enum CallArgumentError { CallArgumentError_None, CallArgumentError_NoneProcedureType, CallArgumentError_WrongTypes, CallArgumentError_NonVariadicExpand, CallArgumentError_VariadicTuple, CallArgumentError_MultipleVariadicExpand, CallArgumentError_ArgumentCount, CallArgumentError_TooFewArguments, CallArgumentError_TooManyArguments, CallArgumentError_InvalidFieldValue, CallArgumentError_ParameterNotFound, CallArgumentError_ParameterMissing, CallArgumentError_DuplicateParameter, }; enum CallArgumentErrorMode { CallArgumentMode_NoErrors, CallArgumentMode_ShowErrors, }; struct CallArgumentData { Entity *gen_entity; i64 score; Type * result_type; }; #define CALL_ARGUMENT_CHECKER(name) CallArgumentError name(Checker *c, AstNode *call, Type *proc_type, Entity *entity, Array operands, CallArgumentErrorMode show_error_mode, CallArgumentData *data) typedef CALL_ARGUMENT_CHECKER(CallArgumentCheckerType); void check_expr (Checker *c, Operand *operand, AstNode *expression); void check_multi_expr (Checker *c, Operand *operand, AstNode *expression); void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression, Type *type_hint = NULL); ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint); void check_expr_with_type_hint (Checker *c, Operand *o, AstNode *e, Type *t); Type * check_type (Checker *c, AstNode *expression, Type *named_type = NULL); void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def); Entity * check_selector (Checker *c, Operand *operand, AstNode *node, Type *type_hint); void check_not_tuple (Checker *c, Operand *operand); void convert_to_typed (Checker *c, Operand *operand, Type *target_type, i32 level); gbString expr_to_string (AstNode *expression); void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type); void check_const_decl (Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr, Type *named_type); void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body); void update_expr_type (Checker *c, AstNode *e, Type *type, bool final); bool check_is_terminating (AstNode *node); bool check_has_break (AstNode *stmt, bool implicit); void check_stmt (Checker *c, AstNode *node, u32 flags); void check_stmt_list (Checker *c, Array stmts, u32 flags); void check_init_constant (Checker *c, Entity *e, Operand *operand); bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value); CallArgumentData check_call_arguments (Checker *c, Operand *operand, Type *proc_type, AstNode *call); void error_operand_not_expression(Operand *o) { if (o->mode == Addressing_Type) { gbString err = expr_to_string(o->expr); error(o->expr, "`%s` is not an expression but a type", err); gb_string_free(err); o->mode = Addressing_Invalid; } } void error_operand_no_value(Operand *o) { if (o->mode == Addressing_NoValue) { gbString err = expr_to_string(o->expr); error(o->expr, "`%s` used as value", err); gb_string_free(err); o->mode = Addressing_Invalid; } } void check_scope_decls(Checker *c, Array nodes, isize reserve_size) { Scope *s = c->context.scope; GB_ASSERT(!s->is_file); check_collect_entities(c, nodes, false); for_array(i, s->elements.entries) { Entity *e = s->elements.entries[i].value; switch (e->kind) { case Entity_Constant: case Entity_TypeName: case Entity_Procedure: break; default: continue; } DeclInfo *d = decl_info_of_entity(&c->info, e); if (d != NULL) { check_entity_decl(c, e, d, NULL); } } for_array(i, s->elements.entries) { Entity *e = s->elements.entries[i].value; if (e->kind != Entity_Procedure) { continue; } check_procedure_overloading(c, e); } } bool check_is_assignable_to_using_subtype(Type *src, Type *dst) { bool src_is_ptr = false; Type *prev_src = src; src = type_deref(src); src_is_ptr = src != prev_src; src = base_type(src); if (!is_type_struct(src) && !is_type_union(src)) { return false; } for (isize i = 0; i < src->Record.field_count; i++) { Entity *f = src->Record.fields[i]; if (f->kind != Entity_Variable || (f->flags&EntityFlag_Using) == 0) { continue; } if (are_types_identical(f->type, dst)) { return true; } if (src_is_ptr && is_type_pointer(dst)) { if (are_types_identical(f->type, type_deref(dst))) { return true; } } bool ok = check_is_assignable_to_using_subtype(f->type, dst); if (ok) { return true; } } return false; } // IMPORTANT TODO(bill): figure out the exact distance rules // -1 is not convertable // 0 is exact // >0 is convertable i64 check_distance_between_types(Checker *c, Operand *operand, Type *type) { if (operand->mode == Addressing_Invalid || type == t_invalid) { return 0; } if (operand->mode == Addressing_Builtin) { return -1; } if (operand->mode == Addressing_Type) { return -1; } Type *s = operand->type; if (are_types_identical(s, type)) { return 0; } Type *src = base_type(s); Type *dst = base_type(type); if (is_type_untyped_undef(src)) { if (type_has_undef(dst)) { return 1; } return -1; } if (is_type_untyped_nil(src)) { if (type_has_nil(dst)) { return 1; } return -1; } if (is_type_untyped(src)) { if (is_type_any(dst)) { // NOTE(bill): Anything can cast to `Any` add_type_info_type(c, s); return 10; } if (dst->kind == Type_Basic) { if (operand->mode == Addressing_Constant) { if (check_representable_as_constant(c, operand->value, dst, NULL)) { if (is_type_typed(dst) && src->kind == Type_Basic) { switch (src->Basic.kind) { case Basic_UntypedRune: if (is_type_integer(dst) || is_type_rune(dst)) { return 1; } break; case Basic_UntypedInteger: if (is_type_integer(dst) || is_type_rune(dst)) { return 1; } break; case Basic_UntypedFloat: if (is_type_float(dst)) { return 1; } break; case Basic_UntypedComplex: if (is_type_complex(dst)) { return 1; } break; } } return 2; } return -1; } if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedRune) { if (is_type_integer(dst) || is_type_rune(dst)) { if (is_type_typed(type)) { return 2; } return 1; } return -1; } if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) { if (is_type_boolean(dst)) { if (is_type_typed(type)) { return 2; } return 1; } return -1; } } } if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) { return 1; } if (is_type_bit_field_value(operand->type) && is_type_integer(type)) { Type *bfv = base_type(operand->type); i32 bits = bfv->BitFieldValue.bits; i32 size = next_pow2((bits+7)/8); i32 dst_size = type_size_of(c->allocator, type); i32 diff = gb_abs(dst_size - size); // TODO(bill): figure out a decent rule here return 1; } if (check_is_assignable_to_using_subtype(operand->type, type)) { return 4; } // ^T <- rawptr #if 0 // TODO(bill): Should C-style (not C++) pointer cast be allowed? if (is_type_pointer(dst) && is_type_rawptr(src)) { return true; } #endif #if 1 // TODO(bill): Should I allow this implicit conversion at all?! // rawptr <- ^T if (are_types_identical(type, t_rawptr) && is_type_pointer(src)) { return 5; } #endif if (is_type_union(dst)) { for (isize i = 0; i < dst->Record.variant_count; i++) { Entity *f = dst->Record.variants[i]; if (are_types_identical(f->type, s)) { return 1; } } } if (is_type_proc(dst)) { if (are_types_identical(src, dst)) { return 3; } } if (is_type_vector(dst)) { Type *elem = base_vector_type(dst); i64 distance = check_distance_between_types(c, operand, elem); if (distance >= 0) { return distance + 5; } } if (is_type_any(dst)) { if (!is_type_polymorphic(src)) { // NOTE(bill): Anything can cast to `Any` add_type_info_type(c, s); return 10; } } return -1; } i64 assign_score_function(i64 distance) { // TODO(bill): A decent score function return gb_max(1000000 - distance*distance, 0); } bool check_is_assignable_to_with_score(Checker *c, Operand *operand, Type *type, i64 *score_) { i64 score = 0; i64 distance = check_distance_between_types(c, operand, type); bool ok = distance >= 0; if (ok) { score = assign_score_function(distance); } if (score_) *score_ = score; return ok; } bool check_is_assignable_to(Checker *c, Operand *operand, Type *type) { i64 score = 0; return check_is_assignable_to_with_score(c, operand, type, &score); } // NOTE(bill): `content_name` is for debugging and error messages void check_assignment(Checker *c, Operand *operand, Type *type, String context_name) { check_not_tuple(c, operand); if (operand->mode == Addressing_Invalid) { return; } #if 0 if (operand->mode == Addressing_Type) { Type *t = base_type(type); if (t->kind == Type_Pointer && t->Pointer.elem == t_type_info) { add_type_info_type(c, type); return; } } #endif if (is_type_untyped(operand->type)) { Type *target_type = type; if (type == NULL || is_type_any(type)) { if (type == NULL && is_type_untyped_nil(operand->type)) { error(operand->expr, "Use of untyped nil in %.*s", LIT(context_name)); operand->mode = Addressing_Invalid; return; } if (type == NULL && is_type_untyped_undef(operand->type)) { error(operand->expr, "Use of --- in %.*s", LIT(context_name)); operand->mode = Addressing_Invalid; return; } target_type = default_type(operand->type); if (type != NULL && !is_type_any(type)) { GB_ASSERT_MSG(is_type_typed(target_type), "%s", type_to_string(type)); } add_type_info_type(c, type); add_type_info_type(c, target_type); } if (target_type != NULL && is_type_vector(target_type)) { // NOTE(bill): continue to below } else { convert_to_typed(c, operand, target_type, 0); if (operand->mode == Addressing_Invalid) { return; } } } if (type == NULL) { return; } if (!check_is_assignable_to(c, operand, type)) { gbString type_str = type_to_string(type); gbString op_type_str = type_to_string(operand->type); gbString expr_str = expr_to_string(operand->expr); if (operand->mode == Addressing_Builtin) { // TODO(bill): is this a good enough error message? // TODO(bill): Actually allow built in procedures to be passed around and thus be created on use error(operand->expr, "Cannot assign built-in procedure `%s` in %.*s", expr_str, LIT(context_name)); } else { // TODO(bill): is this a good enough error message? error(operand->expr, "Cannot assign value `%s` of type `%s` to `%s` in %.*s", expr_str, op_type_str, type_str, LIT(context_name)); } operand->mode = Addressing_Invalid; gb_string_free(expr_str); gb_string_free(op_type_str); gb_string_free(type_str); return; } } void populate_using_entity_map(Checker *c, AstNode *node, Type *t, Map *entity_map) { t = base_type(type_deref(t)); gbString str = NULL; if (node != NULL) { expr_to_string(node); } if (t->kind == Type_Record) { for (isize i = 0; i < t->Record.field_count; i++) { Entity *f = t->Record.fields[i]; GB_ASSERT(f->kind == Entity_Variable); String name = f->token.string; HashKey key = hash_string(name); Entity **found = map_get(entity_map, key); if (found != NULL) { Entity *e = *found; // TODO(bill): Better type error if (str != NULL) { error(e->token, "`%.*s` is already declared in `%s`", LIT(name), str); } else { error(e->token, "`%.*s` is already declared`", LIT(name)); } } else { map_set(entity_map, key, f); add_entity(c, c->context.scope, NULL, f); if (f->flags & EntityFlag_Using) { populate_using_entity_map(c, node, f->type, entity_map); } } } } gb_string_free(str); } // Returns filled field_count isize check_fields(Checker *c, AstNode *node, Array decls, Entity **fields, isize field_count, String context) { gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); Map entity_map = {}; map_init_with_reserve(&entity_map, c->tmp_allocator, 2*field_count); Entity *using_index_expr = NULL; if (node != NULL) { GB_ASSERT(node->kind != AstNode_UnionType); } isize field_index = 0; for_array(decl_index, decls) { AstNode *decl = decls[decl_index]; if (decl->kind != AstNode_Field) { continue; } ast_node(f, Field, decl); Type *type = check_type(c, f->type); bool is_using = (f->flags&FieldFlag_using) != 0; if (is_using) { if (f->names.count > 1) { error(f->names[0], "Cannot apply `using` to more than one of the same type"); is_using = false; } } for_array(name_index, f->names) { AstNode *name = f->names[name_index]; if (!ast_node_expect(name, AstNode_Ident)) { continue; } Token name_token = name->Ident.token; Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, is_using, cast(i32)field_index); e->identifier = name; if (name_token.string == "_") { fields[field_index++] = e; } else if (name_token.string == "__tag") { error(name, "`__tag` is a reserved identifier for fields"); } else { HashKey key = hash_string(name_token.string); Entity **found = map_get(&entity_map, key); if (found != NULL) { Entity *e = *found; // NOTE(bill): Scope checking already checks the declaration but in many cases, this can happen so why not? // This may be a little janky but it's not really that much of a problem error(name_token, "`%.*s` is already declared in this type", LIT(name_token.string)); error(e->token, "\tpreviously declared"); } else { map_set(&entity_map, key, e); fields[field_index++] = e; add_entity(c, c->context.scope, name, e); } add_entity_use(c, name, e); } } if (is_using) { Type *t = base_type(type_deref(type)); if (!is_type_struct(t) && !is_type_raw_union(t) && !is_type_bit_field(t) && f->names.count >= 1 && f->names[0]->kind == AstNode_Ident) { Token name_token = f->names[0]->Ident.token; if (is_type_indexable(t)) { bool ok = true; for_array(emi, entity_map.entries) { Entity *e = entity_map.entries[emi].value; if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) { if (is_type_indexable(e->type)) { if (e->identifier != f->names[0]) { ok = false; using_index_expr = e; break; } } } } if (ok) { using_index_expr = fields[field_index-1]; } else { fields[field_index-1]->flags &= ~EntityFlag_Using; error(name_token, "Previous `using` for an index expression `%.*s`", LIT(name_token.string)); } } else { gbString type_str = type_to_string(type); error(name_token, "`using` cannot be applied to the field `%.*s` of type `%s`", LIT(name_token.string), type_str); gb_string_free(type_str); continue; } } populate_using_entity_map(c, node, type, &entity_map); } } gb_temp_arena_memory_end(tmp); return field_index; } // TODO(bill): Cleanup struct field reordering // TODO(bill): Inline sorting procedure? gb_global gbAllocator __checker_allocator = {}; GB_COMPARE_PROC(cmp_reorder_struct_fields) { // Rule: // `using` over non-`using` // Biggest to smallest alignment // if same alignment: biggest to smallest size // if same size: order by source order Entity *x = *(Entity **)a; Entity *y = *(Entity **)b; GB_ASSERT(x != NULL); GB_ASSERT(y != NULL); GB_ASSERT(x->kind == Entity_Variable); GB_ASSERT(y->kind == Entity_Variable); bool xu = (x->flags & EntityFlag_Using) != 0; bool yu = (y->flags & EntityFlag_Using) != 0; i64 xa = type_align_of(__checker_allocator, x->type); i64 ya = type_align_of(__checker_allocator, y->type); i64 xs = type_size_of(__checker_allocator, x->type); i64 ys = type_size_of(__checker_allocator, y->type); if (xu != yu) { return xu ? -1 : +1; } if (xa != ya) { return xa > ya ? -1 : xa < ya; } if (xs != ys) { return xs > ys ? -1 : xs < ys; } i32 diff = x->Variable.field_index - y->Variable.field_index; return diff < 0 ? -1 : diff > 0; } Entity *make_names_field_for_record(Checker *c, Scope *scope) { Entity *e = make_entity_field(c->allocator, scope, make_token_ident(str_lit("names")), t_string_slice, false, 0); e->Variable.is_immutable = true; e->flags |= EntityFlag_TypeField; return e; } void check_struct_type(Checker *c, Type *struct_type, AstNode *node) { GB_ASSERT(is_type_struct(struct_type)); ast_node(st, StructType, node); isize field_count = 0; for_array(field_index, st->fields) { AstNode *field = st->fields[field_index]; switch (field->kind) { case_ast_node(f, Field, field); field_count += f->names.count; case_end; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); field_count = check_fields(c, node, st->fields, fields, field_count, str_lit("struct")); struct_type->Record.is_packed = st->is_packed; struct_type->Record.is_ordered = st->is_ordered; struct_type->Record.fields = fields; struct_type->Record.fields_in_src_order = fields; struct_type->Record.field_count = field_count; struct_type->Record.names = make_names_field_for_record(c, c->context.scope); type_set_offsets(c->allocator, struct_type); if (!struct_type->failure && !st->is_packed && !st->is_ordered) { struct_type->failure = false; struct_type->Record.are_offsets_set = false; struct_type->Record.offsets = NULL; // NOTE(bill): Reorder fields for reduced size/performance Entity **reordered_fields = gb_alloc_array(c->allocator, Entity *, field_count); for (isize i = 0; i < field_count; i++) { reordered_fields[i] = struct_type->Record.fields_in_src_order[i]; } // NOTE(bill): Hacky thing // TODO(bill): Probably make an inline sorting procedure rather than use global variables __checker_allocator = c->allocator; // NOTE(bill): compound literal order must match source not layout gb_sort_array(reordered_fields, field_count, cmp_reorder_struct_fields); for (isize i = 0; i < field_count; i++) { reordered_fields[i]->Variable.field_index = i; } struct_type->Record.fields = reordered_fields; } type_set_offsets(c->allocator, struct_type); if (st->align != NULL) { if (st->is_packed) { syntax_error(st->align, "`#align` cannot be applied with `#packed`"); return; } Operand o = {}; check_expr(c, &o, st->align); if (o.mode != Addressing_Constant) { if (o.mode != Addressing_Invalid) { error(st->align, "#align must be a constant"); } return; } Type *type = base_type(o.type); if (is_type_untyped(type) || is_type_integer(type)) { if (o.value.kind == ExactValue_Integer) { i64 align = i128_to_i64(o.value.value_integer); if (align < 1 || !gb_is_power_of_two(align)) { error(st->align, "#align must be a power of 2, got %lld", align); return; } // NOTE(bill): Success!!! i64 custom_align = gb_clamp(align, 1, build_context.max_align); if (custom_align < align) { warning(st->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align); } struct_type->Record.custom_align = custom_align; return; } } error(st->align, "#align must be an integer"); return; } } void check_union_type(Checker *c, Type *named_type, Type *union_type, AstNode *node) { GB_ASSERT(is_type_union(union_type)); ast_node(ut, UnionType, node); isize variant_count = ut->variants.count+1; isize field_count = 0; for_array(i, ut->fields) { AstNode *field = ut->fields[i]; if (field->kind == AstNode_Field) { ast_node(f, Field, field); field_count += f->names.count; } } gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); Map entity_map = {}; // Key: String map_init_with_reserve(&entity_map, c->tmp_allocator, 2*variant_count); Entity *using_index_expr = NULL; Entity **variants = gb_alloc_array(c->allocator, Entity *, variant_count); Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); isize variant_index = 0; variants[variant_index++] = make_entity_type_name(c->allocator, c->context.scope, empty_token, NULL); field_count = check_fields(c, NULL, ut->fields, fields, field_count, str_lit("union")); for (isize i = 0; i < field_count; i++) { Entity *f = fields[i]; String name = f->token.string; map_set(&entity_map, hash_string(name), f); } union_type->Record.fields = fields; union_type->Record.fields_in_src_order = fields; union_type->Record.field_count = field_count; union_type->Record.are_offsets_set = false; union_type->Record.is_ordered = true; { Entity *__tag = make_entity_field(c->allocator, NULL, make_token_ident(str_lit("__tag")), t_int, false, -1); union_type->Record.union__tag = __tag; } for_array(i, ut->variants) { AstNode *variant = ut->variants[i]; if (variant->kind != AstNode_UnionField) { continue; } ast_node(f, UnionField, variant); Token name_token = f->name->Ident.token; Type *base_type = make_type_struct(c->allocator); { ast_node(fl, FieldList, f->list); // NOTE(bill): Copy the contents for the common fields for now Array list = {}; array_init_count(&list, c->allocator, ut->fields.count+fl->list.count); gb_memmove_array(list.data, ut->fields.data, ut->fields.count); gb_memmove_array(list.data+ut->fields.count, fl->list.data, fl->list.count); isize list_count = 0; for_array(j, list) { ast_node(f, Field, list[j]); list_count += f->names.count; } Token token = name_token; token.kind = Token_struct; AstNode *dummy_struct = ast_struct_type(c->curr_ast_file, token, list, list_count, false, true, NULL); check_open_scope(c, dummy_struct); Entity **fields = gb_alloc_array(c->allocator, Entity *, list_count); isize field_count = check_fields(c, dummy_struct, list, fields, list_count, str_lit("variant")); base_type->Record.is_packed = false; base_type->Record.is_ordered = true; base_type->Record.fields = fields; base_type->Record.fields_in_src_order = fields; base_type->Record.field_count = field_count; base_type->Record.names = make_names_field_for_record(c, c->context.scope); base_type->Record.node = dummy_struct; base_type->Record.variant_parent = named_type != NULL ? named_type : union_type; base_type->Record.variant_index = variant_index; type_set_offsets(c->allocator, base_type); check_close_scope(c); } Type *type = make_type_named(c->allocator, name_token.string, base_type, NULL); Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, type); type->Named.type_name = e; add_entity(c, c->context.scope, f->name, e); if (name_token.string == "_") { error(name_token, "`_` cannot be used a union subtype"); continue; } HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // NOTE(bill): Scope checking already checks the declaration error(name_token, "`%.*s` is already declared in this union", LIT(name_token.string)); } else { map_set(&entity_map, key, e); variants[variant_index++] = e; } add_entity_use(c, f->name, e); } type_set_offsets(c->allocator, union_type); gb_temp_arena_memory_end(tmp); union_type->Record.variants = variants; union_type->Record.variant_count = variant_index; } void check_raw_union_type(Checker *c, Type *union_type, AstNode *node) { GB_ASSERT(node->kind == AstNode_RawUnionType); GB_ASSERT(is_type_raw_union(union_type)); ast_node(ut, RawUnionType, node); isize field_count = 0; for_array(field_index, ut->fields) { AstNode *field = ut->fields[field_index]; switch (field->kind) { case_ast_node(f, Field, field); field_count += f->names.count; case_end; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); field_count = check_fields(c, node, ut->fields, fields, field_count, str_lit("raw_union")); union_type->Record.fields = fields; union_type->Record.field_count = field_count; union_type->Record.names = make_names_field_for_record(c, c->context.scope); } void check_enum_type(Checker *c, Type *enum_type, Type *named_type, AstNode *node) { ast_node(et, EnumType, node); GB_ASSERT(is_type_enum(enum_type)); gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); Type *base_type = t_int; if (et->base_type != NULL) { base_type = check_type(c, et->base_type); } if (base_type == NULL || !