gb_internal bool is_diverging_expr(Ast *expr) { expr = unparen_expr(expr); if (expr->kind != Ast_CallExpr) { return false; } if (expr->CallExpr.proc->kind == Ast_BasicDirective) { String name = expr->CallExpr.proc->BasicDirective.name.string; return name == "panic"; } Ast *proc = unparen_expr(expr->CallExpr.proc); TypeAndValue tv = proc->tav; if (tv.mode == Addressing_Builtin) { Entity *e = entity_of_node(proc); BuiltinProcId id = BuiltinProc_Invalid; if (e != nullptr) { id = cast(BuiltinProcId)e->Builtin.id; } else { id = BuiltinProc_DIRECTIVE; } return builtin_procs[id].diverging; } Type *t = tv.type; t = base_type(t); return t != nullptr && t->kind == Type_Proc && t->Proc.diverging; } gb_internal bool is_diverging_stmt(Ast *stmt) { if (stmt->kind != Ast_ExprStmt) { return false; } return is_diverging_expr(stmt->ExprStmt.expr); } gb_internal bool contains_deferred_call(Ast *node) { if (node->viral_state_flags & ViralStateFlag_ContainsDeferredProcedure) { return true; } switch (node->kind) { case Ast_ExprStmt: return contains_deferred_call(node->ExprStmt.expr); case Ast_AssignStmt: for_array(i, node->AssignStmt.rhs) { if (contains_deferred_call(node->AssignStmt.rhs[i])) { return true; } } for_array(i, node->AssignStmt.lhs) { if (contains_deferred_call(node->AssignStmt.lhs[i])) { return true; } } break; case Ast_ValueDecl: for_array(i, node->ValueDecl.values) { if (contains_deferred_call(node->ValueDecl.values[i])) { return true; } } break; } return false; } gb_internal void check_stmt_list(CheckerContext *ctx, Slice const &stmts, u32 flags) { if (stmts.count == 0) { return; } if (flags&Stmt_CheckScopeDecls) { check_scope_decls(ctx, stmts, cast(isize)(1.2*stmts.count)); } bool ft_ok = (flags & Stmt_FallthroughAllowed) != 0; flags &= ~Stmt_FallthroughAllowed; isize max = stmts.count; for (isize i = stmts.count-1; i >= 0; i--) { if (stmts[i]->kind != Ast_EmptyStmt) { break; } max--; } isize max_non_constant_declaration = stmts.count; for (isize i = stmts.count-1; i >= 0; i--) { if (stmts[i]->kind == Ast_EmptyStmt) { // Okay } else if (stmts[i]->kind == Ast_ValueDecl && !stmts[i]->ValueDecl.is_mutable) { // Okay } else { break; } max_non_constant_declaration--; } for (isize i = 0; i < max; i++) { Ast *n = stmts[i]; if (n->kind == Ast_EmptyStmt) { continue; } u32 new_flags = flags; if (ft_ok && i+1 == max) { new_flags |= Stmt_FallthroughAllowed; } check_stmt(ctx, n, new_flags); if (i+1 < max_non_constant_declaration) { switch (n->kind) { case Ast_ReturnStmt: error(n, "Statements after this 'return' are never executed"); break; case Ast_BranchStmt: error(n, "Statements after this '%.*s' are never executed", LIT(n->BranchStmt.token.string)); break; case Ast_ExprStmt: if (is_diverging_stmt(n)) { error(n, "Statements after a diverging procedure call are never executed"); } break; } } else if (i+1 == max_non_constant_declaration) { if (is_diverging_stmt(n)) { for (isize j = 0; j < i; j++) { Ast *stmt = stmts[j]; if (stmt->kind == Ast_ValueDecl && !stmt->ValueDecl.is_mutable) { } else if (stmt->kind == Ast_DeferStmt) { error(stmt, "Unreachable defer statement due to diverging procedure call at the end of the current scope"); } else if (contains_deferred_call(stmt)) { error(stmt, "Unreachable deferred procedure call due to a diverging procedure call at the end of the current scope"); } } } } } } gb_internal bool check_is_terminating_list(Slice const &stmts, String const &label) { // Iterate backwards for (isize n = stmts.count-1; n >= 0; n--) { Ast *stmt = stmts[n]; if (stmt->kind == Ast_EmptyStmt) { // Okay } else if (stmt->kind == Ast_ValueDecl && !stmt->ValueDecl.is_mutable) { // Okay } else if (is_diverging_stmt(stmt)) { return true; } else { return check_is_terminating(stmt, label); } } return false; } gb_internal bool check_has_break_list(Slice const &stmts, String const &label, bool implicit) { for_array(i, stmts) { Ast *stmt = stmts[i]; if (check_has_break(stmt, label, implicit)) { return true; } } return false; } gb_internal bool check_has_break(Ast *stmt, String const &label, bool implicit) { switch (stmt->kind) { case Ast_BranchStmt: if (stmt->BranchStmt.token.kind == Token_break) { if (stmt->BranchStmt.label == nullptr) { return implicit; } if (stmt->BranchStmt.label->kind == Ast_Ident && stmt->BranchStmt.label->Ident.token.string == label) { return true; } } break; case Ast_BlockStmt: return check_has_break_list(stmt->BlockStmt.stmts, label, implicit); case Ast_IfStmt: if (check_has_break(stmt->IfStmt.body, label, implicit) || (stmt->IfStmt.else_stmt != nullptr && check_has_break(stmt->IfStmt.else_stmt, label, implicit))) { return true; } break; case Ast_CaseClause: return check_has_break_list(stmt->CaseClause.stmts, label, implicit); case Ast_SwitchStmt: if (label != "" && check_has_break(stmt->SwitchStmt.body, label, false)) { return true; } break; case Ast_TypeSwitchStmt: if (label != "" && check_has_break(stmt->TypeSwitchStmt.body, label, false)) { return true; } break; case Ast_ForStmt: if (label != "" && check_has_break(stmt->ForStmt.body, label, false)) { return true; } break; case Ast_RangeStmt: if (label != "" && check_has_break(stmt->RangeStmt.body, label, false)) { return true; } break; } return false; } // NOTE(bill): The last expression has to be a 'return' statement // TODO(bill): This is a mild hack and should be probably handled properly gb_internal bool check_is_terminating(Ast *node, String const &label) { switch (node->kind) { case_ast_node(rs, ReturnStmt, node); return true; case_end; case_ast_node(bs, BlockStmt, node); return check_is_terminating_list(bs->stmts, label); case_end; case_ast_node(es, ExprStmt, node); return check_is_terminating(unparen_expr(es->expr), label); case_end; case_ast_node(bs, BranchStmt, node); return bs->token.kind == Token_fallthrough; case_end; case_ast_node(is, IfStmt, node); if (is->else_stmt != nullptr) { if (check_is_terminating(is->body, label) && check_is_terminating(is->else_stmt, label)) { return true; } } case_end; case_ast_node(ws, WhenStmt, node); // TODO(bill): Is this logic correct for when statements? auto const &tv = ws->cond->tav; if (tv.mode != Addressing_Constant) { // NOTE(bill): Check the things regardless as a bug occurred earlier if (ws->else_stmt != nullptr) { if (check_is_terminating(ws->body, label) && check_is_terminating(ws->else_stmt, label)) { return true; } } return false; } if (tv.value.kind == ExactValue_Bool) { if (tv.value.value_bool) { return check_is_terminating(ws->body, label); } else { if (ws->else_stmt == nullptr) { return false; } return check_is_terminating(ws->else_stmt, label); } } case_end; case_ast_node(fs, ForStmt, node); if (fs->cond == nullptr && !check_has_break(fs->body, label, true)) { return true; } case_end; case_ast_node(rs, UnrollRangeStmt, node); return false; case_end; case_ast_node(rs, RangeStmt, node); return false; case_end; case_ast_node(ss, SwitchStmt, node); bool has_default = false; for_array(i, ss->body->BlockStmt.stmts) { Ast *clause = ss->body->BlockStmt.stmts[i]; ast_node(cc, CaseClause, clause); if (cc->list.count == 0) { has_default = true; } if (!check_is_terminating_list(cc->stmts, label) || check_has_break_list(cc->stmts, label, true)) { return false; } } return has_default; case_end; case_ast_node(ss, TypeSwitchStmt, node); bool has_default = false; for_array(i, ss->body->BlockStmt.stmts) { Ast *clause = ss->body->BlockStmt.stmts[i]; ast_node(cc, CaseClause, clause); if (cc->list.count == 0) { has_default = true; } if (!check_is_terminating_list(cc->stmts, label) || check_has_break_list(cc->stmts, label, true)) { return false; } } return has_default; case_end; } return false; } gb_internal Type *check_assignment_variable(CheckerContext *ctx, Operand *lhs, Operand *rhs) { if (rhs->mode == Addressing_Invalid) { return