void populate_using_array_index(CheckerContext *ctx, Ast *node, AstField *field, Type *t, String name, i32 idx) { t = base_type(t); GB_ASSERT(t->kind == Type_Array); Entity *e = scope_lookup_current(ctx->scope, name); if (e != nullptr) { gbString str = nullptr; defer (gb_string_free(str)); if (node != nullptr) { str = expr_to_string(node); } if (str != nullptr) { error(e->token, "'%.*s' is already declared in '%s'", LIT(name), str); } else { error(e->token, "'%.*s' is already declared", LIT(name)); } } else { Token tok = make_token_ident(name); if (field->names.count > 0) { tok.pos = ast_token(field->names[0]).pos; } else { tok.pos = ast_token(field->type).pos; } Entity *f = alloc_entity_array_elem(nullptr, tok, t->Array.elem, idx); add_entity(ctx->checker, ctx->scope, nullptr, f); } } void populate_using_entity_scope(CheckerContext *ctx, Ast *node, AstField *field, Type *t) { if (t == nullptr) { return; } t = base_type(type_deref(t)); gbString str = nullptr; defer (gb_string_free(str)); if (node != nullptr) { str = expr_to_string(node); } if (t->kind == Type_Struct) { for_array(i, t->Struct.fields) { Entity *f = t->Struct.fields[i]; GB_ASSERT(f->kind == Entity_Variable); String name = f->token.string; Entity *e = scope_lookup_current(ctx->scope, name); if (e != nullptr && name != "_") { // TODO(bill): Better type error if (str != nullptr) { error(e->token, "'%.*s' is already declared in '%s'", LIT(name), str); } else { error(e->token, "'%.*s' is already declared", LIT(name)); } } else { add_entity(ctx->checker, ctx->scope, nullptr, f); if (f->flags & EntityFlag_Using) { populate_using_entity_scope(ctx, node, field, f->type); } } } } else if (t->kind == Type_BitField) { for_array(i, t->BitField.fields) { Entity *f = t->BitField.fields[i]; String name = f->token.string; Entity *e = scope_lookup_current(ctx->scope, name); if ((e != nullptr && name != "_") && (e != f)) { // TODO(bill): Better type error if (str != nullptr) { error(e->token, "'%.*s' is already declared in '%s'", LIT(name), str); } else { error(e->token, "'%.*s' is already declared", LIT(name)); } } else { add_entity(ctx->checker, ctx->scope, nullptr, f); } } } else if (t->kind == Type_Array && t->Array.count <= 4) { Entity *e = nullptr; String name = {}; i32 idx = 0; switch (t->Array.count) { case 4: populate_using_array_index(ctx, node, field, t, str_lit("w"), 3); populate_using_array_index(ctx, node, field, t, str_lit("a"), 3); /*fallthrough*/ case 3: populate_using_array_index(ctx, node, field, t, str_lit("z"), 2); populate_using_array_index(ctx, node, field, t, str_lit("b"), 2); /*fallthrough*/ case 2: populate_using_array_index(ctx, node, field, t, str_lit("y"), 1); populate_using_array_index(ctx, node, field, t, str_lit("g"), 1); /*fallthrough*/ case 1: populate_using_array_index(ctx, node, field, t, str_lit("x"), 0); populate_using_array_index(ctx, node, field, t, str_lit("r"), 0); /*fallthrough*/ default: break; } } } bool does_field_type_allow_using(Type *t) { t = base_type(t); if (is_type_struct(t)) { return true; } else if (is_type_raw_union(t)) { return true; } else if (is_type_bit_field(t)) { return true; } else if (is_type_array(t)) { return t->Array.count <= 4; } else if (is_type_typeid(t)) { return true; } return false; } void check_struct_fields(CheckerContext *ctx, Ast *node, Array *fields, Array *tags, Array const ¶ms, isize init_field_capacity, Type *struct_type, String context) { *fields = array_make(heap_allocator(), 0, init_field_capacity); *tags = array_make(heap_allocator(), 0, init_field_capacity); GB_ASSERT(node->kind == Ast_StructType); GB_ASSERT(struct_type->kind == Type_Struct); isize variable_count = 0; for_array(i, params) { Ast *field = params[i]; if (ast_node_expect(field, Ast_Field)) { ast_node(f, Field, field); variable_count += gb_max(f->names.count, 1); } } i32 field_src_index = 0; for_array(i, params) { Ast *param = params[i]; if (param->kind != Ast_Field) { continue; } ast_node(p, Field, param); Ast *type_expr = p->type; Type *type = nullptr; bool detemine_type_from_operand = false; if (type_expr != nullptr) { type = check_type_expr(ctx, type_expr, nullptr); if (is_type_polymorphic(type)) { struct_type->Struct.is_polymorphic = true; type = nullptr; } } if (type == nullptr) { error(params[i], "Invalid parameter type"); type = t_invalid; } if (is_type_untyped(type)) { if (is_type_untyped_undef(type)) { error(params[i], "Cannot determine parameter type from ---"); } else { error(params[i], "Cannot determine parameter type from a nil"); } type = t_invalid; } bool is_using = (p->flags&FieldFlag_using) != 0; for_array(j, p->names) { Ast *name = p->names[j]; if (!ast_node_expect(name, Ast_Ident)) { continue; } Token name_token = name->Ident.token; Entity *field = alloc_entity_field(ctx->scope, name_token, type, is_using, field_src_index); add_entity(ctx->checker, ctx->scope, name, field); array_add(fields, field); array_add(tags, p->tag.string); field_src_index += 1; } if (is_using && p->names.count > 0) { Type *first_type = (*fields)[fields->count-1]->type; Type *t = base_type(type_deref(first_type)); if (!does_field_type_allow_using(t) && p->names.count >= 1 && p->names[0]->kind == Ast_Ident) { Token name_token = p->names[0]->Ident.token; gbString type_str = type_to_string(first_type); error(name_token, "'using' cannot be applied to the field '%.*s' of type '%s'", LIT(name_token.string), type_str); gb_string_free(type_str); continue; } populate_using_entity_scope(ctx, node, p, type); } } } Entity *make_names_field_for_struct(CheckerContext *ctx, Scope *scope) { Entity *e = alloc_entity_field(scope, make_token_ident(str_lit("names")), t_string_slice, false, 0); e->flags |= EntityFlag_TypeField; e->flags |= EntityFlag_Value; return e; } bool check_custom_align(CheckerContext *ctx, Ast *node, i64 *align_) { GB_ASSERT(align_ != nullptr); Operand o = {}; check_expr(ctx, &o, node); if (o.mode != Addressing_Constant) { if (o.mode != Addressing_Invalid) { error(node, "#align must be a constant"); } return false; } Type *type = base_type(o.type); if (is_type_untyped(type) || is_type_integer(type)) { if (o.value.kind == ExactValue_Integer) { BigInt v = o.value.value_integer; if (v.len > 1) { gbAllocator a = heap_allocator(); String str = big_int_to_string(a, &v); error(node, "#align too large, %.*s", LIT(str)); gb_free(a, str.text); return false; } i64 align = big_int_to_i64(&v); if (align < 1 || !gb_is_power_of_two(cast(isize)align)) { error(node, "#align must be a power of 2, got %lld", align); return false; } // NOTE(bill): Success!!! i64 custom_align = gb_clamp(align, 1, build_context.max_align); if (custom_align < align) { warning(node, "Custom alignment has been clamped to %lld from %lld", align, custom_align); } *align_ = custom_align; return true; } } error(node, "#align must be an integer"); return false; } Entity *find_polymorphic_record_entity(CheckerContext *ctx, Type *original_type, isize param_count, Array const &ordered_operands, bool *failure) { auto *found_gen_types = map_get(&ctx->checker->info.gen_types, hash_pointer(original_type)); if (found_gen_types != nullptr) { for_array(i, *found_gen_types) { Entity *e = (*found_gen_types)[i]; Type *t = base_type(e->type); TypeTuple *tuple = get_record_polymorphic_params(t); GB_ASSERT(param_count == tuple->variables.count); bool skip = false; for (isize j = 0; j < param_count; j++) { Entity *p = tuple->variables[j]; Operand o = ordered_operands[j]; Entity *oe = entity_of_node(o.expr); if (p == oe) { // NOTE(bill): This is the same type, make sure that it will be be same thing and use that // Saves on a lot of checking too below continue; } if (p->kind == Entity_TypeName) { if (is_type_polymorphic(o.type)) { // NOTE(bill): Do not add polymorphic version to the gen_types skip = true; break; } if (!are_types_identical(o.type, p->type)) { skip = true; break; } } else if (p->kind == Entity_Constant) { if (!compare_exact_values(Token_CmpEq, o.value, p->Constant.value)) { skip = true; break; } if (!are_types_identical(o.type, p->type)) { skip = true; break; } } else { GB_PANIC("Unknown entity kind"); } } if (!skip) { return e; } } } return nullptr; } void add_polymorphic_record_entity(CheckerContext *ctx, Ast *node, Type *named_type, Type *original_type) { GB_ASSERT(is_type_named(named_type)); gbAllocator a = heap_allocator(); Scope *s = ctx->scope->parent; Entity *e = nullptr; { Token token = ast_token(node); token.kind = Token_String; token.string = named_type->Named.name; Ast *node = ast_ident(nullptr, token); e = alloc_entity_type_name(s, token, named_type); e->state = EntityState_Resolved; e->file = ctx->file; e->pkg = ctx->pkg; add_entity_use(ctx, node, e); } named_type->Named.type_name = e; auto *found_gen_types = map_get(&ctx->checker->info.gen_types, hash_pointer(original_type)); if (found_gen_types) { array_add(found_gen_types, e); } else { auto array = array_make(heap_allocator()); array_add(&array, e); map_set(&ctx->checker->info.gen_types, hash_pointer(original_type), array); } { Type *dst_bt = base_type(named_type); Type *src_bt = base_type(original_type); if ((dst_bt != nullptr && src_bt != nullptr) && (dst_bt->kind == src_bt->kind)){ if (dst_bt->kind == Type_Struct) { if (dst_bt->Struct.atom_op_table == nullptr) { dst_bt->Struct.atom_op_table = src_bt->Struct.atom_op_table; } } } } } void check_struct_type(CheckerContext *ctx, Type *struct_type, Ast *node, Array *poly_operands, Type *named_type, Type *original_type_for_poly) { GB_ASSERT(is_type_struct(struct_type)); ast_node(st, StructType, node); String context = str_lit("struct"); isize min_field_count = 0; for_array(field_index, st->fields) { Ast *field = st->fields[field_index]; switch (field->kind) { case_ast_node(f, ValueDecl, field); min_field_count += f->names.count; case_end; case_ast_node(f, Field, field); min_field_count += f->names.count; case_end; } } struct_type->Struct.names = make_names_field_for_struct(ctx, ctx->scope); scope_reserve(ctx->scope, min_field_count); if (st->is_raw_union && min_field_count > 1) { struct_type->Struct.is_raw_union = true; context = str_lit("struct #raw_union"); } // NOTE(bill): Yes I know it's a non-const reference, what you gonna do? bool &is_polymorphic = struct_type->Struct.is_polymorphic; Type *polymorphic_params = nullptr; bool can_check_fields = true; bool is_poly_specialized = false; if (st->polymorphic_params != nullptr) { ast_node(field_list, FieldList, st->polymorphic_params); Array params = field_list->list; if (params.count != 0) { isize variable_count = 0; for_array(i, params) { Ast *field = params[i]; if (ast_node_expect(field, Ast_Field)) { ast_node(f, Field, field); variable_count += gb_max(f->names.count, 1); } } auto entities = array_make(ctx->allocator, 0, variable_count); for_array(i, params) { Ast *param = params[i]; if (param->kind != Ast_Field) { continue; } ast_node(p, Field, param); Ast *type_expr = p->type; Type *type = nullptr; bool is_type_param = false; bool is_type_polymorphic_type = false; if (type_expr == nullptr) { error(param, "Expected a type for this parameter"); continue; } if (type_expr->kind == Ast_Ellipsis) { type_expr = type_expr->Ellipsis.expr; error(param, "A polymorphic parameter cannot be variadic"); } if (type_expr->kind == Ast_TypeidType) { is_type_param = true; Type *specialization = nullptr; if (type_expr->TypeidType.specialization != nullptr) { Ast *s = type_expr->TypeidType.specialization; specialization = check_type(ctx, s); } type = alloc_type_generic(ctx->scope, 0, str_lit(""), specialization); } else { type = check_type(ctx, type_expr); if (is_type_polymorphic(type)) { is_type_polymorphic_type = true; } } if (type == nullptr) { error(params[i], "Invalid parameter type"); type = t_invalid; } if (is_type_untyped(type)) { if (is_type_untyped_undef(type)) { error(params[i], "Cannot determine parameter type from ---"); } else { error(params[i], "Cannot determine parameter type from a nil"); } type = t_invalid; } if (is_type_polymorphic_type) { gbString str = type_to_string(type); error(params[i], "Parameter types cannot be polymorphic, got %s", str); gb_string_free(str); type = t_invalid; } if (!is_type_param && !is_type_constant_type(type)) { gbString str = type_to_string(type); error(params[i], "A parameter must be a valid constant type, got %s", str); gb_string_free(str); } Scope *scope = ctx->scope; for_array(j, p->names) { Ast *name = p->names[j]; if (!ast_node_expect(name, Ast_Ident)) { continue; } Entity *e = nullptr; Token token = name->Ident.token; if (poly_operands != nullptr) { Operand operand = (*poly_operands)[entities.count]; if (is_type_param) { if (is_type_polymorphic(base_type(operand.type))) { is_polymorphic = true; can_check_fields = false; } e = alloc_entity_type_name(scope, token, operand.type); e->TypeName.is_type_alias = true; } else { if (is_type_polymorphic(base_type(operand.type))) { is_polymorphic = true; can_check_fields = false; } if (e == nullptr) { e = alloc_entity_constant(scope, token, operand.type, operand.value); } } } else { if (is_type_param) { e = alloc_entity_type_name(scope, token, type); e->TypeName.is_type_alias = true; } else { e = alloc_entity_constant(scope, token, type, empty_exact_value); } } e->state = EntityState_Resolved; add_entity(ctx->checker, scope, name, e); array_add(&entities, e); } } if (entities.count > 0) { Type *tuple = alloc_type_tuple(); tuple->Tuple.variables = entities; polymorphic_params = tuple; } } if (original_type_for_poly != nullptr) { GB_ASSERT(named_type != nullptr); add_polymorphic_record_entity(ctx, node, named_type, original_type_for_poly); } } if (!is_polymorphic) { is_polymorphic = polymorphic_params != nullptr && poly_operands == nullptr; } if (poly_operands != nullptr) { is_poly_specialized = true; for (isize i = 0; i < poly_operands->count; i++) { Operand o = (*poly_operands)[i]; if (is_type_polymorphic(o.type)) { is_poly_specialized = false; break; } if (struct_type == o.type) { // NOTE(bill): Cycle is_poly_specialized = false; break; } } } struct_type->Struct.scope = ctx->scope; struct_type->Struct.is_packed = st->is_packed; struct_type->Struct.polymorphic_params = polymorphic_params; struct_type->Struct.is_poly_specialized = is_poly_specialized; if (!is_polymorphic) { if (st->where_clauses.count > 0 && st->polymorphic_params == nullptr) { error(st->where_clauses[0], "'where' clauses can only be used on structures with polymorphic parameters"); } else { bool where_clause_ok = evaluate_where_clauses(ctx, node, ctx->scope, &st->where_clauses, true); } check_struct_fields(ctx, node, &struct_type->Struct.fields, &struct_type->Struct.tags, st->fields, min_field_count, struct_type, context); } if (st->align != nullptr) { if (st->is_packed) { syntax_error(st->align, "'#align' cannot be applied with '#packed'"); return; } i64 custom_align = 1; if (check_custom_align(ctx, st->align, &custom_align)) { struct_type->Struct.custom_align = custom_align; } } } void check_union_type(CheckerContext *ctx, Type *union_type, Ast *node, Array *poly_operands, Type *named_type, Type *original_type_for_poly) { GB_ASSERT(is_type_union(union_type)); ast_node(ut, UnionType, node); isize variant_count = ut->variants.count; Entity *using_index_expr = nullptr; auto variants = array_make(ctx->allocator, 0, variant_count); union_type->Union.scope = ctx->scope; Type *polymorphic_params = nullptr; bool is_polymorphic = false; bool can_check_fields = true; bool is_poly_specialized = false; if (ut->polymorphic_params != nullptr) { ast_node(field_list, FieldList, ut->polymorphic_params); Array params = field_list->list; if (params.count != 0) { isize variable_count = 0; for_array(i, params) { Ast *field = params[i]; if (ast_node_expect(field, Ast_Field)) { ast_node(f, Field, field); variable_count += gb_max(f->names.count, 1); } } auto