(is_type_integer(base_type) || is_type_float(base_type))) { error(node, "Base type for enumeration must be numeric"); return; } if (is_type_enum(base_type)) { error(node, "Base type for enumeration cannot be another enumeration"); return; } // NOTE(bill): Must be up here for the `check_init_constant` system enum_type->Record.enum_base_type = base_type; Map entity_map = {}; // Key: String map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(et->fields.count)); Entity **fields = gb_alloc_array(c->allocator, Entity *, et->fields.count); isize field_count = 0; Type *constant_type = enum_type; if (named_type != NULL) { constant_type = named_type; } ExactValue iota = exact_value_i64(-1); ExactValue min_value = exact_value_i64(0); ExactValue max_value = exact_value_i64(0); for_array(i, et->fields) { AstNode *field = et->fields[i]; AstNode *ident = NULL; AstNode *init = NULL; if (field->kind == AstNode_FieldValue) { ast_node(fv, FieldValue, field); if (fv->field == NULL || fv->field->kind != AstNode_Ident) { error(field, "An enum field's name must be an identifier"); continue; } ident = fv->field; init = fv->value; } else if (field->kind == AstNode_Ident) { ident = field; } else { error(field, "An enum field's name must be an identifier"); continue; } String name = ident->Ident.token.string; if (init != NULL) { Operand o = {}; check_expr(c, &o, init); if (o.mode != Addressing_Constant) { error(init, "Enumeration value must be a constant"); o.mode = Addressing_Invalid; } if (o.mode != Addressing_Invalid) { check_assignment(c, &o, constant_type, str_lit("enumeration")); } if (o.mode != Addressing_Invalid) { iota = o.value; } else { iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1)); } } else { iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1)); } // NOTE(bill): Skip blank identifiers if (name == "_") { continue; } else if (name == "count") { error(field, "`count` is a reserved identifier for enumerations"); continue; } else if (name == "min_value") { error(field, "`min_value` is a reserved identifier for enumerations"); continue; } else if (name == "max_value") { error(field, "`max_value` is a reserved identifier for enumerations"); continue; } else if (name == "names") { error(field, "`names` is a reserved identifier for enumerations"); continue; }/* else if (name == "base_type") { error(field, "`base_type` is a reserved identifier for enumerations"); continue; } */ if (compare_exact_values(Token_Gt, min_value, iota)) { min_value = iota; } if (compare_exact_values(Token_Lt, max_value, iota)) { max_value = iota; } Entity *e = make_entity_constant(c->allocator, c->context.scope, ident->Ident.token, constant_type, iota); e->identifier = ident; e->flags |= EntityFlag_Visited; HashKey key = hash_string(name); if (map_get(&entity_map, key) != NULL) { error(ident, "`%.*s` is already declared in this enumeration", LIT(name)); } else { map_set(&entity_map, key, e); add_entity(c, c->context.scope, NULL, e); fields[field_count++] = e; add_entity_use(c, field, e); } } GB_ASSERT(field_count <= et->fields.count); gb_temp_arena_memory_end(tmp); enum_type->Record.fields = fields; enum_type->Record.field_count = field_count; enum_type->Record.enum_count = make_entity_constant(c->allocator, c->context.scope, make_token_ident(str_lit("count")), t_int, exact_value_i64(field_count)); enum_type->Record.enum_min_value = make_entity_constant(c->allocator, c->context.scope, make_token_ident(str_lit("min_value")), constant_type, min_value); enum_type->Record.enum_max_value = make_entity_constant(c->allocator, c->context.scope, make_token_ident(str_lit("max_value")), constant_type, max_value); enum_type->Record.names = make_names_field_for_record(c, c->context.scope); } void check_bit_field_type(Checker *c, Type *bit_field_type, Type *named_type, AstNode *node) { ast_node(bft, BitFieldType, node); GB_ASSERT(is_type_bit_field(bit_field_type)); gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); Map entity_map = {}; // Key: String map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(bft->fields.count)); isize field_count = 0; Entity **fields = gb_alloc_array(c->allocator, Entity *, bft->fields.count); u32 * sizes = gb_alloc_array(c->allocator, u32, bft->fields.count); u32 * offsets = gb_alloc_array(c->allocator, u32, bft->fields.count); u32 curr_offset = 0; for_array(i, bft->fields) { AstNode *field = bft->fields[i]; GB_ASSERT(field->kind == AstNode_FieldValue); AstNode *ident = field->FieldValue.field; AstNode *value = field->FieldValue.value; if (ident->kind != AstNode_Ident) { error(field, "A bit field value's name must be an identifier"); continue; } String name = ident->Ident.token.string; Operand o = {}; check_expr(c, &o, value); if (o.mode != Addressing_Constant) { error(value, "Bit field bit size must be a constant"); continue; } ExactValue v = exact_value_to_integer(o.value); if (v.kind != ExactValue_Integer) { error(value, "Bit field bit size must be a constant integer"); continue; } i64 bits = i128_to_i64(v.value_integer); if (bits < 0 || bits > 128) { error(value, "Bit field's bit size must be within the range 1..<128, got %lld", cast(long long)bits); continue; } Type *value_type = make_type_bit_field_value(c->allocator, bits); Entity *e = make_entity_variable(c->allocator, bit_field_type->BitField.scope, ident->Ident.token, value_type, false); e->identifier = ident; e->flags |= EntityFlag_BitFieldValue; HashKey key = hash_string(name); if (name != "_" && map_get(&entity_map, key) != NULL) { error(ident, "`%.*s` is already declared in this bit field", LIT(name)); } else { map_set(&entity_map, key, e); add_entity(c, c->context.scope, NULL, e); add_entity_use(c, field, e); fields [field_count] = e; offsets[field_count] = curr_offset; sizes [field_count] = bits; field_count++; curr_offset += bits; } } GB_ASSERT(field_count <= bft->fields.count); gb_temp_arena_memory_end(tmp); bit_field_type->BitField.fields = fields; bit_field_type->BitField.field_count = field_count; bit_field_type->BitField.sizes = sizes; bit_field_type->BitField.offsets = offsets; if (bft->align != NULL) { Operand o = {}; check_expr(c, &o, bft->align); if (o.mode != Addressing_Constant) { if (o.mode != Addressing_Invalid) { error(bft->align, "#align must be a constant"); } return; } Type *type = base_type(o.type); if (is_type_untyped(type) || is_type_integer(type)) { if (o.value.kind == ExactValue_Integer) { i64 align = i128_to_i64(o.value.value_integer); if (align < 1 || !gb_is_power_of_two(align)) { error(bft->align, "#align must be a power of 2, got %lld", align); return; } // NOTE(bill): Success!!! i64 custom_align = gb_clamp(align, 1, build_context.max_align); if (custom_align < align) { warning(bft->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align); } bit_field_type->BitField.custom_align = custom_align; return; } } error(bft->align, "#align must be an integer"); return; } } bool is_polymorphic_type_assignable(Checker *c, Type *poly, Type *source, bool compound, bool modify_type) { Operand o = {Addressing_Value}; o.type = source; switch (poly->kind) { case Type_Basic: if (compound) return are_types_identical(poly, source); return check_is_assignable_to(c, &o, poly); case Type_Named: if (compound) return are_types_identical(poly, source); return check_is_assignable_to(c, &o, poly); case Type_Generic: { if (modify_type) { Type *ds = default_type(source); gb_memmove(poly, ds, gb_size_of(Type)); } return true; } case Type_Pointer: if (source->kind == Type_Pointer) { return is_polymorphic_type_assignable(c, poly->Pointer.elem, source->Atomic.elem, true, modify_type); } return false; case Type_Atomic: if (source->kind == Type_Atomic) { return is_polymorphic_type_assignable(c, poly->Atomic.elem, source->Atomic.elem, true, modify_type); } return false; case Type_Array: if (source->kind == Type_Array && poly->Array.count == source->Array.count) { return is_polymorphic_type_assignable(c, poly->Array.elem, source->Array.elem, true, modify_type); } return false; case Type_DynamicArray: if (source->kind == Type_DynamicArray) { return is_polymorphic_type_assignable(c, poly->DynamicArray.elem, source->DynamicArray.elem, true, modify_type); } return false; case Type_Vector: if (source->kind == Type_Vector && poly->Vector.count == source->Vector.count) { return is_polymorphic_type_assignable(c, poly->Vector.elem, source->Vector.elem, true, modify_type); } return false; case Type_Slice: if (source->kind == Type_Slice) { return is_polymorphic_type_assignable(c, poly->Slice.elem, source->Slice.elem, true, modify_type); } return false; case Type_Record: if (source->kind == Type_Record) { // TODO(bill): Polymorphic type assignment } return false; case Type_Tuple: GB_PANIC("This should never happen"); return false; case Type_Proc: if (source->kind == Type_Proc) { // TODO(bill): Polymorphic type assignment } return false; case Type_Map: if (source->kind == Type_Map) { bool key = is_polymorphic_type_assignable(c, poly->Map.key, source->Map.key, true, modify_type); bool value = is_polymorphic_type_assignable(c, poly->Map.value, source->Map.value, true, modify_type); return key || value; } return false; } return false; } Type *determine_type_from_polymorphic(Checker *c, Type *poly_type, Operand operand) { bool modify_type = !c->context.no_polymorphic_errors; if (!is_operand_value(operand)) { if (modify_type) { error(operand.expr, "Cannot determine polymorphic type from parameter"); } return t_invalid; } if (is_polymorphic_type_assignable(c, poly_type, operand.type, false, modify_type)) { return poly_type; } if (modify_type) { gbString pts = type_to_string(poly_type); gbString ots = type_to_string(operand.type); defer (gb_string_free(pts)); defer (gb_string_free(ots)); error(operand.expr, "Cannot determine polymorphic type from parameter: `%s` to `%s`\n" "\tNote: Record and procedure types are not yet supported", ots, pts); } return t_invalid; } Type *check_get_params(Checker *c, Scope *scope, AstNode *_params, bool *is_variadic_, bool *success_, Array *operands) { if (_params == NULL) { return NULL; } bool allow_polymorphic_types = c->context.allow_polymorphic_types; bool success = true; ast_node(field_list, FieldList, _params); Array params = field_list->list; if (params.count == 0) { if (success_) *success_ = success; return NULL; } isize variable_count = 0; for_array(i, params) { AstNode *field = params[i]; if (ast_node_expect(field, AstNode_Field)) { ast_node(f, Field, field); variable_count += gb_max(f->names.count, 1); } } if (operands != NULL) { GB_ASSERT_MSG(operands->count >= variable_count, "%td vs %td", operands->count, variable_count); } bool is_variadic = false; bool is_c_vararg = false; Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count); isize variable_index = 0; for_array(i, params) { AstNode *param = params[i]; if (param->kind != AstNode_Field) { continue; } ast_node(p, Field, param); AstNode *type_expr = p->type; Type *type = NULL; AstNode *default_value = unparen_expr(p->default_value); ExactValue value = {}; bool default_is_nil = false; bool default_is_location = false; bool is_type_param = false; bool is_type_polymorphic_type = false; bool detemine_type_from_operand = false; if (type_expr == NULL) { if (default_value->kind == AstNode_BasicDirective && default_value->BasicDirective.name == "caller_location") { init_preload(c); default_is_location = true; type = t_source_code_location; } else { Operand o = {}; check_expr_or_type(c, &o, default_value); if (is_operand_nil(o)) { default_is_nil = true; } else if (o.mode != Addressing_Constant) { error(default_value, "Default parameter must be a constant"); } else { value = o.value; } type = default_type(o.type); } } else { if (type_expr->kind == AstNode_Ellipsis) { type_expr = type_expr->Ellipsis.expr; if (i+1 == params.count) { is_variadic = true; } else { error(param, "Invalid AST: Invalid variadic parameter"); success = false; } } if (type_expr->kind == AstNode_TypeType) { is_type_param = true; if (operands != NULL) { detemine_type_from_operand = true; type = t_invalid; } else { type = make_type_generic(c->allocator, 0, str_lit("")); } } else { bool prev = c->context.allow_polymorphic_types; if (operands != NULL) { c->context.allow_polymorphic_types = true; } type = check_type(c, type_expr); c->context.allow_polymorphic_types = prev; if (is_type_polymorphic(type)) { is_type_polymorphic_type = true; } } if (default_value != NULL) { if (type_expr->kind == AstNode_TypeType) { error(default_value, "A type parameter may not have a default value"); } else { Operand o = {}; if (default_value->kind == AstNode_BasicDirective && default_value->BasicDirective.name == "caller_location") { init_preload(c); default_is_location = true; o.type = t_source_code_location; o.mode = Addressing_Value; } else { check_expr_with_type_hint(c, &o, default_value, type); if (is_operand_nil(o)) { default_is_nil = true; } else if (o.mode != Addressing_Constant) { error(default_value, "Default parameter must be a constant"); } else { value = o.value; } } check_is_assignable_to(c, &o, type); } } } if (type == NULL) { error(params[i], "Invalid parameter type"); type = t_invalid; } if (is_type_untyped(type)) { if (is_type_untyped_undef(type)) { error(params[i], "Cannot determine parameter type from ---"); } else { error(params[i], "Cannot determine parameter type from a nil"); } type = t_invalid; } if (p->flags&FieldFlag_c_vararg) { if (p->type == NULL || p->type->kind != AstNode_Ellipsis) { error(params[i], "`#c_vararg` can only be applied to variadic type fields"); p->flags &= ~FieldFlag_c_vararg; // Remove the flag } else { is_c_vararg = true; } } for_array(j, p->names) { AstNode *name = p->names[j]; if (ast_node_expect(name, AstNode_Ident)) { Entity *param = NULL; if (is_type_param) { if (operands != NULL) { Operand o = (*operands)[variable_index]; if (o.mode == Addressing_Type) { type = o.type; } else { if (!c->context.no_polymorphic_errors) { error(o.expr, "Expected a type to assign to the type parameter"); } success = false; type = t_invalid; } } param = make_entity_type_name(c->allocator, scope, name->Ident.token, type); param->TypeName.is_type_alias = true; } else { if (operands != NULL && is_type_polymorphic_type) { Operand op = (*operands)[variable_index]; type = determine_type_from_polymorphic(c, type, op); if (type == t_invalid) { success = false; } } if (p->flags&FieldFlag_no_alias) { if (!is_type_pointer(type)) { error(params[i], "`#no_alias` can only be applied to fields of pointer type"); p->flags &= ~FieldFlag_no_alias; // Remove the flag } } param = make_entity_param(c->allocator, scope, name->Ident.token, type, (p->flags&FieldFlag_using) != 0, false); param->Variable.default_value = value; param->Variable.default_is_nil = default_is_nil; param->Variable.default_is_location = default_is_location; } if (p->flags&FieldFlag_no_alias) { param->flags |= EntityFlag_NoAlias; } add_entity(c, scope, name, param); variables[variable_index++] = param; } } } variable_count = variable_index; if (is_variadic) { GB_ASSERT(params.count > 0); // NOTE(bill): Change last variadic parameter to be a slice // Custom Calling convention for variadic parameters Entity *end = variables[variable_count-1]; end->type = make_type_slice(c->allocator, end->type); end->flags |= EntityFlag_Ellipsis; if (is_c_vararg) { end->flags |= EntityFlag_CVarArg; } } Type *tuple = make_type_tuple(c->allocator); tuple->Tuple.variables = variables; tuple->Tuple.variable_count = variable_count; if (success_) *success_ = success; if (is_variadic_) *is_variadic_ = is_variadic; return tuple; } Type *check_get_results(Checker *c, Scope *scope, AstNode *_results) { if (_results == NULL) { return NULL; } ast_node(field_list, FieldList, _results); Array results = field_list->list; if (results.count == 0) { return NULL; } Type *tuple = make_type_tuple(c->allocator); isize variable_count = 0; for_array(i, results) { AstNode *field = results[i]; if (ast_node_expect(field, AstNode_Field)) { ast_node(f, Field, field); variable_count += gb_max(f->names.count, 1); } } Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count); isize variable_index = 0; for_array(i, results) { ast_node(field, Field, results[i]); AstNode *default_value = unparen_expr(field->default_value); ExactValue value = {}; bool default_is_nil = false; Type *type = NULL; if (field->type == NULL) { Operand o = {}; check_expr(c, &o, default_value); if (is_operand_nil(o)) { default_is_nil = true; } else if (o.mode != Addressing_Constant) { error(default_value, "Default parameter must be a constant"); } else { value = o.value; } type = default_type(o.type); } else { type = check_type(c, field->type); if (default_value != NULL) { Operand o = {}; check_expr_with_type_hint(c, &o, default_value, type); if (is_operand_nil(o)) { default_is_nil = true; } else if (o.mode != Addressing_Constant) { error(default_value, "Default parameter must be a constant"); } else { value = o.value; } check_is_assignable_to(c, &o, type); } } if (type == NULL) { error(results[i], "Invalid parameter type"); type = t_invalid; } if (is_type_untyped(type)) { error(results[i], "Cannot determine parameter type from a nil"); type = t_invalid; } if (field->names.count == 0) { Token token = ast_node_token(field->type); token.string = str_lit(""); Entity *param = make_entity_param(c->allocator, scope, token, type, false, false); param->Variable.default_value = value; param->Variable.default_is_nil = default_is_nil; variables[variable_index++] = param; } else { for_array(j, field->names) { Token token = ast_node_token(results[i]); if (field->type != NULL) { token = ast_node_token(field->type); } token.string = str_lit(""); AstNode *name = field->names[j]; if (name->kind != AstNode_Ident) { error(name, "Expected an identifer for as the field name"); } else { token = name->Ident.token; } Entity *param = make_entity_param(c->allocator, scope, token, type, false, false); param->Variable.default_value = value; param->Variable.default_is_nil = default_is_nil; variables[variable_index++] = param; } } } for (isize i = 0; i < variable_index; i++) { String x = variables[i]->token.string; if (x.len == 0 || x == "_") { continue; } for (isize j = i+1; j < variable_index; j++) { String y = variables[j]->token.string; if (y.len == 0 || y == "_") { continue; } if (x == y) { error(variables[j]->token, "Duplicate return value name `%.*s`", LIT(y)); } } } tuple->Tuple.variables = variables; tuple->Tuple.variable_count = variable_index; return tuple; } Type *type_to_abi_compat_param_type(gbAllocator a, Type *original_type) { Type *new_type = original_type; if (build_context.ODIN_ARCH == "x86") { return new_type; } if (build_context.ODIN_OS == "windows") { // NOTE(bill): Changing the passing parameter value type is to match C's ABI // IMPORTANT TODO(bill): This only matches the ABI on MSVC at the moment // SEE: https://msdn.microsoft.com/en-us/library/zthk2dkh.aspx Type *bt = core_type(original_type); switch (bt->kind) { // Okay to pass by value (usually) // Especially the only Odin types case Type_Basic: { i64 sz = bt->Basic.size; if (sz > 8 && build_context.word_size < 8) { new_type = make_type_pointer(a, original_type); } } break; case Type_Pointer: break; case Type_Proc: break; // NOTE(bill): Just a pointer // Odin only types case Type_Slice: case Type_DynamicArray: case Type_Map: break; // Odin specific case Type_Array: case Type_Vector: // Could be in C too case Type_Record: { i64 align = type_align_of(a, original_type); i64 size = type_size_of(a, original_type); switch (8*size) { case 8: new_type = t_u8; break; case 16: new_type = t_u16; break; case 32: new_type = t_u32; break; case 64: new_type = t_u64; break; default: new_type = make_type_pointer(a, original_type); break; } } break; } } else if (build_context.ODIN_OS == "linux" || build_context.ODIN_OS == "osx") { Type *bt = core_type(original_type); switch (bt->kind) { // Okay to pass by value (usually) // Especially the only Odin types case Type_Basic: { i64 sz = bt->Basic.size; if (sz > 8 && build_context.word_size < 8) { new_type = make_type_pointer(a, original_type); } } break; case Type_Pointer: break; case Type_Proc: break; // NOTE(bill): Just a pointer // Odin only types case Type_Slice: case Type_DynamicArray: case Type_Map: break; // Odin specific case Type_Array: case Type_Vector: // Could be in C too case Type_Record: { i64 align = type_align_of(a, original_type); i64 size = type_size_of(a, original_type); if (8*size > 16) { new_type = make_type_pointer(a, original_type); } } break; } } else { // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for // their architectures } return new_type; } Type *reduce_tuple_to_single_type(Type *original_type) { if (original_type != NULL) { Type *t = core_type(original_type); if (t->kind == Type_Tuple && t->Tuple.variable_count == 1) { return t->Tuple.variables[0]->type; } } return original_type; } Type *type_to_abi_compat_result_type(gbAllocator a, Type *original_type) { Type *new_type = original_type; if (new_type == NULL) { return NULL; } GB_ASSERT(is_type_tuple(original_type)); if (build_context.ODIN_OS == "windows") { Type *bt = core_type(reduce_tuple_to_single_type(original_type)); // NOTE(bill): This is just reversed engineered from LLVM IR output switch (bt->kind) { // Okay to pass by value // Especially the only Odin types case Type_Pointer: break; case Type_Proc: break; // NOTE(bill): Just a pointer case Type_Basic: break; default: { i64 align = type_align_of(a, original_type); i64 size = type_size_of(a, original_type); switch (8*size) { #if 1 case 8: new_type = t_u8; break; case 16: new_type = t_u16; break; case 32: new_type = t_u32; break; case 64: new_type = t_u64; break; #endif } } break; } } else if (build_context.ODIN_OS == "linux") { } else { // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for // their architectures } if (new_type != original_type) { Type *tuple = make_type_tuple(a); tuple->Tuple.variable_count = 1; tuple->Tuple.variables = gb_alloc_array(a, Entity *, 1); tuple->Tuple.variables[0] = make_entity_param(a, original_type->Tuple.variables[0]->scope, empty_token, new_type, false, false); new_type = tuple; } // return reduce_tuple_to_single_type(new_type); return new_type; } bool abi_compat_return_by_value(gbAllocator a, ProcCallingConvention cc, Type *abi_return_type) { if (abi_return_type == NULL) { return false; } switch (cc) { case ProcCC_Odin: case ProcCC_Contextless: return false; } if (build_context.ODIN_OS == "windows") { i64 size = 8*type_size_of(a, abi_return_type); switch (size) { case 0: case 8: case 16: case 32: case 64: return false; default: return true; } } return false; } // NOTE(bill): `operands` is for generating non generic procedure type bool check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node, Array *operands = NULL) { ast_node(pt, ProcType, proc_type_node); bool variadic = false; bool success = true; Type *params = check_get_params(c, c->context.scope, pt->params, &variadic, &success, operands); Type *results = check_get_results(c, c->context.scope, pt->results); isize param_count = 0; isize result_count = 0; if (params) param_count = params ->Tuple.variable_count; if (results) result_count = results->Tuple.variable_count; type->Proc.node = proc_type_node; type->Proc.scope = c->context.scope; type->Proc.params = params; type->Proc.param_count = param_count; type->Proc.results = results; type->Proc.result_count = result_count; type->Proc.variadic = variadic; type->Proc.calling_convention = pt->calling_convention; type->Proc.is_polymorphic = pt->generic; if (param_count > 0) { Entity *end = params->Tuple.variables[param_count-1]; if (end->flags&EntityFlag_CVarArg) { if (pt->calling_convention == ProcCC_Odin) { error(end->token, "Odin calling convention does not support #c_vararg"); } else if (pt->calling_convention == ProcCC_Contextless) { error(end->token, "Odin's contextless calling convention does not support #c_vararg"); } else if (pt->calling_convention == ProcCC_Fast) { error(end->token, "Fast calling convention does not support #c_vararg"); } else { type->Proc.c_vararg = true; } } } bool is_polymorphic = false; for (isize i = 0; i < param_count; i++) { Entity *e = params->Tuple.variables[i]; if (e->kind != Entity_Variable) { is_polymorphic = true; break; } else if (is_type_polymorphic(e->type)) { is_polymorphic = true; break; } } type->Proc.is_polymorphic = is_polymorphic; type->Proc.abi_compat_params = gb_alloc_array(c->allocator, Type *, param_count); for (isize i = 0; i < param_count; i++) { Entity *e = type->Proc.params->Tuple.variables[i]; if (e->kind == Entity_Variable) { Type *original_type = e->type; Type *new_type = type_to_abi_compat_param_type(c->allocator, original_type); type->Proc.abi_compat_params[i] = new_type; } } // NOTE(bill): The types are the same type->Proc.abi_compat_result_type = type_to_abi_compat_result_type(c->allocator, type->Proc.results); type->Proc.return_by_pointer = abi_compat_return_by_value(c->allocator, pt->calling_convention, type->Proc.abi_compat_result_type); return success; } Entity *check_ident(Checker *c, Operand *o, AstNode *n, Type *named_type, Type *type_hint, bool allow_import_name) { GB_ASSERT(n->kind == AstNode_Ident); o->mode = Addressing_Invalid; o->expr = n; String name = n->Ident.token.string; Entity *e = scope_lookup_entity(c->context.scope, name); if (e == NULL) { if (name == "_") { error(n, "`_` cannot be used as a value type"); } else { error(n, "Undeclared name: %.