;
|
|
|
+ internal_zero_unused(quotient);
|
|
|
+ return internal_clamp(quotient);
|
|
|
+}
|
|
|
+internal_shr_digit :: proc { internal_int_shr_digit, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Shift right by a certain bit count with sign extension.
|
|
|
+*/
|
|
|
+internal_int_shr_signed :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if src.sign == .Zero_or_Positive {
|
|
|
+ return internal_shr(dest, src, bits);
|
|
|
+ }
|
|
|
+ if err = internal_int_add_digit(dest, src, DIGIT(1)); err != nil { return err; }
|
|
|
+
|
|
|
+ if err = internal_shr(dest, dest, bits); err != nil { return err; }
|
|
|
+ return internal_sub(dest, src, DIGIT(1));
|
|
|
+}
|
|
|
+
|
|
|
+internal_shr_signed :: proc { internal_int_shr_signed, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Shift left by a certain bit count.
|
|
|
+*/
|
|
|
+internal_int_shl :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ bits := bits;
|
|
|
+
|
|
|
+ if bits < 0 { return .Invalid_Argument; }
|
|
|
+
|
|
|
+ if err = internal_copy(dest, src); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Grow `dest` to accommodate the additional bits.
|
|
|
+ */
|
|
|
+ digits_needed := dest.used + (bits / _DIGIT_BITS) + 1;
|
|
|
+ if err = internal_grow(dest, digits_needed); err != nil { return err; }
|
|
|
+ dest.used = digits_needed;
|
|
|
+ /*
|
|
|
+ Shift by as many digits in the bit count as we have.
|
|
|
+ */
|
|
|
+ if bits >= _DIGIT_BITS {
|
|
|
+ if err = internal_shl_digit(dest, bits / _DIGIT_BITS); err != nil { return err; }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Shift any remaining bit count < _DIGIT_BITS
|
|
|
+ */
|
|
|
+ bits %= _DIGIT_BITS;
|
|
|
+ if bits != 0 {
|
|
|
+ mask := (DIGIT(1) << uint(bits)) - DIGIT(1);
|
|
|
+ shift := DIGIT(_DIGIT_BITS - bits);
|
|
|
+ carry := DIGIT(0);
|
|
|
+
|
|
|
+ #no_bounds_check for x:= 0; x < dest.used; x+= 1 {
|
|
|
+ fwd_carry := (dest.digit[x] >> shift) & mask;
|
|
|
+ dest.digit[x] = (dest.digit[x] << uint(bits) | carry) & _MASK;
|
|
|
+ carry = fwd_carry;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Use final carry.
|
|
|
+ */
|
|
|
+ if carry != 0 {
|
|
|
+ dest.digit[dest.used] = carry;
|
|
|
+ dest.used += 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return internal_clamp(dest);
|
|
|
+}
|
|
|
+internal_shl :: proc { internal_int_shl, };
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ Shift left by `digits` * _DIGIT_BITS bits.
|
|
|
+*/
|
|
|
+internal_int_shl_digit :: proc(quotient: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if digits <= 0 { return nil; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ No need to shift a zero.
|
|
|
+ */
|
|
|
+ if #force_inline internal_is_zero(quotient) { return {}; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Resize `quotient` to accomodate extra digits.
|
|
|
+ */
|
|
|
+ if err = #force_inline internal_grow(quotient, quotient.used + digits); err != nil { return err; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Increment the used by the shift amount then copy upwards.
|
|
|
+ */
|
|
|
+
|
|
|
+ /*
|
|
|
+ Much like `int_shr_digit`, this is implemented using a sliding window,
|
|
|
+ except the window goes the other way around.
|
|
|
+ */
|
|
|
+ #no_bounds_check for x := quotient.used; x > 0; x -= 1 {
|
|
|
+ quotient.digit[x+digits-1] = quotient.digit[x-1];
|
|
|
+ }
|
|
|
+
|
|
|
+ quotient.used += digits;
|
|
|
+ mem.zero_slice(quotient.digit[:digits]);
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+internal_shl_digit :: proc { internal_int_shl_digit, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Count bits in an `Int`.