entities = array_make(ctx->allocator, 0, variable_count); for_array(i, params) { Ast *param = params[i]; if (param->kind != Ast_Field) { continue; } ast_node(p, Field, param); Ast *type_expr = p->type; Type *type = nullptr; bool is_type_param = false; bool is_type_polymorphic_type = false; if (type_expr == nullptr) { error(param, "Expected a type for this parameter"); continue; } if (type_expr->kind == Ast_Ellipsis) { type_expr = type_expr->Ellipsis.expr; error(param, "A polymorphic parameter cannot be variadic"); } if (type_expr->kind == Ast_TypeidType) { is_type_param = true; Type *specialization = nullptr; if (type_expr->TypeidType.specialization != nullptr) { Ast *s = type_expr->TypeidType.specialization; specialization = check_type(ctx, s); } type = alloc_type_generic(ctx->scope, 0, str_lit(""), specialization); } else { type = check_type(ctx, type_expr); if (is_type_polymorphic(type)) { is_type_polymorphic_type = true; } } if (type == nullptr) { error(params[i], "Invalid parameter type"); type = t_invalid; } if (is_type_untyped(type)) { if (is_type_untyped_undef(type)) { error(params[i], "Cannot determine parameter type from ---"); } else { error(params[i], "Cannot determine parameter type from a nil"); } type = t_invalid; } if (is_type_polymorphic_type) { gbString str = type_to_string(type); error(params[i], "Parameter types cannot be polymorphic, got %s", str); gb_string_free(str); type = t_invalid; } if (!is_type_param && !is_type_constant_type(type)) { gbString str = type_to_string(type); error(params[i], "A parameter must be a valid constant type, got %s", str); gb_string_free(str); } Scope *scope = ctx->scope; for_array(j, p->names) { Ast *name = p->names[j]; if (!ast_node_expect(name, Ast_Ident)) { continue; } Entity *e = nullptr; Token token = name->Ident.token; if (poly_operands != nullptr) { Operand operand = (*poly_operands)[entities.count]; if (is_type_param) { GB_ASSERT(operand.mode == Addressing_Type || operand.mode == Addressing_Invalid); if (is_type_polymorphic(base_type(operand.type))) { is_polymorphic = true; can_check_fields = false; } e = alloc_entity_type_name(scope, token, operand.type); e->TypeName.is_type_alias = true; } else { // GB_ASSERT(operand.mode == Addressing_Constant); e = alloc_entity_constant(scope, token, operand.type, operand.value); } } else { if (is_type_param) { e = alloc_entity_type_name(scope, token, type); e->TypeName.is_type_alias = true; } else { e = alloc_entity_constant(scope, token, type, empty_exact_value); } } e->state = EntityState_Resolved; add_entity(ctx->checker, scope, name, e); array_add(&entities, e); } } if (entities.count > 0) { Type *tuple = alloc_type_tuple(); tuple->Tuple.variables = entities; polymorphic_params = tuple; } } if (original_type_for_poly != nullptr) { GB_ASSERT(named_type != nullptr); add_polymorphic_record_entity(ctx, node, named_type, original_type_for_poly); } } if (!is_polymorphic) { is_polymorphic = polymorphic_params != nullptr && poly_operands == nullptr; } if (poly_operands != nullptr) { is_poly_specialized = true; for (isize i = 0; i < poly_operands->count; i++) { Operand o = (*poly_operands)[i]; if (is_type_polymorphic(o.type)) { is_poly_specialized = false; break; } if (union_type == o.type) { // NOTE(bill): Cycle is_poly_specialized = false; break; } } } union_type->Union.scope = ctx->scope; union_type->Union.polymorphic_params = polymorphic_params; union_type->Union.is_polymorphic = is_polymorphic; union_type->Union.is_poly_specialized = is_poly_specialized; if (ut->where_clauses.count > 0 && ut->polymorphic_params == nullptr) { error(ut->where_clauses[0], "'where' clauses can only be used on unions with polymorphic parameters"); } else { bool where_clause_ok = evaluate_where_clauses(ctx, node, ctx->scope, &ut->where_clauses, true); } for_array(i, ut->variants) { Ast *node = ut->variants[i]; Type *t = check_type_expr(ctx, node, nullptr); if (t != nullptr && t != t_invalid) { bool