*s", LIT(name)); } o->type = t_invalid; o->mode = Addressing_Invalid; if (named_type != NULL) { set_base_type(named_type, t_invalid); } return NULL; } if (e->parent_proc_decl != NULL && e->parent_proc_decl != c->context.curr_proc_decl) { if (e->kind == Entity_Variable) { error(n, "Nested procedures do not capture its parent's variables: %.*s", LIT(name)); return NULL; } else if (e->kind == Entity_Label) { error(n, "Nested procedures do not capture its parent's labels: %.*s", LIT(name)); return NULL; } } bool is_overloaded = false; isize overload_count = 0; bool is_alias = false; while (e->kind == Entity_Alias) { GB_ASSERT(e->Alias.base != NULL); e = e->Alias.base; is_alias = true; } HashKey key = hash_string(e->token.string); if (e->kind == Entity_Procedure) { // NOTE(bill): Overloads are only allowed with the same scope Scope *s = e->scope; overload_count = multi_map_count(&s->elements, key); if (overload_count > 1) { is_overloaded = true; } } if (is_overloaded) { Scope *s = e->scope; bool skip = false; Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count); multi_map_get_all(&s->elements, key, procs); if (type_hint != NULL) { gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); // NOTE(bill): These should be done for (isize i = 0; i < overload_count; i++) { Type *t = base_type(procs[i]->type); if (t == t_invalid) { continue; } Operand x = {}; x.mode = Addressing_Value; x.type = t; if (check_is_assignable_to(c, &x, type_hint)) { e = procs[i]; add_entity_use(c, n, e); skip = true; break; } } gb_temp_arena_memory_end(tmp); } if (!skip) { o->mode = Addressing_Overload; o->type = t_invalid; o->overload_count = overload_count; o->overload_entities = procs; return NULL; } gb_free(heap_allocator(), procs); } add_entity_use(c, n, e); check_entity_decl(c, e, NULL, named_type); if (e->type == NULL) { compiler_error("How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name)); // return NULL; } e->flags |= EntityFlag_Used; Type *type = e->type; switch (e->kind) { case Entity_Constant: if (type == t_invalid) { o->type = t_invalid; return e; } o->value = e->Constant.value; if (o->value.kind == ExactValue_Invalid) { return e; } o->mode = Addressing_Constant; break; case Entity_Variable: e->flags |= EntityFlag_Used; if (type == t_invalid) { o->type = t_invalid; return e; } o->mode = Addressing_Variable; if (e->flags & EntityFlag_Value) { o->mode = Addressing_Value; } if (e->Variable.is_immutable) { o->mode = Addressing_Immutable; } break; case Entity_Procedure: o->mode = Addressing_Value; break; case Entity_Builtin: o->builtin_id = cast(BuiltinProcId)e->Builtin.id; o->mode = Addressing_Builtin; break; case Entity_TypeName: o->mode = Addressing_Type; break; case Entity_ImportName: if (!allow_import_name) { error(n, "Use of import `%.*s` not in selector", LIT(name)); } return e; case Entity_LibraryName: error(n, "Use of library `%.*s` not in foreign block", LIT(name)); return e; case Entity_Label: o->mode = Addressing_NoValue; break; case Entity_Nil: o->mode = Addressing_Value; break; default: compiler_error("Unknown EntityKind %.*s", LIT(entity_strings[e->kind])); break; } o->type = type; return e; } i64 check_array_or_map_count(Checker *c, AstNode *e, bool is_map) { if (e == NULL) { return 0; } Operand o = {}; if (e->kind == AstNode_UnaryExpr && e->UnaryExpr.op.kind == Token_Ellipsis) { return -1; } check_expr(c, &o, e); if (o.mode != Addressing_Constant) { if (o.mode != Addressing_Invalid) { if (is_map) { error(e, "Fixed map count must be a constant"); } else { error(e, "Array count must be a constant"); } } return 0; } Type *type = base_type(o.type); if (is_type_untyped(type) || is_type_integer(type)) { if (o.value.kind == ExactValue_Integer) { i64 count = i128_to_i64(o.value.value_integer); if (is_map) { if (count > 0) { return count; } error(e, "Invalid fixed map count"); } else { if (count >= 0) { return count; } error(e, "Invalid array count"); } return 0; } } if (is_map) { error(e, "Fixed map count must be an integer"); } else { error(e, "Array count must be an integer"); } return 0; } Type *make_optional_ok_type(gbAllocator a, Type *value) { bool typed = true; Type *t = make_type_tuple(a); t->Tuple.variables = gb_alloc_array(a, Entity *, 2); t->Tuple.variable_count = 2; t->Tuple.variables[0] = make_entity_field(a, NULL, blank_token, value, false, 0); t->Tuple.variables[1] = make_entity_field(a, NULL, blank_token, typed ? t_bool : t_untyped_bool, false, 1); return t; } void check_map_type(Checker *c, Type *type, AstNode *node) { GB_ASSERT(type->kind == Type_Map); ast_node(mt, MapType, node); i64 count = check_array_or_map_count(c, mt->count, true); Type *key = check_type(c, mt->key); Type *value = check_type(c, mt->value); if (!is_type_valid_for_keys(key)) { if (is_type_boolean(key)) { error(node, "A boolean cannot be used as a key for a map"); } else { gbString str = type_to_string(key); error(node, "Invalid type of a key for a map, got `%s`", str); gb_string_free(str); } } if (count > 0) { count = 0; error(node, "Fixed map types are not yet implemented"); } type->Map.count = count; type->Map.key = key; type->Map.value = value; gbAllocator a = c->allocator; { // NOTE(bill): The preload types may have not been set yet init_preload(c); GB_ASSERT(t_map_key != NULL); Type *entry_type = make_type_struct(a); /* struct { hash: Map_Key, next: int, key: Key_Type, value: Value_Type, } */ AstNode *dummy_node = gb_alloc_item(a, AstNode); dummy_node->kind = AstNode_Invalid; check_open_scope(c, dummy_node); isize field_count = 3; Entity **fields = gb_alloc_array(a, Entity *, field_count); fields[0] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("key")), t_map_key, false, 0); fields[1] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("next")), t_int, false, 1); fields[2] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("value")), value, false, 2); check_close_scope(c); entry_type->Record.fields = fields; entry_type->Record.fields_in_src_order = fields; entry_type->Record.field_count = field_count; type_set_offsets(a, entry_type); type->Map.entry_type = entry_type; } { Type *generated_struct_type = make_type_struct(a); /* struct { hashes: [dynamic]int, entries; [dynamic]Entry_Type, } */ AstNode *dummy_node = gb_alloc_item(a, AstNode); dummy_node->kind = AstNode_Invalid; check_open_scope(c, dummy_node); Type *hashes_type = make_type_dynamic_array(a, t_int); Type *entries_type = make_type_dynamic_array(a, type->Map.entry_type); isize field_count = 2; Entity **fields = gb_alloc_array(a, Entity *, field_count); fields[0] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("hashes")), hashes_type, false, 0); fields[1] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("entries")), entries_type, false, 1); check_close_scope(c); generated_struct_type->Record.fields = fields; generated_struct_type->Record.fields_in_src_order = fields; generated_struct_type->Record.field_count = field_count; type_set_offsets(a, generated_struct_type); type->Map.generated_struct_type = generated_struct_type; } type->Map.lookup_result_type = make_optional_ok_type(a, value); // error(node, "`map` types are not yet implemented"); } bool check_type_internal(Checker *c, AstNode *e, Type **type, Type *named_type) { GB_ASSERT_NOT_NULL(type); if (e == NULL) { *type = t_invalid; return true; } switch (e->kind) { case_ast_node(i, Ident, e); Operand o = {}; check_ident(c, &o, e, named_type, NULL, false); switch (o.mode) { case Addressing_Invalid: break; case Addressing_Type: { *type = o.type; return true; } break; case Addressing_NoValue: { gbString err_str = expr_to_string(e); error(e, "`%s` used as a type", err_str); gb_string_free(err_str); } break; default: { gbString err_str = expr_to_string(e); error(e, "`%s` used as a type when not a type", err_str); gb_string_free(err_str); } break; } case_end; case_ast_node(ht, HelperType, e); return check_type_internal(c, ht->type, type, named_type); case_end; case_ast_node(pt, PolyType, e); AstNode *ident = pt->type; if (ident->kind != AstNode_Ident) { error(ident, "Expected an identifier after the $"); *type = t_invalid; return false; } Token token = ident->Ident.token; Type *t = make_type_generic(c->allocator, 0, token.string); if (c->context.allow_polymorphic_types) { Scope *s = c->context.scope; Entity *e = make_entity_type_name(c->allocator, s, token, t); e->TypeName.is_type_alias = true; add_entity(c, s, ident, e); } *type = t; return true; case_end; case_ast_node(se, SelectorExpr, e); Operand o = {}; check_selector(c, &o, e, NULL); switch (o.mode) { case Addressing_Invalid: break; case Addressing_Type: GB_ASSERT(o.type != NULL); *type = o.type; return true; case Addressing_NoValue: { gbString err_str = expr_to_string(e); error(e, "`%s` used as a type", err_str); gb_string_free(err_str); } break; default: { gbString err_str = expr_to_string(e); error(e, "`%s` is not a type", err_str); gb_string_free(err_str); } break; } case_end; case_ast_node(pe, ParenExpr, e); *type = check_type(c, pe->expr, named_type); return true; case_end; case_ast_node(ue, UnaryExpr, e); if (ue->op.kind == Token_Pointer) { *type = make_type_pointer(c->allocator, check_type(c, ue->expr)); return true; } /* else if (ue->op.kind == Token_Maybe) { *type = make_type_maybe(c->allocator, check_type(c, ue->expr)); return true; } */ case_end; case_ast_node(pt, PointerType, e); Type *elem = check_type(c, pt->type); i64 esz = type_size_of(c->allocator, elem); *type = make_type_pointer(c->allocator, elem); return true; case_end; case_ast_node(at, AtomicType, e); Type *elem = check_type(c, at->type); i64 esz = type_size_of(c->allocator, elem); *type = make_type_atomic(c->allocator, elem); return true; case_end; case_ast_node(at, ArrayType, e); if (at->count != NULL) { Type *elem = check_type(c, at->elem, NULL); i64 count = check_array_or_map_count(c, at->count, false); if (count < 0) { error(at->count, ".. can only be used in conjuction with compound literals"); count = 0; } #if 0 i64 esz = type_size_of(c->allocator, elem); if (esz == 0) { gbString str = type_to_string(elem); error(at->elem, "Zero sized element type `%s` is not allowed", str); gb_string_free(str); } #endif *type = make_type_array(c->allocator, elem, count); } else { Type *elem = check_type(c, at->elem); #if 0 i64 esz = type_size_of(c->allocator, elem); if (esz == 0) { gbString str = type_to_string(elem); error(at->elem, "Zero sized element type `%s` is not allowed", str); gb_string_free(str); } #endif *type = make_type_slice(c->allocator, elem); } return true; case_end; case_ast_node(dat, DynamicArrayType, e); Type *elem = check_type(c, dat->elem); i64 esz = type_size_of(c->allocator, elem); #if 0 if (esz == 0) { gbString str = type_to_string(elem); error(dat->elem, "Zero sized element type `%s` is not allowed", str); gb_string_free(str); } #endif *type = make_type_dynamic_array(c->allocator, elem); return true; case_end; case_ast_node(vt, VectorType, e); Type *elem = check_type(c, vt->elem); Type *be = base_type(elem); i64 count = check_array_or_map_count(c, vt->count, false); if (is_type_vector(be) || (!is_type_boolean(be) && !is_type_numeric(be))) { gbString err_str = type_to_string(elem); error(vt->elem, "Vector element type must be numerical or a boolean, got `%s`", err_str); gb_string_free(err_str); } *type = make_type_vector(c->allocator, elem, count); return true; case_end; case_ast_node(st, StructType, e); *type = make_type_struct(c->allocator); set_base_type(named_type, *type); check_open_scope(c, e); check_struct_type(c, *type, e); check_close_scope(c); (*type)->Record.node = e; return true; case_end; case_ast_node(ut, UnionType, e); *type = make_type_union(c->allocator); set_base_type(named_type, *type); check_open_scope(c, e); check_union_type(c, named_type, *type, e); check_close_scope(c); (*type)->Record.node = e; return true; case_end; case_ast_node(rut, RawUnionType, e); *type = make_type_raw_union(c->allocator); set_base_type(named_type, *type); check_open_scope(c, e); check_raw_union_type(c, *type, e); check_close_scope(c); (*type)->Record.node = e; return true; case_end; case_ast_node(et, EnumType, e); *type = make_type_enum(c->allocator); set_base_type(named_type, *type); check_open_scope(c, e); check_enum_type(c, *type, named_type, e); check_close_scope(c); (*type)->Record.node = e; return true; case_end; case_ast_node(et, BitFieldType, e); *type = make_type_bit_field(c->allocator); set_base_type(named_type, *type); check_open_scope(c, e); check_bit_field_type(c, *type, named_type, e); check_close_scope(c); return true; case_end; case_ast_node(pt, ProcType, e); *type = alloc_type(c->allocator, Type_Proc); set_base_type(named_type, *type); check_open_scope(c, e); check_procedure_type(c, *type, e); check_close_scope(c); return true; case_end; case_ast_node(mt, MapType, e); *type = alloc_type(c->allocator, Type_Map); set_base_type(named_type, *type); check_map_type(c, *type, e); return true; case_end; case_ast_node(ce, CallExpr, e); Operand o = {}; check_expr_or_type(c, &o, e); if (o.mode == Addressing_Type) { *type = o.type; return true; } case_end; } *type = t_invalid; return false; } Type *check_type(Checker *c, AstNode *e, Type *named_type) { Type *type = NULL; bool ok = check_type_internal(c, e, &type, named_type); if (!ok) { gbString err_str = expr_to_string(e); error(e, "`%s` is not a type", err_str); gb_string_free(err_str); type = t_invalid; } if (type == NULL) { type = t_invalid; } if (type->kind == Type_Named) { if (type->Named.base == NULL) { gbString name = type_to_string(type); error(e, "Invalid type definition of %s", name); gb_string_free(name); type->Named.base = t_invalid; } } #if 0 if (!c->context.allow_polymorphic_types && is_type_polymorphic(type)) { gbString str = type_to_string(type); error(e, "Invalid use of a polymorphic type `%s`", str); gb_string_free(str); type = t_invalid; } #endif if (is_type_typed(type)) { add_type_and_value(&c->info, e, Addressing_Type, type, empty_exact_value); } else { gbString name = type_to_string(type); error(e, "Invalid type definition of %s", name); gb_string_free(name); type = t_invalid; } set_base_type(named_type, type); return type; } bool check_unary_op(Checker *c, Operand *o, Token op) { if (o->type == NULL) { gbString str = expr_to_string(o->expr); error(o->expr, "Expression has no value `%s`", str); gb_string_free(str); return false; } // TODO(bill): Handle errors correctly Type *type = base_type(base_vector_type(o->type)); gbString str = NULL; switch (op.kind) { case Token_Add: case Token_Sub: if (!is_type_numeric(type)) { str = expr_to_string(o->expr); error(op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str); gb_string_free(str); } break; case Token_Xor: if (!is_type_integer(type) && !is_type_boolean(type)) { error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string)); } break; case Token_Not: if (!is_type_boolean(type)) { str = expr_to_string(o->expr); error(op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string)); gb_string_free(str); } break; default: error(op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } bool check_binary_op(Checker *c, Operand *o, Token op) { // TODO(bill): Handle errors correctly Type *type = base_type(base_vector_type(o->type)); switch (op.kind) { case Token_Sub: case Token_SubEq: if (!is_type_numeric(type) && !is_type_pointer(type)) { error(op, "Operator `%.*s` is only allowed with numeric or pointer expressions", LIT(op.string)); return false; } if (is_type_pointer(type)) { o->type = t_int; } if (base_type(type) == t_rawptr) { gbString str = type_to_string(type); error(o->expr, "Invalid pointer type for pointer arithmetic: `%s`", str); gb_string_free(str); return false; } break; case Token_Add: case Token_Mul: case Token_Quo: case Token_AddEq: case Token_MulEq: case Token_QuoEq: if (!is_type_numeric(type)) { error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string)); return false; } break; case Token_And: case Token_Or: case Token_AndEq: case Token_OrEq: case Token_Xor: case Token_XorEq: if (!is_type_integer(type) && !is_type_boolean(type)) { error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string)); return false; } break; case Token_Mod: case Token_ModMod: case Token_AndNot: case Token_ModEq: case Token_ModModEq: case Token_AndNotEq: if (!is_type_integer(type)) { error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); return false; } break; case Token_CmpAnd: case Token_CmpOr: case Token_CmpAndEq: case Token_CmpOrEq: if (!is_type_boolean(type)) { error(op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string)); return false; } break; default: error(op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) { if (in_value.kind == ExactValue_Invalid) { // NOTE(bill): There's already been an error return true; } type = core_type(type); if (is_type_boolean(type)) { return in_value.kind == ExactValue_Bool; } else if (is_type_string(type)) { return in_value.kind == ExactValue_String; } else if (is_type_integer(type) || is_type_rune(type)) { ExactValue v = exact_value_to_integer(in_value); if (v.kind != ExactValue_Integer) { return false; } if (out_value) *out_value = v; if (is_type_untyped(type)) { return true; } i128 i = v.value_integer; u128 u = *cast(u128 *)&i; i64 s = 8*type_size_of(c->allocator, type); u128 umax = U128_NEG_ONE; if (s < 128) { umax = u128_sub(u128_shl(U128_ONE, s), U128_ONE); } else { // IMPORTANT TODO(bill): I NEED A PROPER BIG NUMBER LIBRARY THAT CAN SUPPORT 128 bit floats s = 128; } i128 imax = i128_shl(I128_ONE, s-1ll); switch (type->Basic.kind) { case Basic_rune: case Basic_i8: case Basic_i16: case Basic_i32: case Basic_i64: case Basic_i128: case Basic_int: return i128_le(i128_neg(imax), i) && i128_le(i, i128_sub(imax, I128_ONE)); case Basic_u8: case Basic_u16: case Basic_u32: case Basic_u64: case Basic_u128: case Basic_uint: return !(u128_lt(u, U128_ZERO) || u128_gt(u, umax)); case Basic_UntypedInteger: return true; default: GB_PANIC("Compiler error: Unknown integer type!"); break; } } else if (is_type_float(type)) { ExactValue v = exact_value_to_float(in_value); if (v.kind != ExactValue_Float) { return false; } if (out_value) *out_value = v; switch (type->Basic.kind) { // case Basic_f16: case Basic_f32: case Basic_f64: return true; case Basic_UntypedFloat: return true; } } else if (is_type_complex(type)) { ExactValue v = exact_value_to_complex(in_value); if (v.kind != ExactValue_Complex) { return false; } switch (type->Basic.kind) { case Basic_complex64: case Basic_complex128: { ExactValue real = exact_value_real(v); ExactValue imag = exact_value_imag(v); if (real.kind != ExactValue_Invalid && imag.kind != ExactValue_Invalid) { if (out_value) *out_value = exact_binary_operator_value(Token_Add, real, exact_value_make_imag(imag)); return true; } } break; case Basic_UntypedComplex: return true; } return false; }else if (is_type_pointer(type)) { if (in_value.kind == ExactValue_Pointer) { return true; } if (in_value.kind == ExactValue_Integer) { return false; // return true; } if (out_value) *out_value = in_value; } return false; } void check_is_expressible(Checker *c, Operand *o, Type *type) { GB_ASSERT(is_type_constant_type(type)); GB_ASSERT(o->mode == Addressing_Constant); if (!check_representable_as_constant(c, o->value, type, &o->value)) { gbString a = expr_to_string(o->expr); gbString b = type_to_string(type); if (is_type_numeric(o->type) && is_type_numeric(type)) { if (!is_type_integer(o->type) && is_type_integer(type)) { error(o->expr, "`%s` truncated to `%s`", a, b); } else { char buf[127] = {}; String str = {}; i128 i = o->value.value_integer; if (is_type_unsigned(o->type)) { str = u128_to_string(*cast(u128 *)&i, buf, gb_size_of(buf)); } else { str = i128_to_string(i, buf, gb_size_of(buf)); } error(o->expr, "`%s = %.