nullptr; } if (rhs->type == t_invalid && rhs->mode != Addressing_ProcGroup && rhs->mode != Addressing_Builtin) { return nullptr; } Ast *node = unparen_expr(lhs->expr); check_no_copy_assignment(*rhs, str_lit("assignment")); // NOTE(bill): Ignore assignments to '_' if (is_blank_ident(node)) { check_assignment(ctx, rhs, nullptr, str_lit("assignment to '_' identifier")); if (rhs->mode == Addressing_Invalid) { return nullptr; } return rhs->type; } Entity *e = nullptr; bool used = false; if (lhs->mode == Addressing_Invalid || (lhs->type == t_invalid && lhs->mode != Addressing_ProcGroup && lhs->mode != Addressing_Builtin)) { return nullptr; } if (rhs->mode == Addressing_ProcGroup) { Array procs = proc_group_entities(ctx, *rhs); GB_ASSERT(procs.count > 0); // NOTE(bill): These should be done for_array(i, procs) { Type *t = base_type(procs[i]->type); if (t == t_invalid) { continue; } Operand x = {}; x.mode = Addressing_Value; x.type = t; if (check_is_assignable_to(ctx, &x, lhs->type)) { e = procs[i]; add_entity_use(ctx, rhs->expr, e); break; } } if (e != nullptr) { // HACK TODO(bill): Should the entities be freed as it's technically a leak rhs->mode = Addressing_Value; rhs->type = e->type; rhs->proc_group = nullptr; } } else { if (node->kind == Ast_Ident) { ast_node(i, Ident, node); e = scope_lookup(ctx->scope, i->token.string); if (e != nullptr && e->kind == Entity_Variable) { used = (e->flags & EntityFlag_Used) != 0; // TODO(bill): Make backup just in case } } } if (e != nullptr && used) { e->flags |= EntityFlag_Used; } Type *assignment_type = lhs->type; if (rhs->mode == Addressing_Type && is_type_polymorphic(rhs->type)) { gbString t = type_to_string(rhs->type); error(rhs->expr, "Invalid use of a non-specialized polymorphic type '%s'", t); gb_string_free(t); } switch (lhs->mode) { case Addressing_Invalid: return nullptr; case Addressing_Variable: break; case Addressing_MapIndex: { Ast *ln = unparen_expr(lhs->expr); if (ln->kind == Ast_IndexExpr) { Ast *x = ln->IndexExpr.expr; TypeAndValue tav = x->tav; GB_ASSERT(tav.mode != Addressing_Invalid); if (tav.mode != Addressing_Variable) { if (!is_type_pointer(tav.type)) { gbString str = expr_to_string(lhs->expr); error(lhs->expr, "Cannot assign to the value of a map '%s'", str); gb_string_free(str); return nullptr; } } } break; } case Addressing_Context: { break; } case Addressing_SoaVariable: break; case Addressing_SwizzleVariable: break; default: { if (lhs->expr->kind == Ast_SelectorExpr) { // NOTE(bill): Extra error checks Operand op_c = {Addressing_Invalid}; ast_node(se, SelectorExpr, lhs->expr); check_expr(ctx, &op_c, se->expr); if (op_c.mode == Addressing_MapIndex) { gbString str = expr_to_string(lhs->expr); error(lhs->expr, "Cannot assign to struct field '%s' in map", str); gb_string_free(str); return nullptr; } } Entity *e = entity_of_node(lhs->expr); gbString str = expr_to_string(lhs->expr); if (e != nullptr && e->flags & EntityFlag_Param) { if (e->flags & EntityFlag_Using) { error(lhs->expr, "Cannot assign to '%s' which is from a 'using' procedure parameter", str); } else { error(lhs->expr, "Cannot assign to '%s' which is a procedure parameter", str); } } else { error(lhs->expr, "Cannot assign to '%s'", str); } gb_string_free(str); break; } } check_assignment(ctx, rhs, assignment_type, str_lit("assignment")); if (rhs->mode == Addressing_Invalid) { return nullptr; } return rhs->type; } gb_internal void check_stmt_internal(CheckerContext *ctx, Ast *node, u32 flags); gb_internal void check_stmt(CheckerContext *ctx, Ast *node, u32 flags) { u32 prev_state_flags = ctx->state_flags; if (node->state_flags != 0) { u32 in = node->state_flags; u32 out = ctx->state_flags; if (in & StateFlag_no_bounds_check) { out |= StateFlag_no_bounds_check; out &= ~StateFlag_bounds_check; } else if (in & StateFlag_bounds_check) { out |= StateFlag_bounds_check; out &= ~StateFlag_no_bounds_check; } if (in & StateFlag_no_type_assert) { out |= StateFlag_no_type_assert; out &= ~StateFlag_type_assert; } else if (in & StateFlag_type_assert) { out |= StateFlag_type_assert; out &= ~StateFlag_no_type_assert; } ctx->state_flags = out; } check_stmt_internal(ctx, node, flags); ctx->state_flags = prev_state_flags; } gb_internal void check_when_stmt(CheckerContext *ctx, AstWhenStmt *ws, u32 flags) { Operand operand = {Addressing_Invalid}; check_expr(ctx, &operand, ws->cond); if (operand.mode != Addressing_Constant || !is_type_boolean(operand.type)) { error(ws->cond, "Non-constant boolean 'when' condition"); return; } if (ws->body == nullptr || ws->body->kind != Ast_BlockStmt) { error(ws->cond, "Invalid body for 'when' statement"); return; } if (operand.value.kind == ExactValue_Bool && operand.value.value_bool) { check_stmt_list(ctx, ws->body->BlockStmt.stmts, flags); } else if (ws->else_stmt) { switch (ws->else_stmt->kind) { case Ast_BlockStmt: check_stmt_list(ctx, ws->else_stmt->BlockStmt.stmts, flags); break; case Ast_WhenStmt: check_when_stmt(ctx, &ws->else_stmt->WhenStmt, flags); break; default: error(ws->else_stmt, "Invalid 'else' statement in 'when' statement"); break; } } } gb_internal void check_label(CheckerContext *ctx, Ast *label, Ast *parent) { if (label == nullptr) { return; } ast_node(l, Label, label); if (l->name->kind != Ast_Ident) { error(l->name, "A label's name must be an identifier"); return; } String name = l->name->Ident.token.string; if (is_blank_ident(name)) { error(l->name, "A label's name cannot be a blank identifier"); return; } if (ctx->curr_proc_decl == nullptr) { error(l->name, "A label is only allowed within a procedure"); return; } GB_ASSERT(ctx->decl != nullptr); bool ok = true; for_array(i, ctx->decl->labels) { BlockLabel bl = ctx->decl->labels[i]; if (bl.name == name) { error(label, "Duplicate label with the name '%.*s'", LIT(name)); ok = false; break; } } Entity *e = alloc_entity_label(ctx->scope, l->name->Ident.token, t_invalid, label, parent); add_entity(ctx, ctx->scope, l->name, e); e->parent_proc_decl = ctx->curr_proc_decl; if (ok) { BlockLabel bl = {name, label}; array_add(&ctx->decl->labels, bl); } } // Returns 'true' for 'continue', 'false' for 'return' gb_internal bool check_using_stmt_entity(CheckerContext *ctx, AstUsingStmt *us, Ast *expr, bool is_selector, Entity *e) { if (e == nullptr) { if (is_blank_ident(expr)) { error(us->token, "'using' in a statement is not allowed with the blank identifier '_'"); } else { error(us->token, "'using' applied to an unknown entity"); } return true; } add_entity_use(ctx, expr, e); ERROR_BLOCK(); switch (e->kind) { case Entity_TypeName: { Type *t = base_type(e->type); if (t->kind == Type_Enum) { for_array(i, t->Enum.fields) { Entity *f = t->Enum.fields[i]; if (!is_entity_exported(f)) continue; Entity *found = scope_insert(ctx->scope, f); if (found != nullptr) { gbString expr_str = expr_to_string(expr); error(us->token, "Namespace collision while 'using' enum '%s' of: %.*s", expr_str, LIT(found->token.string)); gb_string_free(expr_str); return false; } f->using_parent = e; } } else { error(us->token, "'using' can be only applied to enum type entities"); } break; } case Entity_ImportName: { Scope *scope = e->ImportName.scope; rw_mutex_lock(&scope->mutex); defer (rw_mutex_unlock(&scope->mutex)); for (auto const &entry : scope->elements) { String name = entry.key; Entity *decl = entry.value; if (!is_entity_exported(decl)) continue; Entity *found = scope_insert_with_name(ctx->scope, name, decl); if (found != nullptr) { gbString expr_str = expr_to_string(expr); error(us->token, "Namespace collision while 'using' import name '%s' of: %.