|
|
|
+ Assumes `a` not to be `nil` and to have been initialized.
|
|
|
+*/
|
|
|
+internal_count_bits :: proc(a: ^Int) -> (count: int) {
|
|
|
+ /*
|
|
|
+ Fast path for zero.
|
|
|
+ */
|
|
|
+ if #force_inline internal_is_zero(a) { return {}; }
|
|
|
+ /*
|
|
|
+ Get the number of DIGITs and use it.
|
|
|
+ */
|
|
|
+ count = (a.used - 1) * _DIGIT_BITS;
|
|
|
+ /*
|
|
|
+ Take the last DIGIT and count the bits in it.
|
|
|
+ */
|
|
|
+ clz := int(intrinsics.count_leading_zeros(a.digit[a.used - 1]));
|
|
|
+ count += (_DIGIT_TYPE_BITS - clz);
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ Returns the number of trailing zeroes before the first one.
|
|
|
+ Differs from regular `ctz` in that 0 returns 0.
|
|
|
+
|
|
|
+ Assumes `a` not to be `nil` and have been initialized.
|
|
|
+*/
|
|
|
+internal_int_count_lsb :: proc(a: ^Int) -> (count: int, err: Error) {
|
|
|
+ /*
|
|
|
+ Easy out.
|
|
|
+ */
|
|
|
+ if #force_inline internal_is_zero(a) { return {}, nil; }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Scan lower digits until non-zero.
|
|
|
+ */
|
|
|
+ x: int;
|
|
|
+ #no_bounds_check for x = 0; x < a.used && a.digit[x] == 0; x += 1 {}
|
|
|
+
|
|
|
+ q := a.digit[x];
|
|
|
+ x *= _DIGIT_BITS;
|
|
|
+ x += internal_count_lsb(q);
|
|
|
+ return x, nil;
|
|
|
+}
|
|
|
+
|
|
|
+internal_platform_count_lsb :: #force_inline proc(a: $T) -> (count: int)
|
|
|
+ where intrinsics.type_is_integer(T) && intrinsics.type_is_unsigned(T) {
|
|
|
+ return int(intrinsics.count_trailing_zeros(a)) if a > 0 else 0;
|
|
|
+}
|
|
|
+
|
|
|
+internal_count_lsb :: proc { internal_int_count_lsb, internal_platform_count_lsb, };
|
|
|
+
|
|
|
+internal_int_random_digit :: proc(r: ^rnd.Rand = nil) -> (res: DIGIT) {
|
|
|
+ when _DIGIT_BITS == 60 { // DIGIT = u64
|
|
|
+ return DIGIT(rnd.uint64(r)) & _MASK;
|
|
|
+ } else when _DIGIT_BITS == 28 { // DIGIT = u32
|
|
|
+ return DIGIT(rnd.uint32(r)) & _MASK;
|
|
|
+ } else {
|
|
|
+ panic("Unsupported DIGIT size.");
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0; // We shouldn't get here.
|
|
|
+}
|
|
|
+
|
|
|
+internal_int_rand :: proc(dest: ^Int, bits: int, r: ^rnd.Rand = nil, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ bits := bits;
|
|
|
+
|
|
|
+ if bits <= 0 { return .Invalid_Argument; }
|
|
|
+
|
|
|
+ digits := bits / _DIGIT_BITS;
|
|
|
+ bits %= _DIGIT_BITS;
|
|
|
+
|
|
|
+ if bits > 0 {
|
|
|
+ digits += 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if err = #force_inline internal_grow(dest, digits); err != nil { return err; }
|
|
|
+
|
|
|
+ for i := 0; i < digits; i += 1 {
|
|
|
+ dest.digit[i] = int_random_digit(r) & _MASK;
|
|
|
+ }
|
|
|
+ if bits > 0 {
|
|
|
+ dest.digit[digits - 1] &= ((1 << uint(bits)) - 1);
|
|
|
+ }
|
|
|
+ dest.used = digits;
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+internal_rand :: proc { internal_int_rand, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Internal helpers.