*s` overflows `%s`", a, str, b); } } else { error(o->expr, "Cannot convert `%s` to `%s`", a, b); } gb_string_free(b); gb_string_free(a); o->mode = Addressing_Invalid; } } bool check_is_expr_vector_index(Checker *c, AstNode *expr) { // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode expr = unparen_expr(expr); if (expr->kind == AstNode_IndexExpr) { ast_node(ie, IndexExpr, expr); Type *t = type_deref(type_of_expr(&c->info, ie->expr)); if (t != NULL) { return is_type_vector(t); } } return false; } bool check_is_vector_elem(Checker *c, AstNode *expr) { // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode expr = unparen_expr(expr); if (expr->kind == AstNode_SelectorExpr) { ast_node(se, SelectorExpr, expr); Type *t = type_deref(type_of_expr(&c->info, se->expr)); if (t != NULL && is_type_vector(t)) { return true; } } return false; } bool check_is_not_addressable(Checker *c, Operand *o) { if (o->mode != Addressing_Variable) { return true; } if (is_type_bit_field_value(o->type)) { return true; } if (check_is_expr_vector_index(c, o->expr)) { return true; } if (check_is_vector_elem(c, o->expr)) { return true; } return false; } void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) { switch (op.kind) { case Token_And: { // Pointer address if (o->mode == Addressing_Type) { o->type = make_type_pointer(c->allocator, o->type); return; } if (check_is_not_addressable(c, o)) { if (ast_node_expect(node, AstNode_UnaryExpr)) { ast_node(ue, UnaryExpr, node); gbString str = expr_to_string(ue->expr); error(op, "Cannot take the pointer address of `%s`", str); gb_string_free(str); } o->mode = Addressing_Invalid; return; } o->mode = Addressing_Value; o->type = make_type_pointer(c->allocator, o->type); return; } } if (!check_unary_op(c, o, op)) { o->mode = Addressing_Invalid; return; } if (o->mode == Addressing_Constant && !is_type_vector(o->type)) { Type *type = base_type(o->type); if (!is_type_constant_type(o->type)) { gbString xt = type_to_string(o->type); gbString err_str = expr_to_string(node); error(op, "Invalid type, `%s`, for constant unary expression `%s`", xt, err_str); gb_string_free(err_str); gb_string_free(xt); o->mode = Addressing_Invalid; return; } i32 precision = 0; if (is_type_unsigned(type)) { precision = cast(i32)(8 * type_size_of(c->allocator, type)); } o->value = exact_unary_operator_value(op.kind, o->value, precision); if (is_type_typed(type)) { if (node != NULL) { o->expr = node; } check_is_expressible(c, o, type); } return; } o->mode = Addressing_Value; } void check_comparison(Checker *c, Operand *x, Operand *y, TokenKind op) { if (x->mode == Addressing_Type && y->mode == Addressing_Type) { bool comp = are_types_identical(x->type, y->type); switch (op) { case Token_CmpEq: comp = comp; break; case Token_NotEq: comp = !comp; break; } x->mode = Addressing_Constant; x->type = t_untyped_bool; x->value = exact_value_bool(comp); return; } gbString err_str = NULL; defer (if (err_str != NULL) { gb_string_free(err_str); }); gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); defer (gb_temp_arena_memory_end(tmp)); if (check_is_assignable_to(c, x, y->type) || check_is_assignable_to(c, y, x->type)) { Type *err_type = x->type; bool defined = false; switch (op) { case Token_CmpEq: case Token_NotEq: defined = is_type_comparable(x->type) || (is_operand_nil(*x) && type_has_nil(y->type)) || (is_operand_nil(*y) && type_has_nil(x->type)); break; case Token_Lt: case Token_Gt: case Token_LtEq: case Token_GtEq: { defined = is_type_ordered(x->type); } break; } if (!defined) { if (x->type == err_type && is_operand_nil(*x)) { err_type = y->type; } gb_printf_err("%d %d\n", is_operand_nil(*x), type_has_nil(y->type)); gb_printf_err("%d %d\n", is_operand_nil(*y), type_has_nil(x->type)); gbString type_string = type_to_string(err_type); err_str = gb_string_make(c->tmp_allocator, gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(token_strings[op]), type_string)); gb_string_free(type_string); } } else { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); err_str = gb_string_make(c->tmp_allocator, gb_bprintf("mismatched types `%s` and `%s`", xt, yt)); gb_string_free(yt); gb_string_free(xt); } if (err_str != NULL) { error(x->expr, "Cannot compare expression, %s", err_str); x->type = t_untyped_bool; } else { if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { x->value = exact_value_bool(compare_exact_values(op, x->value, y->value)); } else { x->mode = Addressing_Value; update_expr_type(c, x->expr, default_type(x->type), true); update_expr_type(c, y->expr, default_type(y->type), true); } if (is_type_vector(base_type(y->type))) { x->type = make_type_vector(c->allocator, t_bool, base_type(y->type)->Vector.count); } else { x->type = t_untyped_bool; } } } void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) { GB_ASSERT(node->kind == AstNode_BinaryExpr); ast_node(be, BinaryExpr, node); ExactValue x_val = {}; if (x->mode == Addressing_Constant) { x_val = exact_value_to_integer(x->value); } bool x_is_untyped = is_type_untyped(x->type); if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) { gbString err_str = expr_to_string(x->expr); error(node, "Shifted operand `%s` must be an integer", err_str); gb_string_free(err_str); x->mode = Addressing_Invalid; return; } if (is_type_unsigned(y->type)) { } else if (is_type_untyped(y->type)) { convert_to_typed(c, y, t_untyped_integer, 0); if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; return; } } else { gbString err_str = expr_to_string(y->expr); error(node, "Shift amount `%s` must be an unsigned integer", err_str); gb_string_free(err_str); x->mode = Addressing_Invalid; return; } if (x->mode == Addressing_Constant) { if (y->mode == Addressing_Constant) { ExactValue y_val = exact_value_to_integer(y->value); if (y_val.kind != ExactValue_Integer) { gbString err_str = expr_to_string(y->expr); error(node, "Shift amount `%s` must be an unsigned integer", err_str); gb_string_free(err_str); x->mode = Addressing_Invalid; return; } i64 amount = i128_to_i64(y_val.value_integer); if (amount > 128) { gbString err_str = expr_to_string(y->expr); error(node, "Shift amount too large: `%s`", err_str); gb_string_free(err_str); x->mode = Addressing_Invalid; return; } if (!is_type_integer(x->type)) { // NOTE(bill): It could be an untyped float but still representable // as an integer x->type = t_untyped_integer; } x->value = exact_value_shift(be->op.kind, x_val, exact_value_i64(amount)); if (is_type_typed(x->type)) { check_is_expressible(c, x, base_type(x->type)); } return; } TokenPos pos = ast_node_token(x->expr).pos; if (x_is_untyped) { ExprInfo *info = check_get_expr_info(&c->info, x->expr); if (info != NULL) { info->is_lhs = true; } x->mode = Addressing_Value; // x->value = x_val; return; } } if (y->mode == Addressing_Constant && i128_lt(y->value.value_integer, I128_ZERO)) { gbString err_str = expr_to_string(y->expr); error(node, "Shift amount cannot be negative: `%s`", err_str); gb_string_free(err_str); } if (!is_type_integer(x->type)) { gbString err_str = expr_to_string(y->expr); error(node, "Shift operand `%s` must be an integer", err_str); gb_string_free(err_str); x->mode = Addressing_Invalid; return; } x->mode = Addressing_Value; } String check_down_cast_name(Type *dst_, Type *src_) { String result = {}; Type *dst = type_deref(dst_); Type *src = type_deref(src_); Type *dst_s = base_type(dst); GB_ASSERT(is_type_struct(dst_s) || is_type_raw_union(dst_s)); for (isize i = 0; i < dst_s->Record.field_count; i++) { Entity *f = dst_s->Record.fields[i]; GB_ASSERT(f->kind == Entity_Variable && f->flags & EntityFlag_Field); if (f->flags & EntityFlag_Using) { if (are_types_identical(f->type, src_)) { return f->token.string; } if (are_types_identical(type_deref(f->type), src_)) { return f->token.string; } if (!is_type_pointer(f->type)) { result = check_down_cast_name(f->type, src_); if (result.len > 0) { return result; } } } } return result; } Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) { GB_ASSERT(node->kind == AstNode_BinaryExpr); ast_node(be, BinaryExpr, node); GB_ASSERT(is_type_pointer(ptr->type)); GB_ASSERT(is_type_integer(offset->type)); GB_ASSERT(op == Token_Add || op == Token_Sub); Operand operand = {}; operand.mode = Addressing_Value; operand.type = ptr->type; operand.expr = node; if (base_type(ptr->type) == t_rawptr) { gbString str = type_to_string(ptr->type); error(node, "Invalid pointer type for pointer arithmetic: `%s`", str); gb_string_free(str); operand.mode = Addressing_Invalid; return operand; } Type *base_ptr = base_type(ptr->type); GB_ASSERT(base_ptr->kind == Type_Pointer); Type *elem = base_ptr->Pointer.elem; i64 elem_size = type_size_of(c->allocator, elem); if (elem_size <= 0) { gbString str = type_to_string(elem); error(node, "Size of pointer's element type `%s` is zero and cannot be used for pointer arithmetic", str); gb_string_free(str); operand.mode = Addressing_Invalid; return operand; } if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) { i64 ptr_val = ptr->value.value_pointer; i64 offset_val = i128_to_i64(exact_value_to_integer(offset->value).value_integer); i64 new_ptr_val = ptr_val; if (op == Token_Add) { new_ptr_val += elem_size*offset_val; } else { new_ptr_val -= elem_size*offset_val; } operand.mode = Addressing_Constant; operand.value = exact_value_pointer(new_ptr_val); } return operand; } bool check_is_castable_to(Checker *c, Operand *operand, Type *y) { if (check_is_assignable_to(c, operand, y)) { return true; } Type *x = operand->type; Type *src = core_type(x); Type *dst = core_type(y); if (are_types_identical(src, dst)) { return true; } if (dst->kind == Type_Array && src->kind == Type_Array) { if (are_types_identical(dst->Array.elem, src->Array.elem)) { return dst->Array.count == src->Array.count; } } if (dst->kind == Type_Slice && src->kind == Type_Slice) { return are_types_identical(dst->Slice.elem, src->Slice.elem); } // Cast between booleans and integers if (is_type_boolean(src) || is_type_integer(src)) { if (is_type_boolean(dst) || is_type_integer(dst)) { return true; } } // Cast between numbers if (is_type_integer(src) || is_type_float(src)) { if (is_type_integer(dst) || is_type_float(dst)) { return true; } } if (is_type_integer(src) && is_type_rune(dst)) { return true; } if (is_type_rune(src) && is_type_integer(dst)) { return true; } if (is_type_complex(src) && is_type_complex(dst)) { return true; } if (is_type_bit_field_value(src) && is_type_integer(dst)) { return true; } if (is_type_bit_field_value(src) && is_type_boolean(dst)) { return src->BitFieldValue.bits == 1; } // Cast between pointers if (is_type_pointer(src) && is_type_pointer(dst)) { Type *s = base_type(type_deref(src)); if (is_type_union(s)) { // NOTE(bill): Should the error be here?! // NOTE(bill): This error should suppress the next casting error as it's at the same position gbString xs = type_to_string(x); gbString ys = type_to_string(y); error(operand->expr, "Cannot cast from a union pointer `%s` to `%s`, try using `union_cast` or cast to a `rawptr`", xs, ys); gb_string_free(ys); gb_string_free(xs); return false; } return true; } // (u)int <-> rawptr if (is_type_int_or_uint(src) && is_type_rawptr(dst)) { return true; } if (is_type_rawptr(src) && is_type_int_or_uint(dst)) { return true; } // []byte/[]u8 <-> string if (is_type_u8_slice(src) && is_type_string(dst)) { return true; } if (is_type_string(src) && is_type_u8_slice(dst)) { // if (is_type_typed(src)) { return true; // } } // proc <-> proc if (is_type_proc(src) && is_type_proc(dst)) { return true; } // proc -> rawptr if (is_type_proc(src) && is_type_rawptr(dst)) { return true; } // rawptr -> proc if (is_type_rawptr(src) && is_type_proc(dst)) { return true; } return false; } void check_cast(Checker *c, Operand *x, Type *type) { bool is_const_expr = x->mode == Addressing_Constant; bool can_convert = false; Type *bt = base_type(type); if (is_const_expr && is_type_constant_type(bt)) { if (core_type(bt)->kind == Type_Basic) { if (check_representable_as_constant(c, x->value, bt, &x->value)) { can_convert = true; } else if (is_type_pointer(type) && check_is_castable_to(c, x, type)) { can_convert = true; } } } else if (check_is_castable_to(c, x, type)) { if (x->mode != Addressing_Constant) { x->mode = Addressing_Value; } else if (is_type_slice(type) && is_type_string(x->type)) { x->mode = Addressing_Value; } else if (!is_type_vector(x->type) && is_type_vector(type)) { x->mode = Addressing_Value; } can_convert = true; } if (!can_convert) { gbString expr_str = expr_to_string(x->expr); gbString to_type = type_to_string(type); gbString from_type = type_to_string(x->type); error(x->expr, "Cannot cast `%s` as `%s` from `%s`", expr_str, to_type, from_type); gb_string_free(from_type); gb_string_free(to_type); gb_string_free(expr_str); x->mode = Addressing_Invalid; return; } if (is_type_untyped(x->type)) { Type *final_type = type; if (is_const_expr && !is_type_constant_type(type)) { final_type = default_type(x->type); } update_expr_type(c, x->expr, final_type, true); } x->type = type; } bool check_binary_vector_expr(Checker *c, Token op, Operand *x, Operand *y) { if (is_type_vector(x->type) && !is_type_vector(y->type)) { if (check_is_assignable_to(c, y, x->type)) { if (check_binary_op(c, x, op)) { return true; } } } return false; } void check_binary_expr(Checker *c, Operand *x, AstNode *node) { GB_ASSERT(node->kind == AstNode_BinaryExpr); Operand y_ = {}, *y = &y_; ast_node(be, BinaryExpr, node); Token op = be->op; switch (op.kind) { case Token_CmpEq: case Token_NotEq: { // NOTE(bill): Allow comparisons between types check_expr_or_type(c, x, be->left); check_expr_or_type(c, y, be->right); bool xt = x->mode == Addressing_Type; bool yt = y->mode == Addressing_Type; // If only one is a type, this is an error if (xt ^ yt) { GB_ASSERT(xt != yt); if (xt) error_operand_not_expression(x); if (yt) error_operand_not_expression(y); } } break; default: check_expr(c, x, be->left); check_expr(c, y, be->right); break; } if (x->mode == Addressing_Invalid) { return; } if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; x->expr = y->expr; return; } if (token_is_shift(op.kind)) { check_shift(c, x, y, node); return; } if (op.kind == Token_Add || op.kind == Token_Sub) { if (is_type_pointer(x->type) && is_type_integer(y->type)) { *x = check_ptr_addition(c, op.kind, x, y, node); return; } else if (is_type_integer(x->type) && is_type_pointer(y->type)) { if (op.kind == Token_Sub) { gbString lhs = expr_to_string(x->expr); gbString rhs = expr_to_string(y->expr); error(node, "Invalid pointer arithmetic, did you mean `%s %.*s %s`?", rhs, LIT(op.string), lhs); gb_string_free(rhs); gb_string_free(lhs); x->mode = Addressing_Invalid; return; } *x = check_ptr_addition(c, op.kind, y, x, node); return; } } convert_to_typed(c, x, y->type, 0); if (x->mode == Addressing_Invalid) { return; } convert_to_typed(c, y, x->type, 0); if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; return; } if (token_is_comparison(op.kind)) { check_comparison(c, x, y, op.kind); return; } if (check_binary_vector_expr(c, op, x, y)) { x->mode = Addressing_Value; x->type = x->type; return; } if (check_binary_vector_expr(c, op, y, x)) { x->mode = Addressing_Value; x->type = y->type; return; } if (!are_types_identical(x->type, y->type)) { if (x->type != t_invalid && y->type != t_invalid) { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); gbString expr_str = expr_to_string(x->expr); error(op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", expr_str, xt, yt); gb_string_free(expr_str); gb_string_free(yt); gb_string_free(xt); } x->mode = Addressing_Invalid; return; } if (!check_binary_op(c, x, op)) { x->mode = Addressing_Invalid; return; } switch (op.kind) { case Token_Quo: case Token_Mod: case Token_ModMod: case Token_QuoEq: case Token_ModEq: case Token_ModModEq: if ((x->mode == Addressing_Constant || is_type_integer(x->type)) && y->mode == Addressing_Constant) { bool fail = false; switch (y->value.kind) { case ExactValue_Integer: if (i128_eq(y->value.value_integer, I128_ZERO)) { fail = true; } break; case ExactValue_Float: if (y->value.value_float == 0.0) { fail = true; } break; } if (fail) { error(y->expr, "Division by zero not allowed"); x->mode = Addressing_Invalid; return; } } } if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { ExactValue a = x->value; ExactValue b = y->value; Type *type = base_type(x->type); if (is_type_pointer(type)) { GB_ASSERT(op.kind == Token_Sub); i64 bytes = a.value_pointer - b.value_pointer; i64 diff = bytes/type_size_of(c->allocator, type); x->value = exact_value_pointer(diff); return; } if (!is_type_constant_type(type)) { gbString xt = type_to_string(x->type); gbString err_str = expr_to_string(node); error(op, "Invalid type, `%s`, for constant binary expression `%s`", xt, err_str); gb_string_free(err_str); gb_string_free(xt); x->mode = Addressing_Invalid; return; } if (op.kind == Token_Quo && is_type_integer(type)) { op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers } x->value = exact_binary_operator_value(op.kind, a, b); if (is_type_typed(type)) { if (node != NULL) { x->expr = node; } check_is_expressible(c, x, type); } return; } x->mode = Addressing_Value; } void update_expr_type(Checker *c, AstNode *e, Type *type, bool final) { ExprInfo *found = check_get_expr_info(&c->info, e); if (found == NULL) { return; } ExprInfo old = *found; switch (e->kind) { case_ast_node(ue, UnaryExpr, e); if (old.value.kind != ExactValue_Invalid) { // NOTE(bill): if `e` is constant, the operands will be constant too. // They don't need to be updated as they will be updated later and // checked at the end of general checking stage. break; } update_expr_type(c, ue->expr, type, final); case_end; case_ast_node(be, BinaryExpr, e); if (old.value.kind != ExactValue_Invalid) { // See above note in UnaryExpr case break; } if (token_is_comparison(be->op.kind)) { // NOTE(bill): Do nothing as the types are fine } else if (token_is_shift(be->op.kind)) { update_expr_type(c, be->left, type, final); } else { update_expr_type(c, be->left, type, final); update_expr_type(c, be->right, type, final); } case_end; case_ast_node(pe, ParenExpr, e); update_expr_type(c, pe->expr, type, final); case_end; } if (!final && is_type_untyped(type)) { old.type = base_type(type); check_set_expr_info(&c->info, e, old); return; } // We need to remove it and then give it a new one check_remove_expr_info(&c->info, e); if (old.is_lhs && !is_type_integer(type)) { gbString expr_str = expr_to_string(e); gbString type_str = type_to_string(type); error(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str); gb_string_free(type_str); gb_string_free(expr_str); return; } add_type_and_value(&c->info, e, old.mode, type, old.value); } void update_expr_value(Checker *c, AstNode *e, ExactValue value) { ExprInfo *found = check_get_expr_info(&c->info, e); if (found) { found->value = value; } } void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) { gbString expr_str = expr_to_string(operand->expr); gbString type_str = type_to_string(target_type); char *extra_text = ""; if (operand->mode == Addressing_Constant) { if (i128_eq(operand->value.value_integer, I128_ZERO)) { if (make_string_c(expr_str) != "nil") { // HACK NOTE(bill): Just in case // NOTE(bill): Doesn't matter what the type is as it's still zero in the union extra_text = " - Did you want `nil`?"; } } } error(operand->expr, "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text); gb_string_free(type_str); gb_string_free(expr_str); operand->mode = Addressing_Invalid; } ExactValue convert_exact_value_for_type(ExactValue v, Type *type) { Type *t = core_type(type); if (is_type_boolean(t)) { // v = exact_value_to_boolean(v); } else if (is_type_float(t)) { v = exact_value_to_float(v); } else if (is_type_integer(t)) { v = exact_value_to_integer(v); } else if (is_type_pointer(t)) { v = exact_value_to_integer(v); } else if (is_type_complex(t)) { v = exact_value_to_complex(v); } return v; } // NOTE(bill): Set initial level to 0 void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level) { GB_ASSERT_NOT_NULL(target_type); if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Type || is_type_typed(operand->type) || target_type == t_invalid) { return; } if (is_type_untyped(target_type)) { GB_ASSERT(operand->type->kind == Type_Basic); GB_ASSERT(target_type->kind == Type_Basic); BasicKind x_kind = operand->type->Basic.kind; BasicKind y_kind = target_type->Basic.kind; if (is_type_numeric(operand->type) && is_type_numeric(target_type)) { if (x_kind < y_kind) { operand->type = target_type; update_expr_type(c, operand->expr, target_type, false); } } else if (x_kind != y_kind) { operand->mode = Addressing_Invalid; convert_untyped_error(c, operand, target_type); return; } return; } Type *t = core_type(target_type); switch (t->kind) { case Type_Basic: if (operand->mode == Addressing_Constant) { check_is_expressible(c, operand, t); if (operand->mode == Addressing_Invalid) { return; } update_expr_value(c, operand->expr, operand->value); } else { switch (operand->type->Basic.kind) { case Basic_UntypedBool: if (!is_type_boolean(target_type)) { operand->mode = Addressing_Invalid; convert_untyped_error(c, operand, target_type); return; } break; case Basic_UntypedInteger: case Basic_UntypedFloat: case Basic_UntypedComplex: case Basic_UntypedRune: if (!is_type_numeric(target_type)) { operand->mode = Addressing_Invalid; convert_untyped_error(c, operand, target_type); return; } break; case Basic_UntypedNil: if (is_type_any(target_type)) { target_type = t_untyped_nil; } else if (!type_has_nil(target_type)) { operand->mode = Addressing_Invalid; convert_untyped_error(c, operand, target_type); return; } break; } } break; case Type_Vector: { Type *elem = base_vector_type(t); if (check_is_assignable_to(c, operand, elem)) { operand->mode = Addressing_Value; } else { operand->mode = Addressing_Invalid; convert_untyped_error(c, operand, target_type); return; } } break; default: if (is_type_untyped_undef(operand->type) && type_has_undef(target_type)) { target_type = t_untyped_undef; } else if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) { operand->mode = Addressing_Invalid; convert_untyped_error(c, operand, target_type); return; } target_type = t_untyped_nil; break; } operand->type = target_type; update_expr_type(c, operand->expr, target_type, true); } bool check_index_value(Checker *c, bool open_range, AstNode *index_value, i64 max_count, i64 *value) { Operand operand = {Addressing_Invalid}; check_expr(c, &operand, index_value); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } convert_to_typed(c, &operand, t_int, 0); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } if (!is_type_integer(operand.type)) { gbString expr_str = expr_to_string(operand.expr); error(operand.expr, "Index `%s` must be an integer", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (operand.mode == Addressing_Constant && (c->context.stmt_state_flags & StmtStateFlag_no_bounds_check) == 0) { i64 i = i128_to_i64(exact_value_to_integer(operand.value).value_integer); if (i < 0) { gbString expr_str = expr_to_string(operand.expr); error(operand.expr, "Index `%s` cannot be a negative value", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (max_count >= 0) { // NOTE(bill): Do array bound checking if (value) *value = i; bool out_of_bounds = false; if (open_range) { out_of_bounds = i >= max_count; } else { out_of_bounds = i > max_count; } if (out_of_bounds) { gbString expr_str = expr_to_string(operand.expr); error(operand.expr, "Index `%s` is out of bounds range 0..<%lld", expr_str, max_count); gb_string_free(expr_str); return false; } return true; } } // NOTE(bill): It's alright :D if (value) *value = -1; return true; } isize entity_overload_count(Scope *s, String name) { Entity *e = scope_lookup_entity(s, name); if (e == NULL) { return 0; } if (e->kind == Entity_Procedure) { // NOTE(bill): Overloads are only allowed with the same scope return multi_map_count(&s->elements, hash_string(e->token.string)); } return 1; } bool check_is_field_exported(Checker *c, Entity *field) { if (field == NULL) { // NOTE(bill): Just incase return true; } if (field->kind != Entity_Variable) { return true; } Scope *file_scope = field->scope; if (file_scope == NULL) { return true; } while (!file_scope->is_file) { file_scope = file_scope->parent; } if (!is_entity_exported(field) && file_scope != c->context.file_scope) { return false; } return true; } Entity *check_selector(Checker *c, Operand *operand, AstNode *node, Type *type_hint) { ast_node(se, SelectorExpr, node); bool check_op_expr = true; Entity *expr_entity = NULL; Entity *entity = NULL; Selection sel = {}; // NOTE(bill): Not used if it's an import name operand->expr = node; AstNode *op_expr = se->expr; AstNode *selector = unparen_expr(se->selector); if (selector == NULL) { operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } if (selector->kind != AstNode_Ident && selector->kind != AstNode_BasicLit) { // if (selector->kind != AstNode_Ident) { error(selector, "Illegal selector kind: `%.