*s\n" "\tat %s\n" "\tat %s", expr_str, LIT(found->token.string), token_pos_to_string(found->token.pos), token_pos_to_string(decl->token.pos) ); gb_string_free(expr_str); return false; } } break; } case Entity_Variable: { bool is_ptr = is_type_pointer(e->type); Type *t = base_type(type_deref(e->type)); if (t->kind == Type_Struct) { Scope *found = t->Struct.scope; GB_ASSERT(found != nullptr); for (auto const &entry : found->elements) { Entity *f = entry.value; if (f->kind == Entity_Variable) { Entity *uvar = alloc_entity_using_variable(e, f->token, f->type, expr); if (!is_ptr && e->flags & EntityFlag_Value) uvar->flags |= EntityFlag_Value; if (e->flags & EntityFlag_Param) uvar->flags |= EntityFlag_Param; Entity *prev = scope_insert(ctx->scope, uvar); if (prev != nullptr) { gbString expr_str = expr_to_string(expr); error(us->token, "Namespace collision while using '%s' of: '%.*s'", expr_str, LIT(prev->token.string)); gb_string_free(expr_str); return false; } } } } else { error(us->token, "'using' can only be applied to variables of type 'struct'"); return false; } break; } case Entity_Constant: error(us->token, "'using' cannot be applied to a constant"); break; case Entity_Procedure: case Entity_ProcGroup: case Entity_Builtin: error(us->token, "'using' cannot be applied to a procedure"); break; case Entity_Nil: error(us->token, "'using' cannot be applied to 'nil'"); break; case Entity_Label: error(us->token, "'using' cannot be applied to a label"); break; case Entity_Invalid: error(us->token, "'using' cannot be applied to an invalid entity"); break; default: GB_PANIC("TODO(bill): 'using' other expressions?"); } return true; } gb_internal void check_inline_range_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) { ast_node(irs, UnrollRangeStmt, node); check_open_scope(ctx, node); Type *val0 = nullptr; Type *val1 = nullptr; Entity *entities[2] = {}; isize entity_count = 0; Ast *expr = unparen_expr(irs->expr); ExactValue inline_for_depth = exact_value_i64(0); if (is_ast_range(expr)) { ast_node(ie, BinaryExpr, expr); Operand x = {}; Operand y = {}; bool ok = check_range(ctx, expr, true, &x, &y, &inline_for_depth); if (!ok) { goto skip_expr; } val0 = x.type; val1 = t_int; } else { Operand operand = {Addressing_Invalid}; check_expr_or_type(ctx, &operand, irs->expr); if (operand.mode == Addressing_Type) { if (!is_type_enum(operand.type)) { gbString t = type_to_string(operand.type); error(operand.expr, "Cannot iterate over the type '%s'", t); gb_string_free(t); goto skip_expr; } else { val0 = operand.type; val1 = t_int; add_type_info_type(ctx, operand.type); Type *bt = base_type(operand.type); inline_for_depth = exact_value_i64(bt->Enum.fields.count); goto skip_expr; } } else if (operand.mode != Addressing_Invalid) { Type *t = base_type(operand.type); switch (t->kind) { case Type_Basic: if (is_type_string(t) && t->Basic.kind != Basic_cstring) { val0 = t_rune; val1 = t_int; inline_for_depth = exact_value_i64(operand.value.value_string.len); } break; case Type_Array: val0 = t->Array.elem; val1 = t_int; inline_for_depth = exact_value_i64(t->Array.count); break; case Type_EnumeratedArray: val0 = t->EnumeratedArray.elem; val1 = t->EnumeratedArray.index; inline_for_depth = exact_value_i64(t->EnumeratedArray.count); break; } } if (val0 == nullptr) { gbString s = expr_to_string(operand.expr); gbString t = type_to_string(operand.type); error(operand.expr, "Cannot iterate over '%s' of type '%s' in an '#unroll for' statement", s, t); gb_string_free(t); gb_string_free(s); } else if (operand.mode != Addressing_Constant) { error(operand.expr, "An '#unroll for' expression must be known at compile time"); } } skip_expr:; // NOTE(zhiayang): again, declaring a variable immediately after a label... weird. Ast * lhs[2] = {irs->val0, irs->val1}; Type *rhs[2] = {val0, val1}; for (isize i = 0; i < 2; i++) { if (lhs[i] == nullptr) { continue; } Ast * name = lhs[i]; Type *type = rhs[i]; Entity *entity = nullptr; if (name->kind == Ast_Ident) { Token token = name->Ident.token; String str = token.string; Entity *found = nullptr; if (!is_blank_ident(str)) { found = scope_lookup_current(ctx->scope, str); } if (found == nullptr) { entity = alloc_entity_variable(ctx->scope, token, type, EntityState_Resolved); entity->flags |= EntityFlag_Value; add_entity_definition(&ctx->checker->info, name, entity); } else { TokenPos pos = found->token.pos; error(token, "Redeclaration of '%.*s' in this scope\n" "\tat %s", LIT(str), token_pos_to_string(pos)); entity = found; } } else { error(name, "A variable declaration must be an identifier"); } if (entity == nullptr) { entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name)); } entities[entity_count++] = entity; if (type == nullptr) { entity->type = t_invalid; entity->flags |= EntityFlag_Used; } } for (isize i = 0; i < entity_count; i++) { add_entity(ctx, ctx->scope, entities[i]->identifier, entities[i]); } // NOTE(bill): Minimize the amount of nesting of an '#unroll for' i64 prev_inline_for_depth = ctx->inline_for_depth; defer (ctx->inline_for_depth = prev_inline_for_depth); { i64 v = exact_value_to_i64(inline_for_depth); if (v <= 0) { // Do nothing } else { ctx->inline_for_depth = gb_max(ctx->inline_for_depth, 1) * v; } if (ctx->inline_for_depth >= MAX_INLINE_FOR_DEPTH && prev_inline_for_depth < MAX_INLINE_FOR_DEPTH) { if (prev_inline_for_depth > 0) { error(node, "Nested '#unroll for' loop cannot be inlined as it exceeds the maximum '#unroll for' depth (%lld levels >= %lld maximum levels)", v, MAX_INLINE_FOR_DEPTH); } else { error(node, "'#unroll for' loop cannot be inlined as it exceeds the maximum '#unroll for' depth (%lld levels >= %lld maximum levels)", v, MAX_INLINE_FOR_DEPTH); } error_line("\tUse a normal 'for' loop instead by removing the 'inline' prefix\n"); ctx->inline_for_depth = MAX_INLINE_FOR_DEPTH; } } check_stmt(ctx, irs->body, mod_flags); check_close_scope(ctx); } gb_internal void check_switch_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) { ast_node(ss, SwitchStmt, node); Operand x = {}; mod_flags |= Stmt_BreakAllowed | Stmt_FallthroughAllowed; check_open_scope(ctx, node); defer (check_close_scope(ctx)); check_label(ctx, ss->label, node); // TODO(bill): What should the label's "scope" be? if (ss->init != nullptr) { check_stmt(ctx, ss->init, 0); } if (ss->tag != nullptr) { check_expr(ctx, &x, ss->tag); check_assignment(ctx, &x, nullptr, str_lit("switch expression")); } else { x.mode = Addressing_Constant; x.type = t_bool; x.value = exact_value_bool(true); Token token = {}; token.pos = ast_token(ss->body).pos; token.string = str_lit("true"); x.expr = alloc_ast_node(nullptr, Ast_Ident); x.expr->Ident.token = token; } // NOTE(bill): Check for multiple defaults Ast *first_default = nullptr; ast_node(bs, BlockStmt, ss->body); for_array(i, bs->stmts) { Ast *stmt = bs->stmts[i]; Ast *default_stmt = nullptr; if (stmt->kind == Ast_CaseClause) { ast_node(cc, CaseClause, stmt); if (cc->list.count == 0) { default_stmt = stmt; } } else { error(stmt, "Invalid AST - expected case clause"); } if (default_stmt != nullptr) { if (first_default != nullptr) { TokenPos pos = ast_token(first_default).pos; error(stmt, "multiple default clauses\n" "\tfirst at %s", token_pos_to_string(pos)); } else { first_default = default_stmt; } } } bool is_partial = ss->partial; if (is_partial) { if (!is_type_enum(x.type)) { error(x.expr, "#partial switch statement can be only used with an enum type"); } } SeenMap seen = {}; // NOTE(bill): Multimap, Key: ExactValue defer (map_destroy(&seen)); for (Ast *stmt : bs->stmts) { if (stmt->kind != Ast_CaseClause) { // NOTE(bill): error handled by above multiple default checker continue; } ast_node(cc, CaseClause, stmt); for (Ast *expr : cc->list) { expr = unparen_expr(expr); if (is_ast_range(expr)) { ast_node(be, BinaryExpr, expr); Operand lhs = {}; Operand rhs = {}; check_expr_with_type_hint(ctx, &lhs, be->left, x.type); if (x.mode == Addressing_Invalid) { continue; } if (lhs.mode == Addressing_Invalid) { continue; } check_expr_with_type_hint(ctx, &rhs, be->right, x.type); if (rhs.mode == Addressing_Invalid) { continue; } if (!is_type_ordered(x.type)) { gbString str = type_to_string(x.type); error(expr, "Unordered type '%s', is invalid for an interval expression", str); gb_string_free(str); continue; } TokenKind upper_op = Token_Invalid; switch (be->op.kind) { case Token_Ellipsis: upper_op = Token_LtEq; break; case Token_RangeFull: upper_op = Token_LtEq; break; case Token_RangeHalf: upper_op = Token_Lt; break; default: GB_PANIC("Invalid range operator"); break; } Operand a = lhs; Operand b = rhs; check_comparison(ctx, expr, &a, &x, Token_LtEq); if (a.mode == Addressing_Invalid) { continue; } check_comparison(ctx, expr, &b, &x, upper_op); if (b.mode == Addressing_Invalid) { continue; } Operand a1 = lhs; Operand b1 = rhs; check_comparison(ctx, expr, &a1, &b1, Token_LtEq); add_to_seen_map(ctx, &seen, upper_op, x, lhs, rhs); if (is_type_string(x.type)) { // NOTE(bill): Force dependency for strings here add_package_dependency(ctx, "runtime", "string_le"); add_package_dependency(ctx, "runtime", "string_lt"); } } else { Operand y = {}; if (is_type_typeid(x.type)) { check_expr_or_type(ctx, &y, expr, x.type); } else { check_expr_with_type_hint(ctx, &y, expr, x.type); } if (x.mode == Addressing_Invalid || y.mode == Addressing_Invalid) { continue; } if (y.mode == Addressing_Type) { Type *t = y.type; if (t == nullptr || t == t_invalid || is_type_polymorphic(t)) { error(y.expr, "Invalid type for case clause"); continue; } t = default_type(t); add_type_info_type(ctx, t); } else { convert_to_typed(ctx, &y, x.type); if (y.mode == Addressing_Invalid) { continue; } // NOTE(bill): the ordering here matters Operand z = y; check_comparison(ctx, expr, &z, &x, Token_CmpEq); if (z.mode == Addressing_Invalid) { continue; } if (y.mode != Addressing_Constant) { continue; } update_untyped_expr_type(ctx, z.expr, x.type, !is_type_untyped(x.type)); add_to_seen_map(ctx, &seen, y); } } } check_open_scope(ctx, stmt); check_stmt_list(ctx, cc->stmts, mod_flags); check_close_scope(ctx); } if (!is_partial && is_type_enum(x.type)) { TEMPORARY_ALLOCATOR_GUARD(); Type *et = base_type(x.type); GB_ASSERT(is_type_enum(et)); auto fields = et->Enum.fields; auto unhandled = array_make(temporary_allocator(), 0, fields.count); for (Entity *f : fields) { if (f->kind != Entity_Constant) { continue; } ExactValue v = f->Constant.value; auto found = map_get(&seen, hash_exact_value(v)); if (!found) { array_add(&unhandled, f); } } if (unhandled.count > 0) { begin_error_block(); defer (end_error_block()); if (unhandled.count == 1) { error_no_newline(node, "Unhandled switch case: %.*s", LIT(unhandled[0]->token.string)); } else { error(node, "Unhandled switch cases:"); for (Entity *f : unhandled) { error_line("\t%.*s\n", LIT(f->token.string)); } } error_line("\n"); error_line("\tSuggestion: Was '#partial switch' wanted?\n"); } } } enum TypeSwitchKind { TypeSwitch_Invalid, TypeSwitch_Union, TypeSwitch_Any, }; gb_internal TypeSwitchKind check_valid_type_switch_type(Type *type) { type = type_deref(type); if (is_type_union(type)) { return TypeSwitch_Union; } if (is_type_any(type)) { return TypeSwitch_Any; } return TypeSwitch_Invalid; } gb_internal void check_type_switch_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) { ast_node(ss, TypeSwitchStmt, node); Operand x = {}; mod_flags |= Stmt_BreakAllowed | Stmt_TypeSwitch; check_open_scope(ctx, node); defer (check_close_scope(ctx)); check_label(ctx, ss->label, node); // TODO(bill): What should the label's "scope" be? if (ss->tag->kind != Ast_AssignStmt) { error(ss->tag, "Expected an 'in' assignment for this type switch statement"); return; } ast_node(as, AssignStmt, ss->tag); Token as_token = ast_token(ss->tag); if (as->lhs.count != 1) { syntax_error(as_token, "Expected 1 name before 'in'"); return; } if (as->rhs.count != 1) { syntax_error(as_token, "Expected 1 expression after 'in'"); return; } Ast *lhs = as->lhs[0]; Ast *rhs = as->rhs[0]; check_expr(ctx, &x, rhs); check_assignment(ctx, &x, nullptr, str_lit("type switch expression")); add_type_info_type(ctx, x.type); TypeSwitchKind switch_kind = check_valid_type_switch_type(x.type); if (switch_kind == TypeSwitch_Invalid) { gbString str = type_to_string(x.type); error(x.expr, "Invalid type for this type switch expression, got '%s'", str); gb_string_free(str); return; } bool is_partial = ss->partial; if (is_partial) { if (switch_kind != TypeSwitch_Union) { error(node, "#partial switch statement may only be used with a union"); } } bool is_ptr = is_type_pointer(x.type); // NOTE(bill): Check for multiple defaults Ast *first_default = nullptr; ast_node(bs, BlockStmt, ss->body); for (Ast *stmt : bs->stmts) { Ast *default_stmt = nullptr; if (stmt->kind == Ast_CaseClause) { ast_node(cc, CaseClause, stmt); if (cc->list.count == 0) { default_stmt = stmt; } } else { error(stmt, "Invalid AST - expected case clause"); } if (default_stmt != nullptr) { if (first_default != nullptr) { TokenPos pos = ast_token(first_default).pos; error(stmt, "Multiple default clauses\n" "\tfirst at %s", token_pos_to_string(pos)); } else { first_default = default_stmt; } } } if (lhs->kind != Ast_Ident) { error(rhs, "Expected an identifier, got '%.*s'", LIT(ast_strings[rhs->kind])); return; } Ast *nil_seen = nullptr; PtrSet seen = {}; defer (ptr_set_destroy(&seen)); for (Ast *stmt : bs->stmts) { if (stmt->kind != Ast_CaseClause) { // NOTE(bill): error handled by above multiple default checker continue; } ast_node(cc, CaseClause, stmt); bool saw_nil = false; // TODO(bill): Make robust Type *bt = base_type(type_deref(x.type)); Type *case_type = nullptr; for (Ast *type_expr : cc->list) { if (type_expr != nullptr) { // Otherwise it's a default expression Operand y = {}; check_expr_or_type(ctx, &y, type_expr); if (is_operand_nil(y)) { if (!type_has_nil(type_deref(x.type))) { error(type_expr, "'nil' case is not allowed for the type '%s'", type_to_string(type_deref(x.type))); continue; } saw_nil = true; if (nil_seen) { ERROR_BLOCK(); error(type_expr, "'nil' case has already been handled previously"); error_line("\t 'nil' was already previously seen at %s", token_pos_to_string(ast_token(nil_seen).pos)); } else { nil_seen = type_expr; } case_type = y.type; continue; } if (y.mode != Addressing_Type) { gbString str = expr_to_string(type_expr); error(type_expr, "Expected a type as a case, got %s", str); gb_string_free(str); continue; } if (switch_kind == TypeSwitch_Union) { GB_ASSERT(is_type_union(bt)); bool tag_type_found = false; for (Type *vt : bt->Union.variants) { if (are_types_identical(vt, y.type)) { tag_type_found = true; break; } } if (!tag_type_found) { gbString type_str = type_to_string(y.type); error(y.expr, "Unknown variant type, got '%s'", type_str); gb_string_free(type_str); continue; } case_type = y.type; add_type_info_type(ctx, y.type); } else if (switch_kind == TypeSwitch_Any) { case_type = y.type; add_type_info_type(ctx, y.type); } else { GB_PANIC("Unknown type to type switch statement"); } if (type_ptr_set_update(&seen, y.type)) { TokenPos pos = cc->token.pos; gbString expr_str = expr_to_string(y.expr); error(y.expr, "Duplicate type case '%s'\n" "\tprevious type case at %s", expr_str, token_pos_to_string(pos)); gb_string_free(expr_str); break; } } } bool is_reference = false; if (is_ptr && cc->list.count == 1 && case_type != nullptr) { is_reference = true; } if (cc->list.count > 1 || saw_nil) { case_type = nullptr; } if (case_type == nullptr) { case_type = x.type; } if (switch_kind == TypeSwitch_Any) { if (!is_type_untyped(case_type)) { add_type_info_type(ctx, case_type); } } check_open_scope(ctx, stmt); { Entity *tag_var = alloc_entity_variable(ctx->scope, lhs->Ident.token, case_type, EntityState_Resolved); tag_var->flags |= EntityFlag_Used; if (!is_reference) { tag_var->flags |= EntityFlag_Value; tag_var->flags |= EntityFlag_SwitchValue; } add_entity(ctx, ctx->scope, lhs, tag_var); add_entity_use(ctx, lhs, tag_var); add_implicit_entity(ctx, stmt, tag_var); } check_stmt_list(ctx, cc->stmts, mod_flags); check_close_scope(ctx); } if (!is_partial && is_type_union(type_deref(x.type))) { TEMPORARY_ALLOCATOR_GUARD(); Type *ut = base_type(type_deref(x.type)); GB_ASSERT(is_type_union(ut)); auto variants = ut->Union.variants; auto unhandled = array_make(temporary_allocator(), 0, variants.count); for (Type *t : variants) { if (!type_ptr_set_exists(&seen, t)) { array_add(&unhandled, t); } } if (unhandled.count > 0) { if (unhandled.count == 1) { gbString s = type_to_string(unhandled[0]); error_no_newline(node, "Unhandled switch case: %s", s); gb_string_free(s); } else { error_no_newline(node, "Unhandled switch cases:\n"); for (Type *t : unhandled) { gbString s = type_to_string(t); error_line("\t%s\n", s); gb_string_free(s); } } error_line("\n"); error_line("\tSuggestion: Was '#partial switch' wanted?