|
|
|
+*/
|
|
|
+internal_assert_initialized :: proc(a: ^Int, loc := #caller_location) {
|
|
|
+ assert(internal_is_initialized(a), "`Int` was not properly initialized.", loc);
|
|
|
+}
|
|
|
+
|
|
|
+internal_clear_if_uninitialized_single :: proc(arg: ^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ if ! #force_inline internal_is_initialized(arg) {
|
|
|
+ return #force_inline internal_grow(arg, _DEFAULT_DIGIT_COUNT);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+internal_clear_if_uninitialized_multi :: proc(args: ..^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ for i in args {
|
|
|
+ if ! #force_inline internal_is_initialized(i) {
|
|
|
+ e := #force_inline internal_grow(i, _DEFAULT_DIGIT_COUNT);
|
|
|
+ if e != nil { err = e; }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+}
|
|
|
+internal_clear_if_uninitialized :: proc {internal_clear_if_uninitialized_single, internal_clear_if_uninitialized_multi, };
|
|
|
+
|
|
|
+internal_error_if_immutable_single :: proc(arg: ^Int) -> (err: Error) {
|
|
|
+ if arg != nil && .Immutable in arg.flags { return .Assignment_To_Immutable; }
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+internal_error_if_immutable_multi :: proc(args: ..^Int) -> (err: Error) {
|
|
|
+ for i in args {
|
|
|
+ if i != nil && .Immutable in i.flags { return .Assignment_To_Immutable; }
|
|
|
+ }
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+internal_error_if_immutable :: proc {internal_error_if_immutable_single, internal_error_if_immutable_multi, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Allocates several `Int`s at once.
|
|
|
+*/
|
|
|
+internal_int_init_multi :: proc(integers: ..^Int, allocator := context.allocator) -> (err: Error) {
|
|
|
+ context.allocator = allocator;
|
|
|
+
|
|
|
+ integers := integers;
|
|
|
+ for a in &integers {
|
|
|
+ if err = internal_clear(a); err != nil { return err; }
|
|
|
+ }
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+internal_init_multi :: proc { internal_int_init_multi, };
|
|
|
+
|
|
|
+/*
|
|
|
+ Trim unused digits.
|
|
|
+
|
|
|
+ This is used to ensure that leading zero digits are trimmed and the leading "used" digit will be non-zero.
|
|
|
+ Typically very fast. Also fixes the sign if there are no more leading digits.
|
|
|
+*/
|
|
|
+internal_clamp :: proc(a: ^Int) -> (err: Error) {
|
|
|
+ for a.used > 0 && a.digit[a.used - 1] == 0 { a.used -= 1; }
|
|
|
+
|
|
|
+ if #force_inline internal_is_zero(a) { a.sign = .Zero_or_Positive; }
|
|
|
+
|
|
|
+ return nil;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+internal_int_zero_unused :: #force_inline proc(dest: ^Int, old_used := -1) {
|
|
|
+ /*
|
|
|
+ If we don't pass the number of previously used DIGITs, we zero all remaining ones.
|
|
|
+ */
|
|
|
+ zero_count: int;
|
|
|
+ if old_used == -1 {
|
|
|
+ zero_count = len(dest.digit) - dest.used;
|
|
|
+ } else {
|
|
|
+ zero_count = old_used - dest.used;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ Zero remainder.
|
|
|
+ */
|
|
|
+ if zero_count > 0 && dest.used < len(dest.digit) {
|
|
|
+ mem.zero_slice(dest.digit[dest.used:][:zero_count]);
|
|
|
+ }
|
|
|
+}
|
|
|
+internal_zero_unused :: proc { internal_int_zero_unused, };
|
|
|
+
|
|
|
+/*
|
|
|
+ ========================== End of low-level routines ==========================
|
|
|
+*/
|