*s`", LIT(ast_node_strings[selector->kind])); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } if (op_expr->kind == AstNode_Ident) { String op_name = op_expr->Ident.token.string; Entity *e = scope_lookup_entity(c->context.scope, op_name); add_entity_use(c, op_expr, e); expr_entity = e; Entity *original_e = e; if (e != NULL && e->kind == Entity_ImportName && selector->kind == AstNode_Ident) { // IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile // It pretty much needs to be in this order and this way // If you can clean this up, please do but be really careful String import_name = op_name; Scope *import_scope = e->ImportName.scope; String entity_name = selector->Ident.token.string; check_op_expr = false; entity = scope_lookup_entity(import_scope, entity_name); bool is_declared = entity != NULL; if (is_declared) { if (entity->kind == Entity_Builtin) { // NOTE(bill): Builtin's are in the universe scope which is part of every scopes hierarchy // This means that we should just ignore the found result through it is_declared = false; } else if (entity->scope->is_global && !import_scope->is_global) { is_declared = false; } } if (!is_declared) { error(op_expr, "`%.*s` is not declared by `%.*s`", LIT(entity_name), LIT(import_name)); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } check_entity_decl(c, entity, NULL, NULL); GB_ASSERT(entity->type != NULL); isize overload_count = entity_overload_count(import_scope, entity_name); bool is_overloaded = overload_count > 1; bool implicit_is_found = is_entity_implicitly_imported(e, entity); bool is_not_exported = !is_entity_exported(entity); if (!implicit_is_found) { is_not_exported = false; } else if (entity->kind == Entity_ImportName) { is_not_exported = true; } if (is_not_exported) { gbString sel_str = expr_to_string(selector); error(op_expr, "`%s` is not exported by `%.*s`", sel_str, LIT(import_name)); gb_string_free(sel_str); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } if (is_overloaded) { HashKey key = hash_string(entity_name); bool skip = false; Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count); multi_map_get_all(&import_scope->elements, key, procs); for (isize i = 0; i < overload_count; i++) { Type *t = base_type(procs[i]->type); if (t == t_invalid) { continue; } // NOTE(bill): Check to see if it's imported if (map_get(&import_scope->implicit, hash_entity(procs[i]))) { gb_swap(Entity *, procs[i], procs[overload_count-1]); overload_count--; i--; // NOTE(bill): Counteract the post event continue; } Operand x = {}; x.mode = Addressing_Value; x.type = t; if (type_hint != NULL) { if (check_is_assignable_to(c, &x, type_hint)) { entity = procs[i]; skip = true; break; } } } if (overload_count > 0 && !skip) { operand->mode = Addressing_Overload; operand->type = t_invalid; operand->expr = node; operand->overload_count = overload_count; operand->overload_entities = procs; return procs[0]; } } } } if (check_op_expr) { check_expr_base(c, operand, op_expr, NULL); if (operand->mode == Addressing_Invalid) { operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } } if (entity == NULL && selector->kind == AstNode_Ident) { String field_name = selector->Ident.token.string; sel = lookup_field(c->allocator, operand->type, field_name, operand->mode == Addressing_Type); if (operand->mode != Addressing_Type && !check_is_field_exported(c, sel.entity)) { error(op_expr, "`%.*s` is an unexported field", LIT(field_name)); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } entity = sel.entity; // NOTE(bill): Add type info needed for fields like `names` if (entity != NULL && (entity->flags&EntityFlag_TypeField)) { add_type_info_type(c, operand->type); } } if (entity == NULL && selector->kind == AstNode_BasicLit) { if (is_type_struct(operand->type) || is_type_tuple(operand->type)) { Type *type = base_type(operand->type); Operand o = {}; check_expr(c, &o, selector); if (o.mode != Addressing_Constant || !is_type_integer(o.type)) { error(op_expr, "Indexed based selectors must be a constant integer %s"); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } i64 index = i128_to_i64(o.value.value_integer); if (index < 0) { error(o.expr, "Index %lld cannot be a negative value", index); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } i64 max_count = 0; switch (type->kind) { case Type_Record: max_count = type->Record.field_count; break; case Type_Tuple: max_count = type->Tuple.variable_count; break; } if (index >= max_count) { error(o.expr, "Index %lld is out of bounds range 0..<%lld", index, max_count); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } sel = lookup_field_from_index(heap_allocator(), type, index); entity = sel.entity; GB_ASSERT(entity != NULL); } else { error(op_expr, "Indexed based selectors may only be used on structs or tuples"); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } } if (entity == NULL && operand->type != NULL && is_type_untyped(operand->type) && is_type_string(operand->type)) { String s = operand->value.value_string; operand->mode = Addressing_Constant; operand->value = exact_value_i64(s.len); operand->type = t_untyped_integer; return NULL; } if (entity == NULL) { gbString op_str = expr_to_string(op_expr); gbString type_str = type_to_string(operand->type); gbString sel_str = expr_to_string(selector); error(op_expr, "`%s` of type `%s` has no field `%s`", op_str, type_str, sel_str); gb_string_free(sel_str); gb_string_free(type_str); gb_string_free(op_str); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } if (expr_entity != NULL && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) { gbString op_str = expr_to_string(op_expr); gbString type_str = type_to_string(operand->type); gbString sel_str = expr_to_string(selector); error(op_expr, "Cannot access non-constant field `%s` from `%s`", sel_str, op_str); gb_string_free(sel_str); gb_string_free(type_str); gb_string_free(op_str); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } add_entity_use(c, selector, entity); switch (entity->kind) { case Entity_Constant: operand->mode = Addressing_Constant; operand->value = entity->Constant.value; break; case Entity_Variable: // TODO(bill): Is this the rule I need? if (operand->mode == Addressing_Immutable) { // Okay } else if (sel.indirect || operand->mode != Addressing_Value) { operand->mode = Addressing_Variable; } else { operand->mode = Addressing_Value; } break; case Entity_TypeName: operand->mode = Addressing_Type; break; case Entity_Procedure: operand->mode = Addressing_Value; break; case Entity_Builtin: operand->mode = Addressing_Builtin; operand->builtin_id = cast(BuiltinProcId)entity->Builtin.id; break; // NOTE(bill): These cases should never be hit but are here for sanity reasons case Entity_Nil: operand->mode = Addressing_Value; break; } operand->type = entity->type; operand->expr = node; return entity; } bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) { GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); BuiltinProc *bp = &builtin_procs[id]; { char *err = NULL; if (ce->args.count < bp->arg_count) { err = "Too few"; } else if (ce->args.count > bp->arg_count && !bp->variadic) { err = "Too many"; } if (err != NULL) { gbString expr = expr_to_string(ce->proc); error(ce->close, "%s arguments for `%s`, expected %td, got %td", err, expr, bp->arg_count, ce->args.count); gb_string_free(expr); return false; } } if (ce->args.count > 0) { if (ce->args[0]->kind == AstNode_FieldValue) { error(call, "`field = value` calling is not allowed on built-in procedures"); return false; } } bool vari_expand = (ce->ellipsis.pos.line != 0); // if (vari_expand && id != BuiltinProc_append) { // error(ce->ellipsis, "Invalid use of `..` with built-in procedure `append`"); // return false; // } switch (id) { // case BuiltinProc_new: case BuiltinProc_make: case BuiltinProc_size_of: case BuiltinProc_align_of: case BuiltinProc_offset_of: case BuiltinProc_type_info: case BuiltinProc_transmute: // NOTE(bill): The first arg may be a Type, this will be checked case by case break; default: if (ce->args.count > 0) { check_multi_expr(c, operand, ce->args[0]); } break; } switch (id) { default: GB_PANIC("Implement built-in procedure: %.*s", LIT(builtin_procs[id].name)); break; case BuiltinProc_DIRECTIVE: { ast_node(bd, BasicDirective, ce->proc); String name = bd->name; GB_ASSERT(name == "location"); if (ce->args.count > 1) { error(ce->args[0], "`#location` expects either 0 or 1 arguments, got %td", ce->args.count); } if (ce->args.count > 0) { AstNode *arg = ce->args[0]; Entity *e = NULL; Operand o = {}; if (arg->kind == AstNode_Ident) { e = check_ident(c, &o, arg, NULL, NULL, true); } else if (arg->kind == AstNode_SelectorExpr) { e = check_selector(c, &o, arg, NULL); } if (e == NULL) { error(ce->args[0], "`#location` expected a valid entity name"); } } operand->type = t_source_code_location; operand->mode = Addressing_Value; } break; case BuiltinProc_len: case BuiltinProc_cap: { // proc len(Type) -> int // proc cap(Type) -> int Type *op_type = type_deref(operand->type); Type *type = t_int; AddressingMode mode = Addressing_Invalid; ExactValue value = {}; if (is_type_string(op_type) && id == BuiltinProc_len) { if (operand->mode == Addressing_Constant) { mode = Addressing_Constant; String str = operand->value.value_string; value = exact_value_i64(str.len); type = t_untyped_integer; } else { mode = Addressing_Value; } } else if (is_type_array(op_type)) { Type *at = core_type(op_type); mode = Addressing_Constant; value = exact_value_i64(at->Array.count); type = t_untyped_integer; } else if (is_type_vector(op_type) && id == BuiltinProc_len) { Type *at = core_type(op_type); mode = Addressing_Constant; value = exact_value_i64(at->Vector.count); type = t_untyped_integer; } else if (is_type_slice(op_type)) { mode = Addressing_Value; } else if (is_type_dynamic_array(op_type)) { mode = Addressing_Value; } else if (is_type_map(op_type)) { mode = Addressing_Value; } if (mode == Addressing_Invalid) { String name = builtin_procs[id].name; gbString t = type_to_string(operand->type); error(call, "`%.*s` is not supported for `%s`", LIT(name), t); return false; } operand->mode = mode; operand->value = value; operand->type = type; } break; #if 0 case BuiltinProc_new: { // proc new(Type) -> ^Type Operand op = {}; check_expr_or_type(c, &op, ce->args[0]); Type *type = op.type; if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { error(ce->args[0], "Expected a type for `new`"); return false; } operand->mode = Addressing_Value; operand->type = make_type_pointer(c->allocator, type); } break; #endif #if 0 case BuiltinProc_new_slice: { // proc new_slice(Type, len: int) -> []Type // proc new_slice(Type, len, cap: int) -> []Type Operand op = {}; check_expr_or_type(c, &op, ce->args[0]); Type *type = op.type; if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { error(ce->args[0], "Expected a type for `new_slice`"); return false; } isize arg_count = ce->args.count; if (arg_count < 2 || 3 < arg_count) { error(ce->args[0], "`new_slice` expects 2 or 3 arguments, found %td", arg_count); // NOTE(bill): Return the correct type to reduce errors } else { // If any are constant i64 sizes[2] = {}; isize size_count = 0; for (isize i = 1; i < arg_count; i++) { i64 val = 0; bool ok = check_index_value(c, ce->args[i], -1, &val); if (ok && val >= 0) { GB_ASSERT(size_count < gb_count_of(sizes)); sizes[size_count++] = val; } } if (size_count == 2 && sizes[0] > sizes[1]) { error(ce->args[1], "`new_slice` count and capacity are swapped"); // No need quit } } operand->mode = Addressing_Value; operand->type = make_type_slice(c->allocator, type); } break; #endif case BuiltinProc_make: { // proc make(Type, len: int) -> Type // proc make(Type, len, cap: int) -> Type Operand op = {}; check_expr_or_type(c, &op, ce->args[0]); Type *type = op.type; if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { error(ce->args[0], "Expected a type for `make`"); return false; } isize min_args = 0; isize max_args = 1; if (is_type_slice(type)) { min_args = 2; max_args = 3; } else if (is_type_dynamic_map(type)) { min_args = 1; max_args = 2; } else if (is_type_dynamic_array(type)) { min_args = 1; max_args = 3; } else { gbString str = type_to_string(type); error(call, "Cannot `make` %s; type must be a slice, map, or dynamic array", str); gb_string_free(str); return false; } isize arg_count = ce->args.count; if (arg_count < min_args || max_args < arg_count) { error(ce->args[0], "`make` expects %td or %d argument, found %td", min_args, max_args, arg_count); return false; } // If any are constant i64 sizes[4] = {}; isize size_count = 0; for (isize i = 1; i < arg_count; i++) { i64 val = 0; bool ok = check_index_value(c, false, ce->args[i], -1, &val); if (ok && val >= 0) { GB_ASSERT(size_count < gb_count_of(sizes)); sizes[size_count++] = val; } } if (size_count == 2 && sizes[0] > sizes[1]) { error(ce->args[1], "`make` count and capacity are swapped"); // No need quit } operand->mode = Addressing_Value; operand->type = type; } break; #if 0 case BuiltinProc_free: { // proc free(^Type) // proc free([]Type) // proc free(string) // proc free(map[K]T) Type *type = operand->type; bool ok = false; if (is_type_pointer(type)) { ok = true; } else if (is_type_slice(type)) { ok = true; } else if (is_type_string(type)) { ok = true; } else if (is_type_dynamic_array(type)) { ok = true; } else if (is_type_dynamic_map(type)) { ok = true; } if (!ok) { gbString type_str = type_to_string(type); error(operand->expr, "Invalid type for `free`, got `%s`", type_str); gb_string_free(type_str); return false; } operand->mode = Addressing_NoValue; } break; #endif #if 0 case BuiltinProc_reserve: { // proc reserve([dynamic]Type, count: int) { // proc reserve(map[Key]Type, count: int) { Type *type = operand->type; if (!is_type_dynamic_array(type) && !is_type_dynamic_map(type)) { gbString str = type_to_string(type); error(operand->expr, "Expected a dynamic array or dynamic map, got `%s`", str); gb_string_free(str); return false; } AstNode *capacity = ce->args[1]; Operand op = {}; check_expr(c, &op, capacity); if (op.mode == Addressing_Invalid) { return false; } Type *arg_type = base_type(op.type); if (!is_type_integer(arg_type)) { error(operand->expr, "`reserve` capacities must be an integer"); return false; } operand->type = NULL; operand->mode = Addressing_NoValue; } break; #endif #if 0 case BuiltinProc_clear: { Type *type = operand->type; bool is_pointer = is_type_pointer(type); type = base_type(type_deref(type)); if (!is_type_dynamic_array(type) && !is_type_map(type) && !is_type_slice(type)) { gbString str = type_to_string(type); error(operand->expr, "Invalid type for `clear`, got `%s`", str); gb_string_free(str); return false; } operand->type = NULL; operand->mode = Addressing_NoValue; } break; #endif #if 0 case BuiltinProc_append: { // proc append([dynamic]Type, item: ..Type) // proc append([]Type, item: ..Type) Operand prev_operand = *operand; Type *type = operand->type; bool is_pointer = is_type_pointer(type); type = base_type(type_deref(type)); if (!is_type_dynamic_array(type) && !is_type_slice(type)) { gbString str = type_to_string(type); error(operand->expr, "Expected a slice or dynamic array, got `%s`", str); gb_string_free(str); return false; } bool is_addressable = operand->mode == Addressing_Variable; if (is_pointer) { is_addressable = true; } if (!is_addressable) { error(operand->expr, "`append` can only operate on addressable values"); return false; } Type *elem = NULL; if (is_type_dynamic_array(type)) { elem = type->DynamicArray.elem; } else { elem = type->Slice.elem; } Type *slice_elem = make_type_slice(c->allocator, elem); Type *proc_type_params = make_type_tuple(c->allocator); proc_type_params->Tuple.variables = gb_alloc_array(c->allocator, Entity *, 2); proc_type_params->Tuple.variable_count = 2; proc_type_params->Tuple.variables[0] = make_entity_param(c->allocator, NULL, blank_token, operand->type, false, false); proc_type_params->Tuple.variables[1] = make_entity_param(c->allocator, NULL, blank_token, slice_elem, false, false); Type *proc_type = make_type_proc(c->allocator, NULL, proc_type_params, 2, NULL, false, true, ProcCC_Odin); check_call_arguments(c, &prev_operand, proc_type, call); if (prev_operand.mode == Addressing_Invalid) { return false; } operand->mode = Addressing_Value; operand->type = t_int; } break; #endif #if 0 case BuiltinProc_delete: { // proc delete(map[Key]Value, key: Key) Type *type = operand->type; if (!is_type_map(type)) { gbString str = type_to_string(type); error(operand->expr, "Expected a map, got `%s`", str); gb_string_free(str); return false; } Type *key = base_type(type)->Map.key; Operand x = {Addressing_Invalid}; AstNode *key_node = ce->args[1]; Operand op = {}; check_expr(c, &op, key_node); if (op.mode == Addressing_Invalid) { return false; } if (!check_is_assignable_to(c, &op, key)) { gbString kt = type_to_string(key); gbString ot = type_to_string(op.type); error(operand->expr, "Expected a key of type `%s`, got `%s`", key, ot); gb_string_free(ot); gb_string_free(kt); return false; } operand->mode = Addressing_NoValue; } break; #endif case BuiltinProc_size_of: { // proc size_of(Type or expr) -> untyped int Operand o = {}; check_expr_or_type(c, &o, ce->args[0]); if (o.mode == Addressing_Invalid) { return false; } Type *t = o.type; if (t == NULL || t == t_invalid) { error(ce->args[0], "Invalid argument for `size_of`"); return false; } t = default_type(t); operand->mode = Addressing_Constant; operand->value = exact_value_i64(type_size_of(c->allocator, t)); operand->type = t_untyped_integer; } break; case BuiltinProc_align_of: { // proc align_of(Type or expr) -> untyped int Operand o = {}; check_expr_or_type(c, &o, ce->args[0]); if (o.mode == Addressing_Invalid) { return false; } Type *t = o.type; if (t == NULL || t == t_invalid) { error(ce->args[0], "Invalid argument for `align_of`"); return false; } t = default_type(t); operand->mode = Addressing_Constant; operand->value = exact_value_i64(type_align_of(c->allocator, t)); operand->type = t_untyped_integer; } break; case BuiltinProc_offset_of: { // proc offset_of(Type, field) -> untyped int Operand op = {}; Type *bt = check_type(c, ce->args[0]); Type *type = base_type(bt); if (type == NULL || type == t_invalid) { error(ce->args[0], "Expected a type for `offset_of`"); return false; } AstNode *field_arg = unparen_expr(ce->args[1]); if (field_arg == NULL || field_arg->kind != AstNode_Ident) { error(field_arg, "Expected an identifier for field argument"); return false; } if (is_type_array(type) || is_type_vector(type)) { error(field_arg, "Invalid type for `offset_of`"); return false; } ast_node(arg, Ident, field_arg); Selection sel = lookup_field(c->allocator, type, arg->token.string, operand->mode == Addressing_Type); if (sel.entity == NULL) { gbString type_str = type_to_string(bt); error(ce->args[0], "`%s` has no field named `%.*s`", type_str, LIT(arg->token.string)); gb_string_free(type_str); return false; } if (sel.indirect) { gbString type_str = type_to_string(bt); error(ce->args[0], "Field `%.*s` is embedded via a pointer in `%s`", LIT(arg->token.string), type_str); gb_string_free(type_str); return false; } operand->mode = Addressing_Constant; operand->value = exact_value_i64(type_offset_of_from_selection(c->allocator, type, sel)); operand->type = t_untyped_integer; } break; case BuiltinProc_type_of: // proc type_of(val: Type) -> type(Type) check_assignment(c, operand, NULL, str_lit("argument of `type_of`")); if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) { return false; } if (operand->type == NULL || operand->type == t_invalid) { error(operand->expr, "Invalid argument to `type_of`"); return false; } if (is_type_polymorphic(operand->type)) { error(operand->expr, "`type_of` of polymorphic type cannot be determined"); return false; } operand->mode = Addressing_Type; break; case BuiltinProc_type_info: { // proc type_info(Type) -> ^Type_Info if (c->context.scope->is_global) { compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works"); } // NOTE(bill): The type information may not be setup yet init_preload(c); AstNode *expr = ce->args[0]; Operand o = {}; check_expr_or_type(c, &o, ce->args[0]); if (o.mode == Addressing_Invalid) { return false; } Type *t = o.type; if (t == NULL || t == t_invalid || is_type_polymorphic(operand->type)) { error(ce->args[0], "Invalid argument for `type_info`"); return false; } t = default_type(t); add_type_info_type(c, t); operand->mode = Addressing_Value; operand->type = t_type_info_ptr; } break; case BuiltinProc_compile_assert: // proc compile_assert(cond: bool) -> bool if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) { gbString str = expr_to_string(ce->args[0]); error(call, "`%s` is not a constant boolean", str); gb_string_free(str); return false; } if (!operand->value.value_bool) { gbString str = expr_to_string(ce->args[0]); error(call, "Compile time assertion: `%s`", str); gb_string_free(str); } operand->mode = Addressing_Constant; operand->type = t_untyped_bool; break; case BuiltinProc_swizzle: { // proc swizzle(v: {N}T, T..) -> {M}T Type *vector_type = base_type(operand->type); if (!is_type_vector(vector_type)) { gbString type_str = type_to_string(operand->type); error(call, "You can only `swizzle` a vector, got `%s`", type_str); gb_string_free(type_str); return false; } isize max_count = vector_type->Vector.count; i128 max_count128 = i128_from_i64(max_count); isize arg_count = 0; for_array(i, ce->args) { if (i == 0) { continue; } AstNode *arg = ce->args[i]; Operand op = {}; check_expr(c, &op, arg); if (op.mode == Addressing_Invalid) { return false; } Type *arg_type = base_type(op.type); if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) { error(op.expr, "Indices to `swizzle` must be constant integers"); return false; } if (i128_lt(op.value.value_integer, I128_ZERO)) { error(op.expr, "Negative `swizzle` index"); return false; } if (i128_le(max_count128, op.value.value_integer)) { error(op.expr, "`swizzle` index exceeds vector length"); return false; } arg_count++; } if (arg_count > max_count) { error(call, "Too many `swizzle` indices, %td > %td", arg_count, max_count); return false; } Type *elem_type = vector_type->Vector.elem; operand->type = make_type_vector(c->allocator, elem_type, arg_count); operand->mode = Addressing_Value; } break; case BuiltinProc_complex: { // proc complex(real, imag: float_type) -> complex_type Operand x = *operand; Operand y = {}; // NOTE(bill): Invalid will be the default till fixed operand->type = t_invalid; operand->mode = Addressing_Invalid; check_expr(c, &y, ce->args[1]); if (y.