ok = true; t = default_type(t); if (is_type_untyped(t) || is_type_empty_union(t)) { ok = false; gbString str = type_to_string(t); error(node, "Invalid variant type in union '%s'", str); gb_string_free(str); } else { for_array(j, variants) { if (are_types_identical(t, variants[j])) { ok = false; gbString str = type_to_string(t); error(node, "Duplicate variant type '%s'", str); gb_string_free(str); break; } } } if (ok) { array_add(&variants, t); } } } union_type->Union.variants = variants; union_type->Union.no_nil = ut->no_nil; union_type->Union.maybe = ut->maybe; if (union_type->Union.no_nil) { if (variants.count < 2) { error(ut->align, "A union with #no_nil must have at least 2 variants"); } } if (union_type->Union.maybe) { if (variants.count != 1) { error(ut->align, "A union with #maybe must have at 1 variant, got %lld", cast(long long)variants.count); } } if (ut->align != nullptr) { i64 custom_align = 1; if (check_custom_align(ctx, ut->align, &custom_align)) { if (variants.count == 0) { error(ut->align, "An empty union cannot have a custom alignment"); } else { union_type->Union.custom_align = custom_align; } } } } void check_enum_type(CheckerContext *ctx, Type *enum_type, Type *named_type, Ast *node) { ast_node(et, EnumType, node); GB_ASSERT(is_type_enum(enum_type)); Type *base_type = t_int; if (et->base_type != nullptr) { base_type = check_type(ctx, et->base_type); } if (base_type == nullptr || !is_type_integer(base_type)) { error(node, "Base type for enumeration must be an integer"); return; } if (is_type_enum(base_type)) { error(node, "Base type for enumeration cannot be another enumeration"); return; } if (is_type_integer_128bit(base_type)) { error(node, "Base type for enumeration cannot be a 128-bit integer"); return; } // NOTE(bill): Must be up here for the 'check_init_constant' system enum_type->Enum.base_type = base_type; enum_type->Enum.scope = ctx->scope; auto fields = array_make(ctx->allocator, 0, et->fields.count); Type *constant_type = enum_type; if (named_type != nullptr) { constant_type = named_type; } ExactValue iota = exact_value_i64(-1); ExactValue min_value = exact_value_i64(0); ExactValue max_value = exact_value_i64(0); isize min_value_index = 0; isize max_value_index = 0; bool min_value_set = false; bool max_value_set = false; scope_reserve(ctx->scope, et->fields.count); for_array(i, et->fields) { Ast *field = et->fields[i]; Ast *ident = nullptr; Ast *init = nullptr; if (field->kind == Ast_FieldValue) { ast_node(fv, FieldValue, field); if (fv->field == nullptr || fv->field->kind != Ast_Ident) { error(field, "An enum field's name must be an identifier"); continue; } ident = fv->field; init = fv->value; } else if (field->kind == Ast_Ident) { ident = field; } else { error(field, "An enum field's name must be an identifier"); continue; } String name = ident->Ident.token.string; if (init != nullptr) { Operand o = {}; check_expr(ctx, &o, init); if (o.mode != Addressing_Constant) { error(init, "Enumeration value must be a constant"); o.mode = Addressing_Invalid; } if (o.mode != Addressing_Invalid) { check_assignment(ctx, &o, constant_type, str_lit("enumeration")); } if (o.mode != Addressing_Invalid) { iota = o.value; } else { iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1)); } } else { iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1)); } // NOTE(bill): Skip blank identifiers if (is_blank_ident(name)) { continue; } else if (name == "names") { error(field, "'names' is a reserved identifier for enumerations"); continue; } if (min_value_set) { if (compare_exact_values(Token_Gt, min_value, iota)) { min_value_index = i; min_value = iota; } } else { min_value_index = i; min_value = iota; min_value_set = true; } if (max_value_set) { if (compare_exact_values(Token_Lt, max_value, iota)) { max_value_index = i; max_value = iota; } } else { max_value_index = i; max_value = iota; max_value_set = true; } Entity *e = alloc_entity_constant(ctx->scope, ident->Ident.token, constant_type, iota); e->identifier = ident; e->flags |= EntityFlag_Visited; e->state = EntityState_Resolved; if (scope_lookup_current(ctx->scope, name) != nullptr) { error(ident, "'%.