\n"); } } } gb_internal void check_block_stmt_for_errors(CheckerContext *ctx, Ast *body) { if (body->kind != Ast_BlockStmt) { return; } ast_node(bs, BlockStmt, body); // NOTE(bill, 2020-09-23): This logic is prevent common erros with block statements // e.g. if cond { x := 123; } // this is an error if (bs->scope != nullptr && bs->scope->elements.count > 0) { if (bs->scope->parent->node != nullptr) { switch (bs->scope->parent->node->kind) { case Ast_IfStmt: case Ast_ForStmt: case Ast_RangeStmt: case Ast_UnrollRangeStmt: case Ast_SwitchStmt: case Ast_TypeSwitchStmt: // TODO(bill): Is this a correct checking system? break; default: return; } } isize stmt_count = 0; Ast *the_stmt = nullptr; for (Ast *stmt : bs->stmts) { GB_ASSERT(stmt != nullptr); switch (stmt->kind) { case_ast_node(es, EmptyStmt, stmt); case_end; case_ast_node(bs, BadStmt, stmt); case_end; case_ast_node(bd, BadDecl, stmt); case_end; default: the_stmt = stmt; stmt_count += 1; break; } } if (stmt_count == 1) { if (the_stmt->kind == Ast_ValueDecl) { for (Ast *name : the_stmt->ValueDecl.names) { if (name->kind != Ast_Ident) { continue; } String n = name->Ident.token.string; if (n != "_") { error(name, "'%.*s' declared but not used", LIT(n)); } } } } } } gb_internal bool all_operands_valid(Array const &operands) { if (any_errors()) { for (Operand const &o : operands) { if (o.type == t_invalid) { return false; } } } return true; } gb_internal bool check_stmt_internal_builtin_proc_id(Ast *expr, BuiltinProcId *id_) { BuiltinProcId id = BuiltinProc_Invalid; Entity *e = entity_of_node(expr); if (e != nullptr && e->kind == Entity_Builtin) { if (e->Builtin.id && e->Builtin.id != BuiltinProc_DIRECTIVE) { id = cast(BuiltinProcId)e->Builtin.id; } } if (id_) *id_ = id; return id != BuiltinProc_Invalid; } gb_internal bool check_expr_is_stack_variable(Ast *expr) { /* expr = unparen_expr(expr); Entity *e = entity_of_node(expr); if (e && e->kind == Entity_Variable) { if (e->flags & (EntityFlag_Static|EntityFlag_Using|EntityFlag_ImplicitReference|EntityFlag_ForValue)) { // okay } else if (e->Variable.thread_local_model.len != 0) { // okay } else if (e->scope) { if ((e->scope->flags & (ScopeFlag_Global|ScopeFlag_File|ScopeFlag_Type)) == 0) { return true; } } } */ return false; } gb_internal void check_range_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) { ast_node(rs, RangeStmt, node); TEMPORARY_ALLOCATOR_GUARD(); u32 new_flags = mod_flags | Stmt_BreakAllowed | Stmt_ContinueAllowed; check_open_scope(ctx, node); check_label(ctx, rs->label, node); auto vals = array_make(temporary_allocator(), 0, 2); auto entities = array_make(temporary_allocator(), 0, 2); bool is_map = false; bool use_by_reference_for_value = false; bool is_soa = false; bool is_reverse = rs->reverse; Ast *expr = unparen_expr(rs->expr); isize max_val_count = 2; if (is_ast_range(expr)) { ast_node(ie, BinaryExpr, expr); Operand x = {}; Operand y = {}; bool ok = check_range(ctx, expr, true, &x, &y, nullptr); if (!ok) { goto skip_expr_range_stmt; } array_add(&vals, x.type); array_add(&vals, t_int); if (is_reverse) { error(node, "#reverse for is not supported with ranges, prefer an explicit for loop with init, condition, and post arguments"); } } else { Operand operand = {Addressing_Invalid}; check_expr_base(ctx, &operand, expr, nullptr); error_operand_no_value(&operand); if (operand.mode == Addressing_Type) { if (!is_type_enum(operand.type)) { gbString t = type_to_string(operand.type); error(operand.expr, "Cannot iterate over the type '%s'", t); gb_string_free(t); goto skip_expr_range_stmt; } else { if (is_reverse) { error(node, "#reverse for is not supported for enum types"); } array_add(&vals, operand.type); array_add(&vals, t_int); add_type_info_type(ctx, operand.type); goto skip_expr_range_stmt; } } else if (operand.mode != Addressing_Invalid) { bool is_ptr = is_type_pointer(operand.type); Type *t = base_type(type_deref(operand.type)); switch (t->kind) { case Type_Basic: if (is_type_string(t) && t->Basic.kind != Basic_cstring) { array_add(&vals, t_rune); array_add(&vals, t_int); if (is_reverse) { add_package_dependency(ctx, "runtime", "string_decode_last_rune"); } else { add_package_dependency(ctx, "runtime", "string_decode_rune"); } } break; case Type_EnumeratedArray: if (is_ptr) use_by_reference_for_value = true; array_add(&vals, t->EnumeratedArray.elem); array_add(&vals, t->EnumeratedArray.index); break; case Type_Array: if (is_ptr) use_by_reference_for_value = true; array_add(&vals, t->Array.elem); array_add(&vals, t_int); break; case Type_DynamicArray: if (is_ptr) use_by_reference_for_value = true; array_add(&vals, t->DynamicArray.elem); array_add(&vals, t_int); break; case Type_Slice: if (is_ptr) use_by_reference_for_value = true; array_add(&vals, t->Slice.elem); array_add(&vals, t_int); break; case Type_Map: if (is_ptr) use_by_reference_for_value = true; is_map = true; array_add(&vals, t->Map.key); array_add(&vals, t->Map.value); if (is_reverse) { error(node, "#reverse for is not supported for map types, as maps are unordered"); } break; case Type_Tuple: { isize count = t->Tuple.variables.count; if (count < 1 || count > 3) { check_not_tuple(ctx, &operand); error_line("\tMultiple return valued parameters in a range statement are limited to a maximum of 2 usable values with a trailing boolean for the conditional\n"); break; } Type *cond_type = t->Tuple.variables[count-1]->type; if (!is_type_boolean(cond_type)) { gbString s = type_to_string(cond_type); error(operand.expr, "The final type of %td-valued expression must be a boolean, got %s", count, s); gb_string_free(s); break; } for (Entity *e : t->Tuple.variables) { array_add(&vals, e->type); } if (rs->vals.count > 1 && rs->vals[1] != nullptr && count < 3) { gbString s = type_to_string(t); error(operand.expr, "Expected a 3-valued expression on the rhs, got (%s)", s); gb_string_free(s); break; } if (rs->vals.count > 0 && rs->vals[0] != nullptr && count < 2) { gbString s = type_to_string(t); error(operand.expr, "Expected at least a 2-valued expression on the rhs, got (%s)", s); gb_string_free(s); break; } if (is_reverse) { error(node, "#reverse for is not supported for multiple return valued parameters"); } } break; case Type_Struct: if (t->Struct.soa_kind != StructSoa_None) { is_soa = true; if (is_ptr) use_by_reference_for_value = true; array_add(&vals, t->Struct.soa_elem); array_add(&vals, t_int); } break; } } if (vals.count == 0 || vals[0] == nullptr) { gbString s = expr_to_string(operand.expr); gbString t = type_to_string(operand.type); defer (gb_string_free(s)); defer (gb_string_free(t)); error(operand.expr, "Cannot iterate over '%s' of type '%s'", s, t); if (rs->vals.count == 1) { Type *t = type_deref(operand.type); if (is_type_map(t) || is_type_bit_set(t)) { gbString v = expr_to_string(rs->vals[0]); defer (gb_string_free(v)); error_line("\tSuggestion: place parentheses around the expression\n"); error_line("\t for (%s in %s) {\n", v, s); } } } } skip_expr_range_stmt:; // NOTE(zhiayang): again, declaring a variable immediately after a label... weird. if (rs->vals.count > max_val_count) { error(rs->vals[max_val_count], "Expected a maximum of %td identifier%s, got %td", max_val_count, max_val_count == 1 ? "" : "s", rs->vals.count); } auto rhs = slice_from_array(vals); auto lhs = slice_make(temporary_allocator(), rhs.count); slice_copy(&lhs, rs->vals); isize addressable_index = cast(isize)is_map; for_array(i, rhs) { if (lhs[i] == nullptr) { continue; } Ast * name = lhs[i]; Type *type = rhs[i]; Entity *entity = nullptr; if (name->kind == Ast_Ident) { Token token = name->Ident.token; String str = token.string; Entity *found = nullptr; if (!is_blank_ident(str)) { found = scope_lookup_current(ctx->scope, str); } if (found == nullptr) { entity = alloc_entity_variable(ctx->scope, token, type, EntityState_Resolved); entity->flags |= EntityFlag_ForValue; entity->flags |= EntityFlag_Value; entity->identifier = name; if (i == addressable_index && use_by_reference_for_value) { entity->flags &= ~EntityFlag_Value; } if (is_soa) { if (i == 0) { entity->flags |= EntityFlag_SoaPtrField; } } add_entity_definition(&ctx->checker->info, name, entity); } else { TokenPos pos = found->token.pos; error(token, "Redeclaration of '%.*s' in this scope\n" "\tat %s", LIT(str), token_pos_to_string(pos)); entity = found; } } else { error(name, "A variable declaration must be an identifier"); } if (entity == nullptr) { entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name)); entity->identifier = name; // might not be an identifier } array_add(&entities, entity); if (type == nullptr) { entity->type = t_invalid; entity->flags |= EntityFlag_Used; } } for (Entity *e : entities) { DeclInfo *d = decl_info_of_entity(e); GB_ASSERT(d == nullptr); add_entity(ctx, ctx->scope, e->identifier, e); d = make_decl_info(ctx->scope, ctx->decl); add_entity_and_decl_info(ctx, e->identifier, e, d); } check_stmt(ctx, rs->body, new_flags); check_close_scope(ctx); } gb_internal void check_value_decl_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) { ast_node(vd, ValueDecl, node); if (!vd->is_mutable) { // constant value declaration // NOTE(bill): Check `_` declarations for (Ast *name : vd->names) { if (is_blank_ident(name)) { Entity *e = name->Ident.entity; DeclInfo *d = decl_info_of_entity(e); if (d != nullptr) { check_entity_decl(ctx, e, d, nullptr); } } } return; } Entity **entities = gb_alloc_array(permanent_allocator(), Entity *, vd->names.count); isize entity_count = 0; isize new_name_count = 0; for (Ast *name : vd->names) { Entity *entity = nullptr; if (name->kind != Ast_Ident) { error(name, "A variable declaration must be an identifier"); } else { Token token = name->Ident.token; String str = token.string; Entity *found = nullptr; // NOTE(bill): Ignore assignments to '_' if (!is_blank_ident(str)) { found = scope_lookup_current(ctx->scope, str); new_name_count += 1; } if (found == nullptr) { entity = alloc_entity_variable(ctx->scope, token, nullptr); entity->identifier = name; Ast *fl = ctx->foreign_context.curr_library; if (fl != nullptr) { GB_ASSERT(fl->kind == Ast_Ident); entity->Variable.is_foreign = true; entity->Variable.foreign_library_ident = fl; } } else { TokenPos pos = found->token.pos; error(token, "Redeclaration of '%.*s' in this scope\n" "\tat %s", LIT(str), token_pos_to_string(pos)); entity = found; } } if (entity == nullptr) { entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name)); } entity->parent_proc_decl = ctx->curr_proc_decl; entities[entity_count++] = entity; if (name->kind == Ast_Ident) { name->Ident.entity = entity; } } if (new_name_count == 0) { begin_error_block(); error(node, "No new declarations on the left hand side"); bool all_underscore = true; for (Ast *name : vd->names) { if (name->kind == Ast_Ident) { if (!is_blank_ident(name)) { all_underscore = false; break; } } else { all_underscore = false; break; } } if (all_underscore) { error_line("\tSuggestion: Try changing the declaration (:=) to an assignment (=)\n"); } end_error_block(); } Type *init_type = nullptr; if (vd->type != nullptr) { init_type = check_type(ctx, vd->type); if (init_type == nullptr) { init_type = t_invalid; } else if (is_type_polymorphic(base_type(init_type))) { gbString str = type_to_string(init_type); error(vd->type, "Invalid use of a polymorphic type '%s' in variable declaration", str); gb_string_free(str); init_type = t_invalid; } } // TODO NOTE(bill): This technically checks things multple times AttributeContext ac = make_attribute_context(ctx->foreign_context.link_prefix); check_decl_attributes(ctx, vd->attributes, var_decl_attribute, &ac); for (isize i = 0; i < entity_count; i++) { Entity *e = entities[i]; GB_ASSERT(e != nullptr); if (e->flags & EntityFlag_Visited) { e->type = t_invalid; continue; } e->flags |= EntityFlag_Visited; e->state = EntityState_InProgress; if (e->type == nullptr) { e->type = init_type; e->state = EntityState_Resolved; } ac.link_name = handle_link_name(ctx, e->token, ac.link_name, ac.link_prefix); if (ac.link_name.len > 0) { e->Variable.link_name = ac.link_name; } e->flags &= ~EntityFlag_Static; if (ac.is_static) { String name = e->token.string; if (name == "_") { error(e->token, "The 'static' attribute is not allowed to be applied to '_'"); } else { e->flags |= EntityFlag_Static; if (ctx->in_defer) { error(e->token, "'static' variables cannot be declared within a defer statement"); } } } if (ac.thread_local_model != "") { String name = e->token.string; if (name == "_") { error(e->token, "The 'thread_local' attribute is not allowed to be applied to '_'"); } else { e->flags |= EntityFlag_Static; if (ctx->in_defer) { error(e->token, "'thread_local' variables cannot be declared within a defer statement"); } } e->Variable.thread_local_model = ac.thread_local_model; } if (is_arch_wasm() && e->Variable.thread_local_model.len != 0) { error(e->token, "@(thread_local) is not supported for this target platform"); } if (ac.is_static && ac.thread_local_model != "") { error(e->token, "The 'static' attribute is not needed if 'thread_local' is applied"); } } check_init_variables(ctx, entities, entity_count, vd->values, str_lit("variable declaration")); check_arity_match(ctx, vd, false); for (isize i = 0; i < entity_count; i++) { Entity *e = entities[i]; if (e->Variable.is_foreign) { if (vd->values.count > 0) { error(e->token, "A foreign variable declaration cannot have a default value"); } String name = e->token.string; if (e->Variable.link_name.len > 0) { name = e->Variable.link_name; } if (vd->values.count > 0) { error(e->token, "A foreign variable declaration cannot have a default value"); } init_entity_foreign_library(ctx, e); auto *fp = &ctx->checker->info.foreigns; StringHashKey key = string_hash_string(name); Entity **found = string_map_get(fp, key); if (found) { Entity *f = *found; TokenPos pos = f->token.pos; Type *this_type = base_type(e->type); Type *other_type = base_type(f->type); if (!are_types_identical(this_type, other_type)) { error(e->token, "Foreign entity '%.