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) return false; convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) return false; if (x.mode == Addressing_Constant && y.mode == Addressing_Constant) { if (is_type_numeric(x.type) && exact_value_imag(x.value).value_float == 0) { x.type = t_untyped_float; } if (is_type_numeric(y.type) && exact_value_imag(y.value).value_float == 0) { y.type = t_untyped_float; } } if (!are_types_identical(x.type, y.type)) { gbString tx = type_to_string(x.type); gbString ty = type_to_string(y.type); error(call, "Mismatched types to `complex`, `%s` vs `%s`", tx, ty); gb_string_free(ty); gb_string_free(tx); return false; } if (!is_type_float(x.type)) { gbString s = type_to_string(x.type); error(call, "Arguments have type `%s`, expected a floating point", s); gb_string_free(s); return false; } if (x.mode == Addressing_Constant && y.mode == Addressing_Constant) { operand->value = exact_binary_operator_value(Token_Add, x.value, y.value); operand->mode = Addressing_Constant; } else { operand->mode = Addressing_Value; } BasicKind kind = core_type(x.type)->Basic.kind; switch (kind) { // case Basic_f16: operand->type = t_complex32; break; case Basic_f32: operand->type = t_complex64; break; case Basic_f64: operand->type = t_complex128; break; case Basic_UntypedFloat: operand->type = t_untyped_complex; break; default: GB_PANIC("Invalid type"); break; } } break; case BuiltinProc_real: case BuiltinProc_imag: { // proc real(x: type) -> float_type // proc imag(x: type) -> float_type Operand *x = operand; if (is_type_untyped(x->type)) { if (x->mode == Addressing_Constant) { if (is_type_numeric(x->type)) { x->type = t_untyped_complex; } } else { convert_to_typed(c, x, t_complex128, 0); if (x->mode == Addressing_Invalid) { return false; } } } if (!is_type_complex(x->type)) { gbString s = type_to_string(x->type); error(call, "Argument has type `%s`, expected a complex type", s); gb_string_free(s); return false; } if (x->mode == Addressing_Constant) { switch (id) { case BuiltinProc_real: x->value = exact_value_real(x->value); break; case BuiltinProc_imag: x->value = exact_value_imag(x->value); break; } } else { x->mode = Addressing_Value; } BasicKind kind = core_type(x->type)->Basic.kind; switch (kind) { case Basic_complex64: x->type = t_f32; break; case Basic_complex128: x->type = t_f64; break; case Basic_UntypedComplex: x->type = t_untyped_float; break; default: GB_PANIC("Invalid type"); break; } } break; case BuiltinProc_conj: { // proc conj(x: type) -> type Operand *x = operand; if (is_type_complex(x->type)) { if (x->mode == Addressing_Constant) { ExactValue v = exact_value_to_complex(x->value); f64 r = v.value_complex.real; f64 i = v.value_complex.imag; x->value = exact_value_complex(r, i); x->mode = Addressing_Constant; } else { x->mode = Addressing_Value; } } else { gbString s = type_to_string(x->type); error(call, "Expected a complex or quaternion, got `%s`", s); gb_string_free(s); return false; } } break; #if 0 case BuiltinProc_slice_ptr: { // proc slice_ptr(a: ^T, len: int) -> []T // proc slice_ptr(a: ^T, len, cap: int) -> []T // ^T cannot be rawptr Type *ptr_type = base_type(operand->type); if (!is_type_pointer(ptr_type)) { gbString type_str = type_to_string(operand->type); error(call, "Expected a pointer to `slice_ptr`, got `%s`", type_str); gb_string_free(type_str); return false; } if (ptr_type == t_rawptr) { error(call, "`rawptr` cannot have pointer arithmetic"); return false; } isize arg_count = ce->args.count; if (arg_count < 2 || 3 < arg_count) { error(ce->args[0], "`slice_ptr` expects 2 or 3 arguments, found %td", arg_count); // NOTE(bill): Return the correct type to reduce errors } else { // If any are constant i64 sizes[2] = {}; isize size_count = 0; for (isize i = 1; i < arg_count; i++) { i64 val = 0; bool ok = check_index_value(c, false, ce->args[i], -1, &val); if (ok && val >= 0) { GB_ASSERT(size_count < gb_count_of(sizes)); sizes[size_count++] = val; } } if (size_count == 2 && sizes[0] > sizes[1]) { error(ce->args[1], "`slice_ptr` count and capacity are swapped"); // No need quit } } operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem); operand->mode = Addressing_Value; } break; case BuiltinProc_slice_to_bytes: { // proc slice_to_bytes(a: []T) -> []u8 Type *slice_type = base_type(operand->type); if (!is_type_slice(slice_type)) { gbString type_str = type_to_string(operand->type); error(call, "Expected a slice type, got `%s`", type_str); gb_string_free(type_str); return false; } operand->type = t_u8_slice; operand->mode = Addressing_Value; } break; #endif case BuiltinProc_expand_to_tuple: { Type *type = base_type(operand->type); if (!is_type_struct(type) & !is_type_union(type)) { gbString type_str = type_to_string(operand->type); error(call, "Expected a struct or union type, got `%s`", type_str); gb_string_free(type_str); return false; } gbAllocator a = c->allocator; Type *tuple = make_type_tuple(a); i32 variable_count = type->Record.field_count; tuple->Tuple.variables = gb_alloc_array(a, Entity *, variable_count); tuple->Tuple.variable_count = variable_count; // TODO(bill): Should I copy each of the entities or is this good enough? gb_memcopy_array(tuple->Tuple.variables, type->Record.fields_in_src_order, variable_count); operand->type = tuple; operand->mode = Addressing_Value; } break; case BuiltinProc_min: { // proc min(a, b: ordered) -> ordered Type *type = base_type(operand->type); if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) { gbString type_str = type_to_string(operand->type); error(call, "Expected a ordered numeric type to `min`, got `%s`", type_str); gb_string_free(type_str); return false; } AstNode *other_arg = ce->args[1]; Operand a = *operand; Operand b = {}; check_expr(c, &b, other_arg); if (b.mode == Addressing_Invalid) { return false; } if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) { gbString type_str = type_to_string(b.type); error(call, "Expected a ordered numeric type to `min`, got `%s`", type_str); gb_string_free(type_str); return false; } if (a.mode == Addressing_Constant && b.mode == Addressing_Constant) { ExactValue x = a.value; ExactValue y = b.value; operand->mode = Addressing_Constant; if (compare_exact_values(Token_Lt, x, y)) { operand->value = x; operand->type = a.type; } else { operand->value = y; operand->type = b.type; } } else { operand->mode = Addressing_Value; operand->type = type; convert_to_typed(c, &a, b.type, 0); if (a.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &b, a.type, 0); if (b.mode == Addressing_Invalid) { return false; } if (!are_types_identical(a.type, b.type)) { gbString type_a = type_to_string(a.type); gbString type_b = type_to_string(b.type); error(call, "Mismatched types to `min`, `%s` vs `%s`", type_a, type_b); gb_string_free(type_b); gb_string_free(type_a); return false; } } } break; case BuiltinProc_max: { // proc min(a, b: ordered) -> ordered Type *type = base_type(operand->type); if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) { gbString type_str = type_to_string(operand->type); error(call, "Expected a ordered numeric or string type to `max`, got `%s`", type_str); gb_string_free(type_str); return false; } AstNode *other_arg = ce->args[1]; Operand a = *operand; Operand b = {}; check_expr(c, &b, other_arg); if (b.mode == Addressing_Invalid) { return false; } if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) { gbString type_str = type_to_string(b.type); error(call, "Expected a ordered numeric or string type to `max`, got `%s`", type_str); gb_string_free(type_str); return false; } if (a.mode == Addressing_Constant && b.mode == Addressing_Constant) { ExactValue x = a.value; ExactValue y = b.value; operand->mode = Addressing_Constant; if (compare_exact_values(Token_Gt, x, y)) { operand->value = x; operand->type = a.type; } else { operand->value = y; operand->type = b.type; } } else { operand->mode = Addressing_Value; operand->type = type; convert_to_typed(c, &a, b.type, 0); if (a.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &b, a.type, 0); if (b.mode == Addressing_Invalid) { return false; } if (!are_types_identical(a.type, b.type)) { gbString type_a = type_to_string(a.type); gbString type_b = type_to_string(b.type); error(call, "Mismatched types to `max`, `%s` vs `%s`", type_a, type_b); gb_string_free(type_b); gb_string_free(type_a); return false; } } } break; case BuiltinProc_abs: { // proc abs(n: numeric) -> numeric if (!is_type_numeric(operand->type) && !is_type_vector(operand->type)) { gbString type_str = type_to_string(operand->type); error(call, "Expected a numeric type to `abs`, got `%s`", type_str); gb_string_free(type_str); return false; } if (operand->mode == Addressing_Constant) { switch (operand->value.kind) { case ExactValue_Integer: operand->value.value_integer = i128_abs(operand->value.value_integer); break; case ExactValue_Float: operand->value.value_float = gb_abs(operand->value.value_float); break; case ExactValue_Complex: { f64 r = operand->value.value_complex.real; f64 i = operand->value.value_complex.imag; operand->value = exact_value_float(gb_sqrt(r*r + i*i)); } break; default: GB_PANIC("Invalid numeric constant"); break; } } else { operand->mode = Addressing_Value; } if (is_type_complex(operand->type)) { operand->type = base_complex_elem_type(operand->type); } GB_ASSERT(!is_type_complex(operand->type)); } break; case BuiltinProc_clamp: { // proc clamp(a, min, max: ordered) -> ordered Type *type = base_type(operand->type); if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) { gbString type_str = type_to_string(operand->type); error(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str); gb_string_free(type_str); return false; } AstNode *min_arg = ce->args[1]; AstNode *max_arg = ce->args[2]; Operand x = *operand; Operand y = {}; Operand z = {}; check_expr(c, &y, min_arg); if (y.mode == Addressing_Invalid) { return false; } if (!is_type_ordered(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) { gbString type_str = type_to_string(y.type); error(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str); gb_string_free(type_str); return false; } check_expr(c, &z, max_arg); if (z.mode == Addressing_Invalid) { return false; } if (!is_type_ordered(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) { gbString type_str = type_to_string(z.type); error(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str); gb_string_free(type_str); return false; } if (x.mode == Addressing_Constant && y.mode == Addressing_Constant && z.mode == Addressing_Constant) { ExactValue a = x.value; ExactValue b = y.value; ExactValue c = z.value; operand->mode = Addressing_Constant; if (compare_exact_values(Token_Lt, a, b)) { operand->value = b; operand->type = y.type; } else if (compare_exact_values(Token_Gt, a, c)) { operand->value = c; operand->type = z.type; } else { operand->value = a; operand->type = x.type; } } else { operand->mode = Addressing_Value; operand->type = type; convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &x, z.type, 0); if (x.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &z, x.type, 0); if (z.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &y, z.type, 0); if (y.mode == Addressing_Invalid) { return false; } convert_to_typed(c, &z, y.type, 0); if (z.mode == Addressing_Invalid) { return false; } if (!are_types_identical(x.type, y.type) || !are_types_identical(x.type, z.type)) { gbString type_x = type_to_string(x.type); gbString type_y = type_to_string(y.type); gbString type_z = type_to_string(z.type); error(call, "Mismatched types to `clamp`, `%s`, `%s`, `%s`", type_x, type_y, type_z); gb_string_free(type_z); gb_string_free(type_y); gb_string_free(type_x); return false; } } } break; case BuiltinProc_transmute: { Operand op = {}; check_expr_or_type(c, &op, ce->args[0]); Type *t = op.type; if ((op.mode != Addressing_Type && t == NULL) || t == t_invalid) { error(ce->args[0], "Expected a type for `transmute`"); return false; } AstNode *expr = ce->args[1]; Operand *o = operand; check_expr(c, o, expr); if (o->mode == Addressing_Invalid) { return false; } if (o->mode == Addressing_Constant) { gbString expr_str = expr_to_string(o->expr); error(o->expr, "Cannot transmute a constant expression: `%s`", expr_str); gb_string_free(expr_str); o->mode = Addressing_Invalid; o->expr = expr; return false; } if (is_type_untyped(o->type)) { gbString expr_str = expr_to_string(o->expr); error(o->expr, "Cannot transmute untyped expression: `%s`", expr_str); gb_string_free(expr_str); o->mode = Addressing_Invalid; o->expr = expr; return false; } i64 srcz = type_size_of(c->allocator, o->type); i64 dstz = type_size_of(c->allocator, t); if (srcz != dstz) { gbString expr_str = expr_to_string(o->expr); gbString type_str = type_to_string(t); error(o->expr, "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz); gb_string_free(type_str); gb_string_free(expr_str); o->mode = Addressing_Invalid; o->expr = expr; return false; } o->mode = Addressing_Value; o->type = t; } break; } return true; } struct ValidProcAndScore { isize index; i64 score; }; int valid_proc_and_score_cmp(void const *a, void const *b) { i64 si = (cast(ValidProcAndScore const *)a)->score; i64 sj = (cast(ValidProcAndScore const *)b)->score; return sj < si ? -1 : sj > si; } bool check_unpack_arguments(Checker *c, isize lhs_count, Array *operands, Array rhs, bool allow_ok) { bool optional_ok = false; for_array(i, rhs) { Operand o = {}; check_expr_base(c, &o, rhs[i], NULL); if (o.mode == Addressing_NoValue) { error_operand_no_value(&o); o.mode = Addressing_Invalid; } // check_multi_expr(c, &o, rhs[i]); if (o.type == NULL || o.type->kind != Type_Tuple) { if (allow_ok && lhs_count == 2 && rhs.count == 1 && (o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk)) { Type *tuple = make_optional_ok_type(c->allocator, o.type); add_type_and_value(&c->info, o.expr, o.mode, tuple, o.value); Operand val = o; Operand ok = o; val.mode = Addressing_Value; ok.mode = Addressing_Value; ok.type = t_bool; array_add(operands, val); array_add(operands, ok); optional_ok = true; } else { array_add(operands, o); } } else { TypeTuple *tuple = &o.type->Tuple; for (isize j = 0; j < tuple->variable_count; j++) { o.type = tuple->variables[j]->type; array_add(operands, o); } } } return optional_ok; } // NOTE(bill): Returns `NULL` on failure Entity *find_or_generate_polymorphic_procedure(Checker *c, AstNode *call, Entity *base_entity, CallArgumentCheckerType *call_checker, Array *operands, ProcedureInfo *proc_info_) { /////////////////////////////////////////////////////////////////////////////// // // // TODO CLEANUP(bill): This procedure is very messy and hacky. Clean this!!! // // // /////////////////////////////////////////////////////////////////////////////// if (base_entity == NULL) { return NULL; } if (!is_type_proc(base_entity->type)) { return NULL; } TypeProc *pt = &base_type(base_entity->type)->Proc; if (!pt->is_polymorphic || pt->is_poly_specialized) { return NULL; } DeclInfo *old_decl = decl_info_of_entity(&c->info, base_entity); GB_ASSERT(old_decl != NULL); gbAllocator a = heap_allocator(); CheckerContext prev_context = c->context; defer (c->context = prev_context); Scope *scope = make_scope(base_entity->scope, a); scope->is_proc = true; c->context.scope = scope; c->context.allow_polymorphic_types = true; bool generate_type_again = c->context.no_polymorphic_errors; // NOTE(bill): This is slightly memory leaking if the type already exists // Maybe it's better to check with the previous types first? Type *final_proc_type = make_type_proc(c->allocator, scope, NULL, 0, NULL, 0, false, pt->calling_convention); bool success = check_procedure_type(c, final_proc_type, pt->node, operands); if (!success) { ProcedureInfo proc_info = {}; if (proc_info_) *proc_info_ = proc_info; return NULL; } auto *found_gen_procs = map_get(&c->info.gen_procs, hash_pointer(base_entity->identifier)); if (found_gen_procs) { auto procs = *found_gen_procs; for_array(i, procs) { Entity *other = procs[i]; Type *pt = base_type(other->type); if (are_types_identical(pt, final_proc_type)) { // NOTE(bill): This scope is not needed any more, destroy it // destroy_scope(scope); return other; } } } if (generate_type_again) { // LEAK TODO(bill): This is technically a memory leak as it has to generate the type twice bool prev_no_polymorphic_errors = c->context.no_polymorphic_errors; defer (c->context.no_polymorphic_errors = prev_no_polymorphic_errors); c->context.no_polymorphic_errors = false; // NOTE(bill): Reset scope from the failed procedure type scope_reset(scope); success = check_procedure_type(c, final_proc_type, pt->node, operands); if (!success) { ProcedureInfo proc_info = {}; if (proc_info_) *proc_info_ = proc_info; return NULL; } if (found_gen_procs) { auto procs = *found_gen_procs; for_array(i, procs) { Entity *other = procs[i]; Type *pt = base_type(other->type); if (are_types_identical(pt, final_proc_type)) { // NOTE(bill): This scope is not needed any more, destroy it // destroy_scope(scope); return other; } } } } AstNode *proc_lit = clone_ast_node(a, old_decl->proc_lit); ast_node(pl, ProcLit, proc_lit); // NOTE(bill): Associate the scope declared above with this procedure declaration's type add_scope(c, pl->type, final_proc_type->Proc.scope); final_proc_type->Proc.is_poly_specialized = true; final_proc_type->Proc.is_polymorphic = true; u64 tags = base_entity->Procedure.tags; AstNode *ident = clone_ast_node(a, base_entity->identifier); Token token = ident->Ident.token; DeclInfo *d = make_declaration_info(c->allocator, scope, old_decl->parent); d->gen_proc_type = final_proc_type; d->type_expr = pl->type; d->proc_lit = proc_lit; Entity *entity = make_entity_procedure(c->allocator, NULL, token, final_proc_type, tags); entity->identifier = ident; add_entity_and_decl_info(c, ident, entity, d); // NOTE(bill): Set the scope afterwards as this is not real overloading entity->scope = scope->parent; AstFile *file = NULL; { Scope *s = entity->scope; while (s != NULL && s->file == NULL) { s = s->parent; } file = s->file; } ProcedureInfo proc_info = {}; proc_info.file = file; proc_info.token = token; proc_info.decl = d; proc_info.type = final_proc_type; proc_info.body = pl->body; proc_info.tags = tags; proc_info.generated_from_polymorphic = true; if (found_gen_procs) { array_add(found_gen_procs, entity); } else { Array array = {}; array_init(&array, heap_allocator()); array_add(&array, entity); map_set(&c->info.gen_procs, hash_pointer(base_entity->identifier), array); } GB_ASSERT(entity != NULL); if (proc_info_) *proc_info_ = proc_info; return entity; } CALL_ARGUMENT_CHECKER(check_call_arguments_internal) { ast_node(ce, CallExpr, call); GB_ASSERT(is_type_proc(proc_type)); proc_type = base_type(proc_type); TypeProc *pt = &proc_type->Proc; isize param_count = 0; isize param_count_excluding_defaults = 0; bool variadic = pt->variadic; bool vari_expand = (ce->ellipsis.pos.line != 0); i64 score = 0; bool show_error = show_error_mode == CallArgumentMode_ShowErrors; TypeTuple *param_tuple = NULL; if (pt->params != NULL) { param_tuple = &pt->params->Tuple; param_count = param_tuple->variable_count; if (variadic) { param_count--; } } param_count_excluding_defaults = param_count; if (param_tuple != NULL) { for (isize i = param_count-1; i >= 0; i--) { Entity *e = param_tuple->variables[i]; if (e->kind == Entity_TypeName) { break; } GB_ASSERT(e->kind == Entity_Variable); if (e->Variable.default_value.kind != ExactValue_Invalid || e->Variable.default_is_nil || e->Variable.default_is_location) { param_count_excluding_defaults--; continue; } break; } } CallArgumentError err = CallArgumentError_None; Type *final_proc_type = proc_type; Entity *gen_entity = NULL; if (vari_expand && !variadic) { if (show_error) { error(ce->ellipsis, "Cannot use `..` in call to a non-variadic procedure: `%.*s`", LIT(ce->proc->Ident.token.string)); } err = CallArgumentError_NonVariadicExpand; } else if (vari_expand && pt->c_vararg) { if (show_error) { error(ce->ellipsis, "Cannot use `..` in call to a `#c_vararg` variadic procedure: `%.*s`", LIT(ce->proc->Ident.token.string)); } err = CallArgumentError_NonVariadicExpand; } else if (operands.count == 0 && param_count_excluding_defaults == 0) { err = CallArgumentError_None; } else { i32 error_code = 0; if (operands.count < param_count_excluding_defaults) { error_code = -1; } else if (!variadic && operands.count > param_count) { error_code = +1; } if (error_code != 0) { err = CallArgumentError_TooManyArguments; char *err_fmt = "Too many arguments for `%s`, expected %td arguments"; if (error_code < 0) { err = CallArgumentError_TooFewArguments; err_fmt = "Too few arguments for `%s`, expected %td arguments"; } if (show_error) { gbString proc_str = expr_to_string(ce->proc); error(call, err_fmt, proc_str, param_count_excluding_defaults); gb_string_free(proc_str); } } else { // NOTE(bill): Generate the procedure type for this generic instance ProcedureInfo proc_info = {}; if (pt->is_polymorphic && !pt->is_poly_specialized) { gen_entity = find_or_generate_polymorphic_procedure(c, call, entity, check_call_arguments_internal, &operands, &proc_info); if (gen_entity != NULL) { GB_ASSERT(is_type_proc(gen_entity->type)); final_proc_type = gen_entity->type; } } GB_ASSERT(is_type_proc(final_proc_type)); TypeProc *pt = &final_proc_type->Proc; GB_ASSERT(pt->params != NULL); Entity **sig_params = pt->params->Tuple.variables; isize operand_index = 0; isize max_operand_count = gb_min(param_count, operands.count); for (; operand_index < max_operand_count; operand_index++) { Entity *e = sig_params[operand_index]; Type *t = e->type; Operand o = operands[operand_index]; if (e->kind == Entity_TypeName) { // GB_ASSERT(!variadic); if (o.mode == Addressing_Invalid) { continue; } else if (o.mode != Addressing_Type) { if (show_error) { error(o.expr, "Expected a type for the argument `%.*s`", LIT(e->token.string)); } err = CallArgumentError_WrongTypes; } if (are_types_identical(e->type, o.type)) { score += assign_score_function(1); } else { score += assign_score_function(10); } continue; } if (variadic) { o = operands[operand_index]; } i64 s = 0; if (!check_is_assignable_to_with_score(c, &o, t, &s)) { if (show_error) { check_assignment(c, &o, t, str_lit("argument")); } err = CallArgumentError_WrongTypes; } score += s; } if (variadic) { bool variadic_expand = false; Type *slice = sig_params[param_count]->type; GB_ASSERT(is_type_slice(slice)); Type *elem = base_type(slice)->Slice.elem; Type *t = elem; for (; operand_index < operands.count; operand_index++) { Operand o = operands[operand_index]; if (vari_expand) { variadic_expand = true; t = slice; if (operand_index != param_count) { if (show_error) { error(o.expr, "`..` in a variadic procedure can only have one variadic argument at the end"); } if (data) { data->score = score; data->result_type = final_proc_type->Proc.results; data->gen_entity = gen_entity; } return CallArgumentError_MultipleVariadicExpand; } } i64 s = 0; if (!check_is_assignable_to_with_score(c, &o, t, &s)) { if (show_error) { check_assignment(c, &o, t, str_lit("argument")); } err = CallArgumentError_WrongTypes; } score += s; } } if (gen_entity != NULL && gen_entity->token.string == "append" && err != CallArgumentError_None) { gb_printf_err("append %s with score %lld %d\n", type_to_string(final_proc_type), score, err); } if (gen_entity != NULL && err == CallArgumentError_None) { if (proc_info.decl != NULL) { // NOTE(bill): Check the newly generated procedure body check_procedure_later(c, proc_info); } } } } if (data) { data->score = score; data->result_type = final_proc_type->Proc.results; data->gen_entity = gen_entity; } return err; } bool is_call_expr_field_value(AstNodeCallExpr *ce) { GB_ASSERT(ce != NULL); if (ce->args.count == 0) { return false; } return ce->args[0]->kind == AstNode_FieldValue; } isize lookup_procedure_parameter(TypeProc *pt, String parameter_name) { isize param_count = pt->param_count; for (isize i = 0; i < param_count; i++) { Entity *e = pt->params->Tuple.variables[i]; String name = e->token.string; if (name == "_") { continue; } if (name == parameter_name) { return i; } } return -1; } isize lookup_procedure_result(TypeProc *pt, String result_name) { isize result_count = pt->result_count; for (isize i = 0; i < result_count; i++) { Entity *e = pt->results->Tuple.variables[i]; String name = e->token.string; if (name == "_") { continue; } if (name == result_name) { return i; } } return -1; } CALL_ARGUMENT_CHECKER(check_named_call_arguments) { ast_node(ce, CallExpr, call); GB_ASSERT(is_type_proc(proc_type)); TypeProc *pt = &base_type(proc_type)->Proc; i64 score = 0; bool show_error = show_error_mode == CallArgumentMode_ShowErrors; CallArgumentError err = CallArgumentError_None; gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); defer (gb_temp_arena_memory_end(tmp)); isize param_count = pt->param_count; bool *visited = gb_alloc_array(c->tmp_allocator, bool, param_count); Array ordered_operands = {}; array_init_count(&ordered_operands, c->tmp_allocator, param_count); for_array(i, ce->args) { AstNode *arg = ce->args[i]; ast_node(fv, FieldValue, arg); if (fv->field->kind != AstNode_Ident) { if (show_error) { gbString expr_str = expr_to_string(fv->field); error(arg, "Invalid parameter name `%s` in procedure call", expr_str); gb_string_free(expr_str); } err = CallArgumentError_InvalidFieldValue; continue; } String name = fv->field->Ident.token.string; isize index = lookup_procedure_parameter(pt, name); if (index < 0) { if (show_error) { error(arg, "No parameter named `%.*s` for this procedure type", LIT(name)); } err = CallArgumentError_ParameterNotFound; continue; } if (visited[index]) { if (show_error) { error(arg, "Duplicate parameter `%.*s` in procedure call", LIT(name)); } err = CallArgumentError_DuplicateParameter; continue; } visited[index] = true; ordered_operands[index] = operands[i]; } // NOTE(bill): Check for default values and missing parameters isize param_count_to_check = param_count; if (pt->variadic) { param_count_to_check--; } for (isize i = 0; i < param_count_to_check; i++) { if (!visited[i]) { Entity *e = pt->params->Tuple.variables[i]; if (e->token.string == "_") { continue; } if (e->kind == Entity_Variable) { if (e->Variable.default_value.kind != ExactValue_Invalid) { score += assign_score_function(1); continue; } else if (e->Variable.default_is_nil) { score += assign_score_function(1); continue; } } if (show_error) { if (e->kind == Entity_TypeName) { error(call, "Type parameter `%.*s` is missing in procedure call", LIT(e->token.string)); } else { gbString str = type_to_string(e->type); error(call, "Parameter `%.*s` of type `%s` is missing in procedure call", LIT(e->token.string), str); gb_string_free(str); } } err = CallArgumentError_ParameterMissing; } } Entity *gen_entity = NULL; if (pt->is_polymorphic && !pt->is_poly_specialized && err == CallArgumentError_None) { ProcedureInfo proc_info = {}; gen_entity = find_or_generate_polymorphic_procedure(c, call, entity, check_named_call_arguments, &ordered_operands, &proc_info); if (gen_entity != NULL) { if (proc_info.decl != NULL) { check_procedure_later(c, proc_info); } Type *gept = base_type(gen_entity->type); GB_ASSERT(is_type_proc(gept)); pt = &gept->Proc; } } for (isize i = 0; i < param_count; i++) { Operand *o = &ordered_operands[i]; if (o->mode == Addressing_Invalid) { continue; } Entity *e = pt->params->Tuple.variables[i]; if (e->kind == Entity_TypeName) { GB_ASSERT(pt->is_polymorphic); if (o->mode != Addressing_Type) { if (show_error) { error(o->expr, "Expected a type for the argument `%.*s`", LIT(e->token.string)); } err = CallArgumentError_WrongTypes; } if (are_types_identical(e->type, o->type)) { score += assign_score_function(1); } else { score += assign_score_function(10); } } else { i64 s = 0; if (!check_is_assignable_to_with_score(c, o, e->type, &s)) { if (show_error) { check_assignment(c, o, e->type, str_lit("procedure argument")); } err = CallArgumentError_WrongTypes; } score += s; } } if (data) { data->score = score; data->result_type = pt->results; data->gen_entity = gen_entity; } return err; } CallArgumentData check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) { ast_node(ce, CallExpr, call); CallArgumentCheckerType *call_checker = check_call_arguments_internal; Array operands = {}; defer (array_free(&operands)); Type *result_type = t_invalid; if (is_call_expr_field_value(ce)) { call_checker = check_named_call_arguments; array_init_count(&operands, heap_allocator(), ce->args.count); for_array(i, ce->args) { AstNode *arg = ce->args[i]; ast_node(fv, FieldValue, arg); check_expr_or_type(c, &operands[i], fv->value); } bool vari_expand = (ce->ellipsis.pos.line != 0); if (vari_expand) { // error(ce->ellipsis, "Invalid use of `..` with `field = value` call`"); } } else { array_init(&operands, heap_allocator(), 2*ce->args.count); check_unpack_arguments(c, -1, &operands, ce->args, false); } if (operand->mode == Addressing_Overload) { GB_ASSERT(operand->overload_entities != NULL && operand->overload_count > 0); isize overload_count = operand->overload_count; Entity ** procs = operand->overload_entities; ValidProcAndScore *valids = gb_alloc_array(heap_allocator(), ValidProcAndScore, overload_count); isize valid_count = 0; defer (gb_free(heap_allocator(), procs)); defer (gb_free(heap_allocator(), valids)); String name = procs[0]->token.string; for (isize i = 0; i < overload_count; i++) { Entity *e = procs[i]; GB_ASSERT(e->token.string == name); DeclInfo *d = decl_info_of_entity(&c->info, e); GB_ASSERT(d != NULL); check_entity_decl(c, e, d, NULL); } for (isize i = 0; i < overload_count; i++) { Entity *p = procs[i]; Type *pt = base_type(p->type); if (pt != NULL && is_type_proc(pt)) { CallArgumentError err = CallArgumentError_None; CallArgumentData data = {}; CheckerContext prev_context = c->context; c->context.no_polymorphic_errors = true; c->context.allow_polymorphic_types = is_type_polymorphic(pt); err = call_checker(c, call, pt, p, operands, CallArgumentMode_NoErrors, &data); c->context = prev_context; if (err == CallArgumentError_None) { valids[valid_count].index = i; valids[valid_count].score = data.score; valid_count++; } } } if (valid_count > 1) { gb_sort_array(valids, valid_count, valid_proc_and_score_cmp); i64 best_score = valids[0].score; Entity *best_entity = procs[valids[0].index]; for (isize i = 0; i < valid_count; i++) { if (best_score > valids[i].score) { valid_count = i; break; } if (best_entity == procs[valids[i].index]) { valid_count = i; break; } best_score = valids[i].score; } } if (valid_count == 0) { error(operand->expr, "No overloads or ambiguous call for `%.*s` that match with the given arguments", LIT(name)); if (overload_count > 0) { gb_printf_err("Did you mean to use one of the following:\n"); } for (isize i = 0; i < overload_count; i++) { Entity *proc = procs[i]; TokenPos pos = proc->token.pos; // gbString pt = type_to_string(proc->type); gbString pt = expr_to_string(proc->type->Proc.node); gb_printf_err("\t%.*s :: %s at %.*s(%td:%td)\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column, cast(long long)valids[i].score); gb_string_free(pt); } result_type = t_invalid; } else if (valid_count > 1) { error(operand->expr, "Ambiguous procedure call `%.*s`, could be:", LIT(name)); for (isize i = 0; i < valid_count; i++) { Entity *proc = procs[valids[i].index]; TokenPos pos = proc->token.pos; gbString pt = type_to_string(proc->type); gb_printf_err("\t%.*s :: %s at %.*s(%td:%td) with score %lld\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column, cast(long long)valids[i].score); gb_string_free(pt); } result_type = t_invalid; } else { AstNode *ident = operand->expr; while (ident->kind == AstNode_SelectorExpr) { AstNode *s = ident->SelectorExpr.selector; ident = s; } Entity *e = procs[valids[0].index]; proc_type = e->type; CallArgumentData data = {}; CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data); if (data.gen_entity != NULL) { add_entity_use(c, ident, data.gen_entity); } else { add_entity_use(c, ident, e); } return data; } } else { AstNode *ident = operand->expr; while (ident->kind == AstNode_SelectorExpr) { AstNode *s = ident->SelectorExpr.selector; ident = s; } Entity *e = entity_of_ident(&c->info, ident); CallArgumentData data = {}; CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data); if (data.gen_entity != NULL) { add_entity_use(c, ident, data.gen_entity); } else { add_entity_use(c, ident, e); } return data; } CallArgumentData data = {}; data.result_type = t_invalid; return data; } Entity *find_using_index_expr(Type *t) { t = base_type(t); if (t->kind != Type_Record) { return NULL; } for (isize i = 0; i < t->Record.field_count; i++) { Entity *f = t->Record.fields[i]; if (f->kind == Entity_Variable && (f->flags & EntityFlag_Field) != 0 && (f->flags & EntityFlag_Using) != 0) { if (is_type_indexable(f->type)) { return f; } Entity *res = find_using_index_expr(f->type); if (res != NULL) { return res; } } } return NULL; } ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) { GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); if (ce->proc != NULL && ce->proc->kind == AstNode_BasicDirective) { ast_node(bd, BasicDirective, ce->proc); String name = bd->name; GB_ASSERT(name == "location"); operand->mode = Addressing_Builtin; operand->builtin_id = BuiltinProc_DIRECTIVE; operand->expr = ce->proc; operand->type = t_invalid; add_type_and_value(&c->info, ce->proc, operand->mode, operand->type, operand->value); } else { check_expr_or_type(c, operand, ce->proc); } if (ce->args.count > 0) { bool fail = false; bool first_is_field_value = (ce->args[0]->kind == AstNode_FieldValue); for_array(i, ce->args) { AstNode *arg = ce->args[i]; bool mix = false; if (first_is_field_value) { mix = arg->kind != AstNode_FieldValue; } else { mix = arg->kind == AstNode_FieldValue; } if (mix) { error(arg, "Mixture of `field = value` and value elements in a procedure all is not allowed"); fail = true; } } if (fail) { operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } } if (operand->mode == Addressing_Invalid) { for_array(i, ce->args) { AstNode *arg = ce->args[i]; if (arg->kind == AstNode_FieldValue) { arg = arg->FieldValue.value; } check_expr_base(c, operand, arg, NULL); } operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } if (operand->mode == Addressing_Type) { Type *t = operand->type; gbString str = type_to_string(t); operand->mode = Addressing_Invalid; isize arg_count = ce->args.count; switch (arg_count) { case 0: error(call, "Missing argument in conversion to `%s`", str); break; default: error(call, "Too many arguments in conversion to `%s`", str); break; case 1: { AstNode *arg = ce->args[0]; if (arg->kind == AstNode_FieldValue) { error(call, "`field = value` cannot be used in a type conversion"); arg = arg->FieldValue.value; // NOTE(bill): Carry on the cast regardless } check_expr(c, operand, arg); if (operand->mode != Addressing_Invalid) { check_cast(c, operand, t); } } break; } gb_string_free(str); return Expr_Expr; } if (operand->mode == Addressing_Builtin) { i32 id = operand->builtin_id; if (!check_builtin_procedure(c, operand, call, id)) { operand->mode = Addressing_Invalid; } operand->expr = call; return builtin_procs[id].kind; } Type *proc_type = base_type(operand->type); if (operand->mode != Addressing_Overload) { bool valid_type = (proc_type != NULL) && is_type_proc(proc_type); bool valid_mode = is_operand_value(*operand); if (!valid_type || !valid_mode) { AstNode *e = operand->expr; gbString str = expr_to_string(e); gbString type_str = type_to_string(operand->type); error(e, "Cannot call a non-procedure: `%s` of type `%s`", str, type_str); gb_string_free(type_str); gb_string_free(str); operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } } CallArgumentData data = check_call_arguments(c, operand, proc_type, call); Type *result_type = data.result_type; gb_zero_item(operand); operand->expr = call; if (result_type == t_invalid) { operand->mode = Addressing_Invalid; operand->type = t_invalid; return Expr_Stmt; } Type *pt = base_type(proc_type); if (result_type == NULL) { operand->mode = Addressing_NoValue; } else { GB_ASSERT(is_type_tuple(result_type)); switch (result_type->Tuple.variable_count) { case 0: operand->mode = Addressing_NoValue; break; case 1: operand->mode = Addressing_Value; operand->type = result_type->Tuple.variables[0]->type; break; default: operand->mode = Addressing_Value; operand->type = result_type; break; } } operand->expr = call; return Expr_Expr; } ExprKind check_macro_call_expr(Checker *c, Operand *operand, AstNode *call) { GB_ASSERT(call->kind == AstNode_MacroCallExpr); ast_node(mce, MacroCallExpr, call); error(call, "Macro call expressions are not yet supported"); operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) { check_expr_base(c, o, e, t); check_not_tuple(c, o); char *err_str = NULL; switch (o->mode) { case Addressing_NoValue: err_str = "used as a value"; break; case Addressing_Type: err_str = "is not an expression"; break; case Addressing_Builtin: err_str = "must be called"; break; } if (err_str != NULL) { gbString str = expr_to_string(e); error(e, "`%s` %s", str, err_str); gb_string_free(str); o->mode = Addressing_Invalid; } } void check_set_mode_with_indirection(Operand *o, bool indirection) { if (o->mode != Addressing_Immutable) { if (indirection) { o->mode = Addressing_Variable; } else if (o->mode != Addressing_Variable && o->mode != Addressing_Constant) { o->mode = Addressing_Value; } } } bool check_set_index_data(Operand *o, Type *type, bool indirection, i64 *max_count) { Type *t = base_type(type_deref(type)); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { if (o->mode == Addressing_Constant) { *max_count = o->value.value_string.len; } check_set_mode_with_indirection(o, indirection); o->type = t_u8; return true; } break; case Type_Array: *max_count = t->Array.count; check_set_mode_with_indirection(o, indirection); o->type = t->Array.elem; return true; case Type_Vector: *max_count = t->Vector.count; check_set_mode_with_indirection(o, indirection); o->type = t->Vector.elem; return true; case Type_Slice: o->type = t->Slice.elem; if (o->mode != Addressing_Immutable) { o->mode = Addressing_Variable; } return true; case Type_DynamicArray: o->type = t->DynamicArray.elem; check_set_mode_with_indirection(o, indirection); return true; } return false; } ExprKind check_expr_base_internal(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExprKind kind = Expr_Stmt; o->mode = Addressing_Invalid; o->type = t_invalid; switch (node->kind) { default: return kind; case_ast_node(be, BadExpr, node) return kind; case_end; case_ast_node(i, Implicit, node) switch (i->kind) { case Token_context: if (c->context.proc_name.len == 0) { error(node, "`context` is only allowed within procedures"); return kind; } init_preload(c); o->mode = Addressing_Value; o->type = t_context; break; case Token_size_of: o->mode = Addressing_Builtin; o->builtin_id = BuiltinProc_size_of; break; case Token_align_of: o->mode = Addressing_Builtin; o->builtin_id = BuiltinProc_align_of; break; case Token_offset_of: o->mode = Addressing_Builtin; o->builtin_id = BuiltinProc_offset_of; break; case Token_type_of: o->mode = Addressing_Builtin; o->builtin_id = BuiltinProc_type_of; break; default: error(node, "Illegal implicit name `%.*s`", LIT(i->string)); return kind; } case_end; case_ast_node(i, Ident, node); check_ident(c, o, node, NULL, type_hint, false); case_end; case_ast_node(u, Undef, node); o->mode = Addressing_Value; o->type = t_untyped_undef; case_end; case_ast_node(bl, BasicLit, node); Type *t = t_invalid; switch (bl->kind) { case Token_Integer: t = t_untyped_integer; break; case Token_Float: t = t_untyped_float; break; case Token_String: t = t_untyped_string; break; case Token_Rune: t = t_untyped_rune; break; case Token_Imag: { String s = bl->string; Rune r = s[s.len-1]; switch (r) { case 'i': t = t_untyped_complex; break; } } break; default: GB_PANIC("Unknown literal"); break; } o->mode = Addressing_Constant; o->type = t; o->value = exact_value_from_basic_literal(*bl); case_end; case_ast_node(bd, BasicDirective, node); if (bd->name == "file") { o->type = t_untyped_string; o->value = exact_value_string(bd->token.pos.file); } else if (bd->name == "line") { o->type = t_untyped_integer; o->value = exact_value_i64(bd->token.pos.line); } else if (bd->name == "procedure") { if (c->proc_stack.count == 0) { error(node, "#procedure may only be used within procedures"); o->type = t_untyped_string; o->value = exact_value_string(str_lit("")); } else { o->type = t_untyped_string; o->value = exact_value_string(c->context.proc_name); } } else if (bd->name == "caller_location") { init_preload(c); error(node, "#caller_location may only be used as a default argument parameter"); o->type = t_source_code_location; o->mode = Addressing_Value; } else { GB_PANIC("Unknown basic directive"); } o->mode = Addressing_Constant; case_end; case_ast_node(pl, ProcLit, node); CheckerContext prev_context = c->context; DeclInfo *decl = NULL; Type *type = alloc_type(c->allocator, Type_Proc); check_open_scope(c, pl->type); { decl = make_declaration_info(c->allocator, c->context.scope, c->context.decl); decl->proc_lit = node; c->context.decl = decl; if (pl->tags != 0) { error(node, "A procedure literal cannot have tags"); pl->tags = 0; // TODO(bill): Should I zero this?! } check_procedure_type(c, type, pl->type); if (!is_type_proc(type)) { gbString str = expr_to_string(node); error(node, "Invalid procedure literal `%s`", str); gb_string_free(str); check_close_scope(c); return kind; } if (pl->body == NULL) { error(node, "A procedure literal must have a body"); return kind; } check_procedure_later(c, c->curr_ast_file, empty_token, decl, type, pl->body, pl->tags); } check_close_scope(c); c->context = prev_context; o->mode = Addressing_Value; o->type = type; case_end; case_ast_node(te, TernaryExpr, node); Operand cond = {Addressing_Invalid}; check_expr(c, &cond, te->cond); if (cond.mode != Addressing_Invalid && !is_type_boolean(cond.type)) { error(te->cond, "Non-boolean condition in if expression"); } Operand x = {Addressing_Invalid}; Operand y = {Addressing_Invalid}; check_expr_with_type_hint(c, &x, te->x, type_hint); if (te->y != NULL) { check_expr_with_type_hint(c, &y, te->y, type_hint); } else { error(node, "A ternary expression must have an else clause"); return kind; } if (x.type == NULL || x.type == t_invalid || y.type == NULL || y.type == t_invalid) { return kind; } convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) { return kind; } convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) { x.mode = Addressing_Invalid; return kind; } if (!are_types_identical(x.type, y.type)) { gbString its = type_to_string(x.type); gbString ets = type_to_string(y.type); error(node, "Mismatched types in ternary expression, %s vs %s", its, ets); gb_string_free(ets); gb_string_free(its); return kind; } o->type = x.type; o->mode = Addressing_Value; if (cond.mode == Addressing_Constant && is_type_boolean(cond.type) && x.mode == Addressing_Constant && y.mode == Addressing_Constant) { o->mode = Addressing_Constant; if (cond.value.value_bool) { o->value = x.value; } else { o->value = y.value; } } case_end; case_ast_node(cl, CompoundLit, node); Type *type = type_hint; bool is_to_be_determined_array_count = false; bool is_constant = true; if (cl->type != NULL) { type = NULL; // [..]Type if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) { AstNode *count = cl->type->ArrayType.count; if (count->kind == AstNode_UnaryExpr && count->UnaryExpr.op.kind == Token_Ellipsis) { type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1); is_to_be_determined_array_count = true; } } if (type == NULL) { type = check_type(c, cl->type); } } if (type == NULL) { error(node, "Missing type in compound literal"); return kind; } Type *t = base_type(type); switch (t->kind) { case Type_Record: { if (!is_type_struct(t) && !is_type_union(t)) { if (cl->elems.count != 0) { gbString type_str = type_to_string(type); error(node, "Illegal compound literal type `%s`", type_str); gb_string_free(type_str); } break; } if (is_type_union(t)) { is_constant = false; } if (cl->elems.count == 0) { break; // NOTE(bill): No need to init } { // Checker values isize field_count = t->Record.field_count; if (cl->elems[0]->kind == AstNode_FieldValue) { bool *fields_visited = gb_alloc_array(c->allocator, bool, field_count); for_array(i, cl->elems) { AstNode *elem = cl->elems[i]; if (elem->kind != AstNode_FieldValue) { error(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed"); continue; } ast_node(fv, FieldValue, elem); if (fv->field->kind != AstNode_Ident) { gbString expr_str = expr_to_string(fv->field); error(elem, "Invalid field name `%s` in structure literal", expr_str); gb_string_free(expr_str); continue; } String name = fv->field->Ident.token.string; Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type); bool is_unknown = sel.entity == NULL; if (is_unknown) { error(elem, "Unknown field `%.*s` in structure literal", LIT(name)); continue; } if (!is_unknown && !check_is_field_exported(c, sel.entity)) { error(elem, "Cannot assign to an unexported field `%.*s` in structure literal", LIT(name)); continue; } if (sel.index.count > 1) { error(elem, "Cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name)); continue; } Entity *field = t->Record.fields[sel.index[0]]; add_entity_use(c, fv->field, field); if (fields_visited[sel.index[0]]) { error(elem, "Duplicate field `%.*s` in structure literal", LIT(name)); continue; } fields_visited[sel.index[0]] = true; check_expr(c, o, fv->value); if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) { is_constant = false; } if (is_constant) { is_constant = o->mode == Addressing_Constant; } check_assignment(c, o, field->type, str_lit("structure literal")); } } else { bool all_fields_are_blank = true; for (isize i = 0; i < t->Record.field_count; i++) { Entity *field = t->Record.fields_in_src_order[i]; if (field->token.string != "_") { all_fields_are_blank = false; break; } } for_array(index, cl->elems) { AstNode *elem = cl->elems[index]; if (elem->kind == AstNode_FieldValue) { error(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed"); continue; } if (index >= field_count) { error(o->expr, "Too many values in structure literal, expected %td", field_count); break; } Entity *field = t->Record.fields_in_src_order[index]; if (!all_fields_are_blank && field->token.string == "_") { // NOTE(bill): Ignore blank identifiers continue; } check_expr(c, o, elem); if (!check_is_field_exported(c, field)) { gbString t = type_to_string(type); error(o->expr, "Implicit assignment to an unexported field `%.