*s' previously declared elsewhere with a different type\n" "\tat %s", LIT(name), token_pos_to_string(pos)); } } else { string_map_set(fp, key, e); } } else if (e->flags & EntityFlag_Static) { if (vd->values.count > 0) { if (entity_count != vd->values.count) { error(e->token, "A static variable declaration with a default value must be constant"); } else { Ast *value = vd->values[i]; if (value->tav.mode != Addressing_Constant) { error(e->token, "A static variable declaration with a default value must be constant"); } } } } add_entity(ctx, ctx->scope, e->identifier, e); } if (vd->is_using != 0) { Token token = ast_token(node); if (vd->type != nullptr && entity_count > 1) { error(token, "'using' can only be applied to one variable of the same type"); // TODO(bill): Should a 'continue' happen here? } for (isize entity_index = 0; entity_index < 1; entity_index++) { Entity *e = entities[entity_index]; if (e == nullptr) { continue; } if (e->kind != Entity_Variable) { continue; } String name = e->token.string; Type *t = base_type(type_deref(e->type)); if (is_blank_ident(name)) { error(token, "'using' cannot be applied variable declared as '_'"); } else if (is_type_struct(t) || is_type_raw_union(t)) { ERROR_BLOCK(); Scope *scope = t->Struct.scope; GB_ASSERT(scope != nullptr); for (auto const &entry : scope->elements) { Entity *f = entry.value; if (f->kind == Entity_Variable) { Entity *uvar = alloc_entity_using_variable(e, f->token, f->type, nullptr); uvar->flags |= (e->flags & EntityFlag_Value); Entity *prev = scope_insert(ctx->scope, uvar); if (prev != nullptr) { error(token, "Namespace collision while 'using' '%.*s' of: %.*s", LIT(name), LIT(prev->token.string)); return; } } } add_entity_use(ctx, nullptr, e); } else { // NOTE(bill): skip the rest to remove extra errors error(token, "'using' can only be applied to variables of type struct or raw_union"); return; } } } } gb_internal void check_expr_stmt(CheckerContext *ctx, Ast *node) { ast_node(es, ExprStmt, node); Operand operand = {Addressing_Invalid}; ExprKind kind = check_expr_base(ctx, &operand, es->expr, nullptr); switch (operand.mode) { case Addressing_Type: { gbString str = type_to_string(operand.type); error(node, "'%s' is not an expression but a type and cannot be used as a statement", str); gb_string_free(str); break; } case Addressing_NoValue: return; } if (kind == Expr_Stmt) { return; } Ast *expr = strip_or_return_expr(operand.expr); if (expr->kind == Ast_CallExpr) { BuiltinProcId builtin_id = BuiltinProc_Invalid; bool do_require = false; AstCallExpr *ce = &expr->CallExpr; Type *t = base_type(type_of_expr(ce->proc)); if (t->kind == Type_Proc) { do_require = t->Proc.require_results; } else if (check_stmt_internal_builtin_proc_id(ce->proc, &builtin_id)) { auto const &bp = builtin_procs[builtin_id]; do_require = bp.kind == Expr_Expr && !bp.ignore_results; } if (do_require) { gbString expr_str = expr_to_string(ce->proc); error(node, "'%s' requires that its results must be handled", expr_str); gb_string_free(expr_str); } return; } else if (expr->kind == Ast_SelectorCallExpr) { BuiltinProcId builtin_id = BuiltinProc_Invalid; bool do_require = false; AstSelectorCallExpr *se = &expr->SelectorCallExpr; ast_node(ce, CallExpr, se->call); Type *t = base_type(type_of_expr(ce->proc)); if (t == nullptr) { gbString expr_str = expr_to_string(ce->proc); error(node, "'%s' is not a value field nor procedure", expr_str); gb_string_free(expr_str); return; } if (t->kind == Type_Proc) { do_require = t->Proc.require_results; } else if (check_stmt_internal_builtin_proc_id(ce->proc, &builtin_id)) { auto const &bp = builtin_procs[builtin_id]; do_require = bp.kind == Expr_Expr && !bp.ignore_results; } if (do_require) { gbString expr_str = expr_to_string(ce->proc); error(node, "'%s' requires that its results must be handled", expr_str); gb_string_free(expr_str); } return; } gbString expr_str = expr_to_string(operand.expr); error(node, "Expression is not used: '%s'", expr_str); gb_string_free(expr_str); if (operand.expr->kind == Ast_BinaryExpr) { ast_node(be, BinaryExpr, operand.expr); if (be->op.kind != Token_CmpEq) { return; } switch (be->left->tav.mode) { case Addressing_Context: case Addressing_Variable: case Addressing_MapIndex: case Addressing_SoaVariable: { gbString lhs = expr_to_string(be->left); gbString rhs = expr_to_string(be->right); error_line("\tSuggestion: Did you mean to do an assignment?\n", lhs, rhs); error_line("\t '%s = %s;'\n", lhs, rhs); gb_string_free(rhs); gb_string_free(lhs); } break; } } } gb_internal void check_assign_stmt(CheckerContext *ctx, Ast *node) { ast_node(as, AssignStmt, node); if (as->op.kind == Token_Eq) { // a, b, c = 1, 2, 3; // Multisided isize lhs_count = as->lhs.count; if (lhs_count == 0) { error(as->op, "Missing lhs in assignment statement"); return; } TEMPORARY_ALLOCATOR_GUARD(); // NOTE(bill): If there is a bad syntax error, rhs > lhs which would mean there would need to be // an extra allocation auto lhs_operands = array_make(temporary_allocator(), lhs_count); auto rhs_operands = array_make(temporary_allocator(), 0, 2*lhs_count); for_array(i, as->lhs) { if (is_blank_ident(as->lhs[i])) { Operand *o = &lhs_operands[i]; o->expr = as->lhs[i]; o->mode = Addressing_Value; } else { ctx->assignment_lhs_hint = unparen_expr(as->lhs[i]); check_expr(ctx, &lhs_operands[i], as->lhs[i]); } } ctx->assignment_lhs_hint = nullptr; // Reset the assignment_lhs_hint check_assignment_arguments(ctx, lhs_operands, &rhs_operands, as->rhs); auto lhs_to_ignore = array_make(temporary_allocator(), lhs_count); isize rhs_count = rhs_operands.count; isize max = gb_min(lhs_count, rhs_count); for (isize i = 0; i < max; i++) { if (lhs_to_ignore[i]) { continue; } check_assignment_variable(ctx, &lhs_operands[i], &rhs_operands[i]); } if (lhs_count != rhs_count) { error(as->lhs[0], "Assignment count mismatch '%td' = '%td'", lhs_count, rhs_count); } } else { // a += 1; // Single-sided Token op = as->op; if (as->lhs.count != 1 || as->rhs.count != 1) { error(op, "Assignment operation '%.*s' requires single-valued expressions", LIT(op.string)); return; } if (!gb_is_between(op.kind, Token__AssignOpBegin+1, Token__AssignOpEnd-1)) { error(op, "Unknown Assignment operation '%.*s'", LIT(op.string)); return; } Operand lhs = {Addressing_Invalid}; Operand rhs = {Addressing_Invalid}; Ast *binary_expr = alloc_ast_node(node->file(), Ast_BinaryExpr); ast_node(be, BinaryExpr, binary_expr); be->op = op; be->op.kind = cast(TokenKind)(cast(i32)be->op.kind - (Token_AddEq - Token_Add)); // NOTE(bill): Only use the first one will be used be->left = as->lhs[0]; be->right = as->rhs[0]; check_expr(ctx, &lhs, as->lhs[0]); check_binary_expr(ctx, &rhs, binary_expr, nullptr, true); if (rhs.mode != Addressing_Invalid) { // NOTE(bill): Only use the first one will be used check_assignment_variable(ctx, &lhs, &rhs); } } } gb_internal void check_if_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) { ast_node(is, IfStmt, node); check_open_scope(ctx, node); check_label(ctx, is->label, node); if (is->init != nullptr) { check_stmt(ctx, is->init, 0); } Operand operand = {Addressing_Invalid}; check_expr(ctx, &operand, is->cond); if (operand.mode != Addressing_Invalid && !is_type_boolean(operand.type)) { error(is->cond, "Non-boolean condition in 'if' statement"); } check_stmt(ctx, is->body, mod_flags); if (is->else_stmt != nullptr) { switch (is->else_stmt->kind) { case Ast_IfStmt: case Ast_BlockStmt: check_stmt(ctx, is->else_stmt, mod_flags); break; default: error(is->else_stmt, "Invalid 'else' statement in 'if' statement"); break; } } check_close_scope(ctx); } gb_internal void check_return_stmt(CheckerContext *ctx, Ast *node) { ast_node(rs, ReturnStmt, node); GB_ASSERT(ctx->curr_proc_sig != nullptr); if (ctx->in_defer) { error(rs->token, "'return' cannot be used within a defer statement"); return; } Type *proc_type = ctx->curr_proc_sig; GB_ASSERT(proc_type != nullptr); GB_ASSERT(proc_type->kind == Type_Proc); TypeProc *pt = &proc_type->Proc; if (pt->diverging) { error(rs->token, "Diverging procedures may not return"); return; } Entity **result_entities = nullptr; isize result_count = 0; bool has_named_results = pt->has_named_results; if (pt->results) { result_entities = proc_type->Proc.results->Tuple.variables.data; result_count = proc_type->Proc.results->Tuple.variables.count; } auto operands = array_make(heap_allocator(), 0, 2*rs->results.count); defer (array_free(&operands)); check_unpack_arguments(ctx, result_entities, result_count, &operands, rs->results, UnpackFlag_AllowOk); if (result_count == 0 && rs->results.count > 0) { error(rs->results[0], "No return values expected"); } else if (has_named_results && operands.count == 0) { // Okay } else if (operands.count != result_count) { // Ignore error message as it has most likely already been reported if (all_operands_valid(operands)) { if (operands.count == 1) { gbString t = type_to_string(operands[0].type); error(node, "Expected %td return values, got %td (%s)", result_count, operands.count, t); gb_string_free(t); } else { error(node, "Expected %td return values, got %td", result_count, operands.count); } } } else { for (isize i = 0; i < result_count; i++) { Entity *e = pt->results->Tuple.variables[i]; Operand *o = &operands[i]; check_assignment(ctx, o, e->type, str_lit("return statement")); if (is_type_untyped(o->type)) { update_untyped_expr_type(ctx, o->expr, e->type, true); } // NOTE(bill): This is very basic escape analysis // This needs to be improved tremendously, and a lot of it done during the // middle-end (or LLVM side) to improve checks and error messages Ast *expr = unparen_expr(o->expr); if (expr->kind == Ast_UnaryExpr && expr->UnaryExpr.op.kind == Token_And) { Ast *x = unparen_expr(expr->UnaryExpr.expr); if (x->kind == Ast_CompoundLit) { error(expr, "Cannot return the address to a stack value from a procedure"); } else if (x->kind == Ast_IndexExpr) { Ast *array = x->IndexExpr.expr; if (is_type_array_like(type_of_expr(array)) && check_expr_is_stack_variable(array)) { gbString t = type_to_string(type_of_expr(array)); error(expr, "Cannot return the address to an element of stack variable from a procedure, of type %s", t); gb_string_free(t); } } else { if (check_expr_is_stack_variable(x)) { error(expr, "Cannot return the address to a stack variable from a procedure"); } } } } } } gb_internal void check_for_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) { ast_node(fs, ForStmt, node); mod_flags |= Stmt_BreakAllowed | Stmt_ContinueAllowed; check_open_scope(ctx, node); check_label(ctx, fs->label, node); // TODO(bill): What should the label's "scope" be? if (fs->init != nullptr) { check_stmt(ctx, fs->init, 0); } if (fs->cond != nullptr) { Operand o = {Addressing_Invalid}; check_expr(ctx, &o, fs->cond); if (o.mode != Addressing_Invalid && !is_type_boolean(o.type)) { error(fs->cond, "Non-boolean condition in 'for' statement"); } } if (fs->post != nullptr) { check_stmt(ctx, fs->post, 0); if (fs->post->kind != Ast_AssignStmt) { error(fs->post, "'for' statement post statement must be a simple statement"); } } check_stmt(ctx, fs->body, mod_flags); check_close_scope(ctx); } gb_internal void check_stmt_internal(CheckerContext *ctx, Ast *node, u32 flags) { u32 mod_flags = flags & (~Stmt_FallthroughAllowed); switch (node->kind) { case_ast_node(_, EmptyStmt, node); case_end; case_ast_node(_, BadStmt, node); case_end; case_ast_node(_, BadDecl, node); case_end; case_ast_node(es, ExprStmt, node) check_expr_stmt(ctx, node); case_end; case_ast_node(as, AssignStmt, node); check_assign_stmt(ctx, node); case_end; case_ast_node(bs, BlockStmt, node); check_open_scope(ctx, node); check_label(ctx, bs->label, node); check_stmt_list(ctx, bs->stmts, flags); check_block_stmt_for_errors(ctx, node); check_close_scope(ctx); case_end; case_ast_node(is, IfStmt, node); check_if_stmt(ctx, node, mod_flags); case_end; case_ast_node(ws, WhenStmt, node); check_when_stmt(ctx, ws, flags); case_end; case_ast_node(rs, ReturnStmt, node); check_return_stmt(ctx, node); case_end; case_ast_node(fs, ForStmt, node); check_for_stmt(ctx, node, mod_flags); case_end; case_ast_node(rs, RangeStmt, node); check_range_stmt(ctx, node, mod_flags); case_end; case_ast_node(irs, UnrollRangeStmt, node); check_inline_range_stmt(ctx, node, mod_flags); case_end; case_ast_node(ss, SwitchStmt, node); check_switch_stmt(ctx, node, mod_flags); case_end; case_ast_node(ss, TypeSwitchStmt, node); check_type_switch_stmt(ctx, node, mod_flags); case_end; case_ast_node(ds, DeferStmt, node); if (is_ast_decl(ds->stmt)) { error(ds->token, "You cannot defer a declaration"); } else { bool out_in_defer = ctx->in_defer; ctx->in_defer = true; check_stmt(ctx, ds->stmt, 0); ctx->in_defer = out_in_defer; if (ctx->decl) { ctx->decl->defer_used += 1; } } case_end; case_ast_node(bs, BranchStmt, node); Token token = bs->token; switch (token.kind) { case Token_break: if ((flags & Stmt_BreakAllowed) == 0 && bs->label == nullptr) { error(token, "'break' only allowed in non-inline loops or 'switch' statements"); } break; case Token_continue: if ((flags & Stmt_ContinueAllowed) == 0 && bs->label == nullptr) { error(token, "'continue' only allowed in non-inline loops"); } break; case Token_fallthrough: if ((flags & Stmt_FallthroughAllowed) == 0) { if ((flags & Stmt_TypeSwitch) != 0) { error(token, "'fallthrough' statement not allowed within a type switch statement"); } else { error(token, "'fallthrough' statement in illegal position, expected at the end of a 'case' block"); } } else if (bs->label != nullptr) { error(token, "'fallthrough' cannot have a label"); } break; default: error(token, "Invalid AST: Branch Statement '%.*s'", LIT(token.string)); break; } if (bs->label != nullptr) { if (bs->label->kind != Ast_Ident) { error(bs->label, "A branch statement's label name must be an identifier"); return; } Ast *ident = bs->label; String name = ident->Ident.token.string; Operand o = {}; Entity *e = check_ident(ctx, &o, ident, nullptr, nullptr, false); if (e == nullptr) { error(ident, "Undeclared label name: %.*s", LIT(name)); return; } add_entity_use(ctx, ident, e); if (e->kind != Entity_Label) { error(ident, "'%.*s' is not a label", LIT(name)); return; } Ast *parent = e->Label.parent; GB_ASSERT(parent != nullptr); switch (parent->kind) { case Ast_BlockStmt: case Ast_IfStmt: case Ast_SwitchStmt: if (token.kind != Token_break) { error(bs->label, "Label '%.*s' can only be used with 'break'", LIT(e->token.string)); } break; case Ast_RangeStmt: case Ast_ForStmt: if ((token.kind != Token_break) && (token.kind != Token_continue)) { error(bs->label, "Label '%.*s' can only be used with 'break' and 'continue'", LIT(e->token.string)); } break; } } case_end; case_ast_node(us, UsingStmt, node); if (us->list.count == 0) { error(us->token, "Empty 'using' list"); return; } for (Ast *expr : us->list) { expr = unparen_expr(expr); Entity *e = nullptr; bool is_selector = false; Operand o = {}; switch (expr->kind) { case Ast_Ident: e = check_ident(ctx, &o, expr, nullptr, nullptr, true); break; case Ast_SelectorExpr: e = check_selector(ctx, &o, expr, nullptr); is_selector = true; break; case Ast_Implicit: error(us->token, "'using' applied to an implicit value"); continue; default: error(us->token, "'using' can only be applied to an entity, got %.*s", LIT(ast_strings[expr->kind])); continue; } if (!check_using_stmt_entity(ctx, us, expr, is_selector, e)) { return; } } case_end; case_ast_node(fb, ForeignBlockDecl, node); Ast *foreign_library = fb->foreign_library; CheckerContext c = *ctx; if (foreign_library->kind != Ast_Ident) { error(foreign_library, "foreign library name must be an identifier"); } else { c.foreign_context.curr_library = foreign_library; c.foreign_context.default_cc = ProcCC_CDecl; } check_decl_attributes(&c, fb->attributes, foreign_block_decl_attribute, nullptr); ast_node(block, BlockStmt, fb->body); for (Ast *decl : block->stmts) { if (decl->kind == Ast_ValueDecl && decl->ValueDecl.is_mutable) { check_stmt(&c, decl, flags); } } case_end; case_ast_node(vd, ValueDecl, node); check_value_decl_stmt(ctx, node, mod_flags); case_end; } }