*s` in `%s` literal", LIT(field->token.string), t); gb_string_free(t); continue; } if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) { is_constant = false; } if (is_constant) { is_constant = o->mode == Addressing_Constant; } check_assignment(c, o, field->type, str_lit("structure literal")); } if (cl->elems.count < field_count) { error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count); } } } } break; case Type_Slice: case Type_Array: case Type_Vector: case Type_DynamicArray: { Type *elem_type = NULL; String context_name = {}; i64 max_type_count = -1; if (t->kind == Type_Slice) { elem_type = t->Slice.elem; context_name = str_lit("slice literal"); } else if (t->kind == Type_Vector) { elem_type = t->Vector.elem; context_name = str_lit("vector literal"); max_type_count = t->Vector.count; } else if (t->kind == Type_Array) { elem_type = t->Array.elem; context_name = str_lit("array literal"); max_type_count = t->Array.count; } else if (t->kind == Type_DynamicArray) { elem_type = t->DynamicArray.elem; context_name = str_lit("dynamic array literal"); is_constant = false; } else { GB_PANIC("unreachable"); } i64 max = 0; isize index = 0; isize elem_count = cl->elems.count; if (is_type_any(base_type(elem_type))) { is_constant = false; } for (; index < elem_count; index++) { GB_ASSERT(cl->elems.data != NULL); AstNode *e = cl->elems[index]; if (e == NULL) { error(node, "Invalid literal element"); continue; } if (e->kind == AstNode_FieldValue) { error(e, "`field = value` is only allowed in struct literals"); continue; } if (0 <= max_type_count && max_type_count <= index) { error(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name)); } Operand operand = {}; check_expr_with_type_hint(c, &operand, e, elem_type); check_assignment(c, &operand, elem_type, context_name); if (is_constant) { is_constant = operand.mode == Addressing_Constant; } } if (max < index) { max = index; } if (t->kind == Type_Vector) { if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) { error(cl->elems[0], "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index); } } if (t->kind == Type_Array && is_to_be_determined_array_count) { t->Array.count = max; } } break; case Type_Basic: { if (!is_type_any(t)) { if (cl->elems.count != 0) { error(node, "Illegal compound literal"); } break; } if (cl->elems.count == 0) { break; // NOTE(bill): No need to init } { // Checker values Type *field_types[2] = {t_rawptr, t_type_info_ptr}; isize field_count = 2; if (cl->elems[0]->kind == AstNode_FieldValue) { bool fields_visited[2] = {}; for_array(i, cl->elems) { AstNode *elem = cl->elems[i]; if (elem->kind != AstNode_FieldValue) { error(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed"); continue; } ast_node(fv, FieldValue, elem); if (fv->field->kind != AstNode_Ident) { gbString expr_str = expr_to_string(fv->field); error(elem, "Invalid field name `%s` in `any` literal", expr_str); gb_string_free(expr_str); continue; } String name = fv->field->Ident.token.string; Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type); if (sel.entity == NULL) { error(elem, "Unknown field `%.*s` in `any` literal", LIT(name)); continue; } isize index = sel.index[0]; if (fields_visited[index]) { error(elem, "Duplicate field `%.*s` in `any` literal", LIT(name)); continue; } fields_visited[index] = true; check_expr(c, o, fv->value); // NOTE(bill): `any` literals can never be constant is_constant = false; check_assignment(c, o, field_types[index], str_lit("`any` literal")); } } else { for_array(index, cl->elems) { AstNode *elem = cl->elems[index]; if (elem->kind == AstNode_FieldValue) { error(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed"); continue; } check_expr(c, o, elem); if (index >= field_count) { error(o->expr, "Too many values in `any` literal, expected %td", field_count); break; } // NOTE(bill): `any` literals can never be constant is_constant = false; check_assignment(c, o, field_types[index], str_lit("`any` literal")); } if (cl->elems.count < field_count) { error(cl->close, "Too few values in `any` literal, expected %td, got %td", field_count, cl->elems.count); } } } } break; case Type_Map: { if (cl->elems.count == 0) { break; } is_constant = false; { // Checker values for_array(i, cl->elems) { AstNode *elem = cl->elems[i]; if (elem->kind != AstNode_FieldValue) { error(elem, "Only `field = value` elements are allowed in a map literal"); continue; } ast_node(fv, FieldValue, elem); check_expr_with_type_hint(c, o, fv->field, t->Map.key); check_assignment(c, o, t->Map.key, str_lit("map literal")); if (o->mode == Addressing_Invalid) { continue; } check_expr_with_type_hint(c, o, fv->value, t->Map.value); check_assignment(c, o, t->Map.value, str_lit("map literal")); } } } break; default: { gbString str = type_to_string(type); error(node, "Invalid compound literal type `%s`", str); gb_string_free(str); return kind; } break; } if (is_constant) { o->mode = Addressing_Constant; o->value = exact_value_compound(node); } else { o->mode = Addressing_Value; } o->type = type; case_end; case_ast_node(pe, ParenExpr, node); kind = check_expr_base(c, o, pe->expr, type_hint); o->expr = node; case_end; case_ast_node(te, TagExpr, node); String name = te->name.string; error(node, "Unknown tag expression, #%.*s", LIT(name)); if (te->expr) { kind = check_expr_base(c, o, te->expr, type_hint); } o->expr = node; case_end; case_ast_node(re, RunExpr, node); // TODO(bill): Tag expressions kind = check_expr_base(c, o, re->expr, type_hint); o->expr = node; case_end; case_ast_node(ta, TypeAssertion, node); check_expr(c, o, ta->expr); if (o->mode == Addressing_Invalid) { o->expr = node; return kind; } Type *t = check_type(c, ta->type); if (o->mode == Addressing_Constant) { gbString expr_str = expr_to_string(o->expr); error(o->expr, "A type assertion cannot be applied to a constant expression: `%s`", expr_str); gb_string_free(expr_str); o->mode = Addressing_Invalid; o->expr = node; return kind; } if (is_type_untyped(o->type)) { gbString expr_str = expr_to_string(o->expr); error(o->expr, "A type assertion cannot be applied to an untyped expression: `%s`", expr_str); gb_string_free(expr_str); o->mode = Addressing_Invalid; o->expr = node; return kind; } bool src_is_ptr = is_type_pointer(o->type); bool dst_is_ptr = is_type_pointer(t); Type *src = type_deref(o->type); Type *dst = type_deref(t); Type *bsrc = base_type(src); Type *bdst = base_type(dst); if (src_is_ptr != dst_is_ptr) { gbString src_type_str = type_to_string(o->type); gbString dst_type_str = type_to_string(t); error(o->expr, "Invalid type assertion types: `%s` and `%s`", src_type_str, dst_type_str); gb_string_free(dst_type_str); gb_string_free(src_type_str); o->mode = Addressing_Invalid; o->expr = node; return kind; } if (is_type_union(src)) { bool ok = false; for (isize i = 1; i < bsrc->Record.variant_count; i++) { Entity *f = bsrc->Record.variants[i]; if (are_types_identical(f->type, dst)) { ok = true; break; } } if (!ok) { gbString expr_str = expr_to_string(o->expr); gbString dst_type_str = type_to_string(t); error(o->expr, "Cannot type assert `%s` to `%s`", expr_str, dst_type_str); gb_string_free(dst_type_str); gb_string_free(expr_str); o->mode = Addressing_Invalid; o->expr = node; return kind; } add_type_info_type(c, o->type); add_type_info_type(c, t); o->type = t; o->mode = Addressing_OptionalOk; } else if (is_type_any(o->type)) { o->type = t; o->mode = Addressing_OptionalOk; add_type_info_type(c, o->type); add_type_info_type(c, t); } else { error(o->expr, "Type assertions can only operate on unions"); o->mode = Addressing_Invalid; o->expr = node; return kind; } case_end; case_ast_node(ue, UnaryExpr, node); check_expr_base(c, o, ue->expr, type_hint); if (o->mode == Addressing_Invalid) { o->expr = node; return kind; } check_unary_expr(c, o, ue->op, node); if (o->mode == Addressing_Invalid) { o->expr = node; return kind; } case_end; case_ast_node(be, BinaryExpr, node); check_binary_expr(c, o, node); if (o->mode == Addressing_Invalid) { o->expr = node; return kind; } case_end; case_ast_node(se, SelectorExpr, node); check_selector(c, o, node, type_hint); case_end; case_ast_node(ie, IndexExpr, node); check_expr(c, o, ie->expr); if (o->mode == Addressing_Invalid) { o->expr = node; return kind; } Type *t = base_type(type_deref(o->type)); bool is_ptr = is_type_pointer(o->type); bool is_const = o->mode == Addressing_Constant; if (is_type_map(t)) { Operand key = {}; check_expr(c, &key, ie->index); check_assignment(c, &key, t->Map.key, str_lit("map index")); if (key.mode == Addressing_Invalid) { o->mode = Addressing_Invalid; o->expr = node; return kind; } o->mode = Addressing_MapIndex; o->type = t->Map.value; o->expr = node; return Expr_Expr; } i64 max_count = -1; bool valid = check_set_index_data(o, t, is_ptr, &max_count); if (is_const) { valid = false; } if (!valid && (is_type_struct(t) || is_type_raw_union(t))) { Entity *found = find_using_index_expr(t); if (found != NULL) { valid = check_set_index_data(o, found->type, is_type_pointer(found->type), &max_count); } } if (!valid) { gbString str = expr_to_string(o->expr); if (is_const) { error(o->expr, "Cannot index a constant `%s`", str); } else { error(o->expr, "Cannot index `%s`", str); } gb_string_free(str); o->mode = Addressing_Invalid; o->expr = node; return kind; } if (ie->index == NULL) { gbString str = expr_to_string(o->expr); error(o->expr, "Missing index for `%s`", str); gb_string_free(str); o->mode = Addressing_Invalid; o->expr = node; return kind; } i64 index = 0; bool ok = check_index_value(c, false, ie->index, max_count, &index); case_end; case_ast_node(se, SliceExpr, node); check_expr(c, o, se->expr); if (o->mode == Addressing_Invalid) { o->mode = Addressing_Invalid; o->expr = node; return kind; } bool valid = false; i64 max_count = -1; Type *t = base_type(type_deref(o->type)); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { if (se->index3) { error(node, "3-index slice on a string in not needed"); o->mode = Addressing_Invalid; o->expr = node; return kind; } valid = true; if (o->mode == Addressing_Constant) { max_count = o->value.value_string.len; } o->type = t_string; } break; case Type_Array: valid = true; max_count = t->Array.count; if (o->mode != Addressing_Variable) { gbString str = expr_to_string(node); error(node, "Cannot slice array `%s`, value is not addressable", str); gb_string_free(str); o->mode = Addressing_Invalid; o->expr = node; return kind; } o->type = make_type_slice(c->allocator, t->Array.elem); break; case Type_Slice: valid = true; break; case Type_DynamicArray: valid = true; o->type = make_type_slice(c->allocator, t->DynamicArray.elem); break; } if (!valid) { gbString str = expr_to_string(o->expr); error(o->expr, "Cannot slice `%s`", str); gb_string_free(str); o->mode = Addressing_Invalid; o->expr = node; return kind; } if (o->mode != Addressing_Immutable) { o->mode = Addressing_Value; } if (se->low == NULL && se->high != NULL) { error(se->interval0, "1st index is required if a 2nd index is specified"); // It is okay to continue as it will assume the 1st index is zero } if (se->index3 && (se->high == NULL || se->max == NULL)) { error(se->close, "2nd and 3rd indices are required in a 3-index slice"); o->mode = Addressing_Invalid; o->expr = node; return kind; } if (se->index3 && se->interval0.kind != se->interval1.kind) { error(se->close, "The interval separators for in a 3-index slice must be the same"); o->mode = Addressing_Invalid; o->expr = node; return kind; } TokenKind interval_kind = se->interval0.kind; i64 indices[2] = {}; AstNode *nodes[3] = {se->low, se->high, se->max}; for (isize i = 0; i < gb_count_of(nodes); i++) { i64 index = max_count; if (nodes[i] != NULL) { i64 capacity = -1; if (max_count >= 0) { capacity = max_count; } i64 j = 0; if (check_index_value(c, interval_kind == Token_Ellipsis, nodes[i], capacity, &j)) { index = j; } } else if (i == 0) { index = 0; } indices[i] = index; } for (isize i = 0; i < gb_count_of(indices); i++) { i64 a = indices[i]; for (isize j = i+1; j < gb_count_of(indices); j++) { i64 b = indices[j]; if (a > b && b >= 0) { error(se->close, "Invalid slice indices: [%td > %td]", a, b); } } } case_end; case_ast_node(ce, CallExpr, node); return check_call_expr(c, o, node); case_end; case_ast_node(ce, MacroCallExpr, node); return check_macro_call_expr(c, o, node); case_end; case_ast_node(de, DerefExpr, node); check_expr_or_type(c, o, de->expr); if (o->mode == Addressing_Invalid) { o->mode = Addressing_Invalid; o->expr = node; return kind; } else { Type *t = base_type(o->type); if (t->kind == Type_Pointer) { if (o->mode != Addressing_Immutable) { o->mode = Addressing_Variable; } o->type = t->Pointer.elem; } else { gbString str = expr_to_string(o->expr); error(o->expr, "Cannot dereference `%s`", str); gb_string_free(str); o->mode = Addressing_Invalid; o->expr = node; return kind; } } case_end; case AstNode_TypeType: case AstNode_ProcType: case AstNode_PointerType: case AstNode_ArrayType: case AstNode_DynamicArrayType: case AstNode_VectorType: case AstNode_StructType: case AstNode_UnionType: case AstNode_RawUnionType: case AstNode_EnumType: case AstNode_MapType: o->mode = Addressing_Type; o->type = check_type(c, node); break; } kind = Expr_Expr; o->expr = node; return kind; } ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExprKind kind = check_expr_base_internal(c, o, node, type_hint); Type *type = NULL; ExactValue value = {ExactValue_Invalid}; switch (o->mode) { case Addressing_Invalid: type = t_invalid; break; case Addressing_NoValue: type = NULL; break; case Addressing_Constant: type = o->type; value = o->value; break; default: type = o->type; break; } if (type != NULL && is_type_untyped(type)) { add_untyped(&c->info, node, false, o->mode, type, value); } else { add_type_and_value(&c->info, node, o->mode, type, value); } return kind; } void check_multi_expr(Checker *c, Operand *o, AstNode *e) { check_expr_base(c, o, e, NULL); switch (o->mode) { default: return; // NOTE(bill): Valid case Addressing_NoValue: error_operand_no_value(o); break; case Addressing_Type: error_operand_not_expression(o); break; } o->mode = Addressing_Invalid; } void check_not_tuple(Checker *c, Operand *o) { if (o->mode == Addressing_Value) { // NOTE(bill): Tuples are not first class thus never named if (o->type->kind == Type_Tuple) { isize count = o->type->Tuple.variable_count; GB_ASSERT(count != 1); error(o->expr, "%td-valued tuple found where single value expected", count); o->mode = Addressing_Invalid; } } } void check_expr(Checker *c, Operand *o, AstNode *e) { check_multi_expr(c, o, e); check_not_tuple(c, o); } void check_expr_or_type(Checker *c, Operand *o, AstNode *e, Type *type_hint) { check_expr_base(c, o, e, type_hint); check_not_tuple(c, o); error_operand_no_value(o); } gbString write_expr_to_string(gbString str, AstNode *node); gbString write_record_fields_to_string(gbString str, Array params) { for_array(i, params) { if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, params[i]); } return str; } gbString string_append_token(gbString str, Token token) { if (token.string.len > 0) { return gb_string_append_length(str, &token.string[0], token.string.len); } return str; } gbString write_expr_to_string(gbString str, AstNode *node) { if (node == NULL) return str; if (is_ast_node_stmt(node)) { GB_ASSERT("stmt passed to write_expr_to_string"); } switch (node->kind) { default: str = gb_string_appendc(str, "(BadExpr)"); break; case_ast_node(i, Ident, node); str = string_append_token(str, i->token); case_end; case_ast_node(i, Implicit, node); str = string_append_token(str, *i); case_end; case_ast_node(bl, BasicLit, node); str = string_append_token(str, *bl); case_end; case_ast_node(bd, BasicDirective, node); str = gb_string_appendc(str, "#"); str = gb_string_append_length(str, &bd->name[0], bd->name.len); case_end; case_ast_node(pl, ProcLit, node); str = write_expr_to_string(str, pl->type); case_end; case_ast_node(cl, CompoundLit, node); str = write_expr_to_string(str, cl->type); str = gb_string_appendc(str, "{"); for_array(i, cl->elems) { if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, cl->elems[i]); } str = gb_string_appendc(str, "}"); case_end; case_ast_node(te, TagExpr, node); str = gb_string_appendc(str, "#"); str = string_append_token(str, te->name); str = write_expr_to_string(str, te->expr); case_end; case_ast_node(ue, UnaryExpr, node); str = string_append_token(str, ue->op); str = write_expr_to_string(str, ue->expr); case_end; case_ast_node(de, DerefExpr, node); str = write_expr_to_string(str, de->expr); str = gb_string_appendc(str, "^"); case_end; case_ast_node(be, BinaryExpr, node); str = write_expr_to_string(str, be->left); str = gb_string_appendc(str, " "); str = string_append_token(str, be->op); str = gb_string_appendc(str, " "); str = write_expr_to_string(str, be->right); case_end; case_ast_node(te, TernaryExpr, node); str = write_expr_to_string(str, te->cond); str = gb_string_appendc(str, " ? "); str = write_expr_to_string(str, te->x); str = gb_string_appendc(str, " : "); str = write_expr_to_string(str, te->y); case_end; case_ast_node(pe, ParenExpr, node); str = gb_string_appendc(str, "("); str = write_expr_to_string(str, pe->expr); str = gb_string_appendc(str, ")"); case_end; case_ast_node(se, SelectorExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "."); str = write_expr_to_string(str, se->selector); case_end; case_ast_node(ta, TypeAssertion, node); str = write_expr_to_string(str, ta->expr); str = gb_string_appendc(str, ".("); str = write_expr_to_string(str, ta->type); str = gb_string_appendc(str, ")"); case_end; case_ast_node(ie, IndexExpr, node); str = write_expr_to_string(str, ie->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, ie->index); str = gb_string_appendc(str, "]"); case_end; case_ast_node(se, SliceExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, se->low); str = gb_string_appendc(str, ".."); str = write_expr_to_string(str, se->high); if (se->index3) { str = gb_string_appendc(str, ".."); str = write_expr_to_string(str, se->max); } str = gb_string_appendc(str, "]"); case_end; case_ast_node(e, Ellipsis, node); str = gb_string_appendc(str, ".."); str = write_expr_to_string(str, e->expr); case_end; case_ast_node(fv, FieldValue, node); str = write_expr_to_string(str, fv->field); str = gb_string_appendc(str, " = "); str = write_expr_to_string(str, fv->value); case_end; case_ast_node(ht, HelperType, node); str = gb_string_appendc(str, "#type "); str = write_expr_to_string(str, ht->type); case_end; case_ast_node(pt, PolyType, node); str = gb_string_appendc(str, "$"); str = write_expr_to_string(str, pt->type); case_end; case_ast_node(pt, PointerType, node); str = gb_string_appendc(str, "^"); str = write_expr_to_string(str, pt->type); case_end; case_ast_node(at, ArrayType, node); str = gb_string_appendc(str, "["); if (at->count != NULL && at->count->kind == AstNode_UnaryExpr && at->count->UnaryExpr.op.kind == Token_Ellipsis) { str = gb_string_appendc(str, ".."); } else { str = write_expr_to_string(str, at->count); } str = gb_string_appendc(str, "]"); str = write_expr_to_string(str, at->elem); case_end; case_ast_node(at, DynamicArrayType, node); str = gb_string_appendc(str, "[dynamic]"); str = write_expr_to_string(str, at->elem); case_end; case_ast_node(vt, VectorType, node); str = gb_string_appendc(str, "[vector "); str = write_expr_to_string(str, vt->count); str = gb_string_appendc(str, "]"); str = write_expr_to_string(str, vt->elem); case_end; case_ast_node(f, Field, node); if (f->flags&FieldFlag_using) { str = gb_string_appendc(str, "using "); } if (f->flags&FieldFlag_no_alias) { str = gb_string_appendc(str, "#no_alias "); } if (f->flags&FieldFlag_c_vararg) { str = gb_string_appendc(str, "#c_vararg "); } for_array(i, f->names) { AstNode *name = f->names[i]; if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, name); } if (f->names.count > 0) { str = gb_string_appendc(str, ": "); } str = write_expr_to_string(str, f->type); case_end; case_ast_node(f, FieldList, node); bool has_name = false; for_array(i, f->list) { ast_node(field, Field, f->list[i]); if (field->names.count > 1) { has_name = true; break; } if (field->names.count == 0) { continue; } AstNode *name = field->names[0]; ast_node(n, Ident, name); if (n->token.string != "_") { has_name = true; break; } } for_array(i, f->list) { if (i > 0) { str = gb_string_appendc(str, ", "); } if (has_name) { str = write_expr_to_string(str, f->list[i]); } else { ast_node(field, Field, f->list[i]); if (field->flags&FieldFlag_using) { str = gb_string_appendc(str, "using "); } if (field->flags&FieldFlag_no_alias) { str = gb_string_appendc(str, "#no_alias "); } if (field->flags&FieldFlag_c_vararg) { str = gb_string_appendc(str, "#c_vararg "); } str = write_expr_to_string(str, field->type); } } case_end; case_ast_node(f, UnionField, node); str = write_expr_to_string(str, f->name); str = gb_string_appendc(str, "{"); str = write_expr_to_string(str, f->list); str = gb_string_appendc(str, "}"); case_end; case_ast_node(ce, CallExpr, node); str = write_expr_to_string(str, ce->proc); str = gb_string_appendc(str, "("); for_array(i, ce->args) { AstNode *arg = ce->args[i]; if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, arg); } str = gb_string_appendc(str, ")"); case_end; case_ast_node(ht, TypeType, node); str = gb_string_appendc(str, "type"); case_end; case_ast_node(pt, ProcType, node); str = gb_string_appendc(str, "proc("); str = write_expr_to_string(str, pt->params); str = gb_string_appendc(str, ")"); if (pt->results != NULL) { str = gb_string_appendc(str, " -> "); str = write_expr_to_string(str, pt->results); } case_end; case_ast_node(st, StructType, node); str = gb_string_appendc(str, "struct "); if (st->is_packed) str = gb_string_appendc(str, "#packed "); if (st->is_ordered) str = gb_string_appendc(str, "#ordered "); str = gb_string_appendc(str, "{"); str = write_record_fields_to_string(str, st->fields); str = gb_string_appendc(str, "}"); case_end; case_ast_node(st, RawUnionType, node); str = gb_string_appendc(str, "raw_union "); str = gb_string_appendc(str, "{"); str = write_record_fields_to_string(str, st->fields); str = gb_string_appendc(str, "}"); case_end; case_ast_node(st, UnionType, node); str = gb_string_appendc(str, "union "); str = gb_string_appendc(str, "{"); str = write_record_fields_to_string(str, st->fields); str = gb_string_appendc(str, "}"); case_end; case_ast_node(et, EnumType, node); str = gb_string_appendc(str, "enum "); if (et->base_type != NULL) { str = write_expr_to_string(str, et->base_type); str = gb_string_appendc(str, " "); } str = gb_string_appendc(str, "{"); for_array(i, et->fields) { if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, et->fields[i]); } str = gb_string_appendc(str, "}"); case_end; case_ast_node(at, AtomicType, node); str = gb_string_appendc(str, "atomic "); str = write_expr_to_string(str, at->type); case_end; } return str; } gbString expr_to_string(AstNode *expression) { return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression); }