*s' is already declared in this enumeration", LIT(name)); } else { add_entity(ctx->checker, ctx->scope, nullptr, e); array_add(&fields, e); // TODO(bill): Should I add a use for the enum value? add_entity_use(ctx, field, e); } } GB_ASSERT(fields.count <= et->fields.count); enum_type->Enum.fields = fields; enum_type->Enum.names = make_names_field_for_struct(ctx, ctx->scope); enum_type->Enum.min_value = min_value; enum_type->Enum.max_value = max_value; enum_type->Enum.min_value_index = min_value_index; enum_type->Enum.max_value_index = max_value_index; } void check_bit_field_type(CheckerContext *ctx, Type *bit_field_type, Ast *node) { ast_node(bft, BitFieldType, node); GB_ASSERT(is_type_bit_field(bit_field_type)); auto fields = array_make(ctx->allocator, 0, bft->fields.count); auto sizes = array_make (ctx->allocator, 0, bft->fields.count); auto offsets = array_make (ctx->allocator, 0, bft->fields.count); scope_reserve(ctx->scope, bft->fields.count); u32 curr_offset = 0; for_array(i, bft->fields) { Ast *field = bft->fields[i]; GB_ASSERT(field->kind == Ast_FieldValue); Ast *ident = field->FieldValue.field; Ast *value = field->FieldValue.value; if (ident->kind != Ast_Ident) { error(field, "A bit field value's name must be an identifier"); continue; } String name = ident->Ident.token.string; Operand o = {}; check_expr(ctx, &o, value); if (o.mode != Addressing_Constant) { error(value, "Bit field bit size must be a constant"); continue; } ExactValue v = exact_value_to_integer(o.value); if (v.kind != ExactValue_Integer) { error(value, "Bit field bit size must be a constant integer"); continue; } i64 bits_ = big_int_to_i64(&v.value_integer); // TODO(bill): what if the integer is huge? if (bits_ < 0 || bits_ > 64) { error(value, "Bit field's bit size must be within the range 1...64, got %lld", cast(long long)bits_); continue; } u32 bits = cast(u32)bits_; Type *value_type = alloc_type_bit_field_value(bits); Entity *e = alloc_entity_variable(bit_field_type->BitField.scope, ident->Ident.token, value_type); e->identifier = ident; e->flags |= EntityFlag_BitFieldValue; if (!is_blank_ident(name) && scope_lookup_current(ctx->scope, name) != nullptr) { error(ident, "'%.*s' is already declared in this bit field", LIT(name)); } else { add_entity(ctx->checker, ctx->scope, nullptr, e); // TODO(bill): Should this entity be "used"? add_entity_use(ctx, field, e); array_add(&fields, e); array_add(&offsets, curr_offset); array_add(&sizes, bits); curr_offset += bits; } } GB_ASSERT(fields.count <= bft->fields.count); bit_field_type->BitField.fields = fields; bit_field_type->BitField.sizes = sizes; bit_field_type->BitField.offsets = offsets; if (bft->align != nullptr) { i64 custom_align = 1; if (check_custom_align(ctx, bft->align, &custom_align)) { bit_field_type->BitField.custom_align = custom_align; } } } bool is_type_valid_bit_set_range(Type *t) { if (is_type_integer(t)) { return true; } if (is_type_rune(t)) { return true; } return false; } void check_bit_set_type(CheckerContext *c, Type *type, Type *named_type, Ast *node) { ast_node(bs, BitSetType, node); GB_ASSERT(type->kind == Type_BitSet); i64 const DEFAULT_BITS = cast(i64)(8*build_context.word_size); i64 const MAX_BITS = 128; Ast *base = unparen_expr(bs->elem); if (is_ast_range(base)) { ast_node(be, BinaryExpr, base); Operand lhs = {}; Operand rhs = {}; check_expr(c, &lhs, be->left); check_expr(c, &rhs, be->right); if (lhs.mode == Addressing_Invalid || rhs.mode == Addressing_Invalid) { return; } convert_to_typed(c, &lhs, rhs.type); if (lhs.mode == Addressing_Invalid) { return; } convert_to_typed(c, &rhs, lhs.type); if (rhs.mode == Addressing_Invalid) { return; } if (!are_types_identical(lhs.type, rhs.type)) { if (lhs.type != t_invalid && rhs.type != t_invalid) { gbString xt = type_to_string(lhs.type); gbString yt = type_to_string(rhs.type); gbString expr_str = expr_to_string(bs->elem); error(bs->elem, "Mismatched types in range '%s' : '%s' vs '%s'", expr_str, xt, yt); gb_string_free(expr_str); gb_string_free(yt); gb_string_free(xt); } return; } if (!is_type_valid_bit_set_range(lhs.type)) { gbString str = type_to_string(lhs.type); error(bs->elem, "'%s' is invalid for an interval expression, expected an integer or rune", str); gb_string_free(str); return; } if (lhs.mode != Addressing_Constant || rhs.mode != Addressing_Constant) { error(bs->elem, "Intervals must be constant values"); return; } ExactValue iv = exact_value_to_integer(lhs.value); ExactValue jv = exact_value_to_integer(rhs.value); GB_ASSERT(iv.kind == ExactValue_Integer); GB_ASSERT(jv.kind == ExactValue_Integer); BigInt i = iv.value_integer; BigInt j = jv.value_integer; if (big_int_cmp(&i, &j) > 0) { gbAllocator a = heap_allocator(); String si = big_int_to_string(a, &i); String sj = big_int_to_string(a, &j); error(bs->elem, "Lower interval bound larger than upper bound, %.*s .. %.*s", LIT(si), LIT(sj)); gb_free(a, si.text); gb_free(a, sj.text); return; } Type *t = default_type(lhs.type); if (bs->underlying != nullptr) { Type *u = check_type(c, bs->underlying); if (!is_type_integer(u)) { gbString ts = type_to_string(u); error(bs->underlying, "Expected an underlying integer for the bit set, got %s", ts); gb_string_free(ts); return; } type->BitSet.underlying = u; } if (!check_representable_as_constant(c, iv, t, nullptr)) { gbAllocator a = heap_allocator(); String s = big_int_to_string(a, &i); gbString ts = type_to_string(t); error(bs->elem, "%.*s is not representable by %s", LIT(s), ts); gb_string_free(ts); gb_free(a, s.text); return; } if (!check_representable_as_constant(c, iv, t, nullptr)) { gbAllocator a = heap_allocator(); String s = big_int_to_string(a, &j); gbString ts = type_to_string(t); error(bs->elem, "%.*s is not representable by %s", LIT(s), ts); gb_string_free(ts); gb_free(a, s.text); return; } i64 lower = big_int_to_i64(&i); i64 upper = big_int_to_i64(&j); i64 bits = MAX_BITS; if (type->BitSet.underlying != nullptr) { bits = 8*type_size_of(type->BitSet.underlying); } switch (be->op.kind) { case Token_Ellipsis: if (upper - lower >= bits) { error(bs->elem, "bit_set range is greater than %lld bits, %lld bits are required", bits, (upper-lower+1)); } break; case Token_RangeHalf: if (upper - lower > bits) { error(bs->elem, "bit_set range is greater than %lld bits, %lld bits are required", bits, (upper-lower)); } upper -= 1; break; } type->BitSet.elem = t; type->BitSet.lower = lower; type->BitSet.upper = upper; } else { Type *elem = check_type_expr(c, bs->elem, nullptr); #if 0 if (named_type != nullptr && named_type->kind == Type_Named && elem->kind == Type_Enum) { // NOTE(bill): Anonymous enumeration String prefix = named_type->Named.name; String enum_name = concatenate_strings(heap_allocator(), prefix, str_lit(".enum")); Token token = make_token_ident(enum_name); Entity *e = alloc_entity_type_name(nullptr, token, nullptr, EntityState_Resolved); Type *named = alloc_type_named(enum_name, elem, e); e->type = named; e->TypeName.is_type_alias = true; elem = named; } #endif type->BitSet.elem = elem; if (!is_type_valid_bit_set_elem(elem)) { error(bs->elem, "Expected an enum type for a bit_set"); } else { Type *et = base_type(elem); if (et->kind == Type_Enum) { if (!is_type_integer(et->Enum.base_type)) { error(bs->elem, "Enum type for bit_set must be an integer"); return; } i64 lower = 0; i64 upper = 0; for_array(i, et->Enum.fields) { Entity *e = et->Enum.fields[i]; if (e->kind != Entity_Constant) { continue; } ExactValue value = exact_value_to_integer(e->Constant.value); GB_ASSERT(value.kind == ExactValue_Integer); // NOTE(bill): enum types should be able to store i64 values i64 x = big_int_to_i64(&value.value_integer); lower = gb_min(lower, x); upper = gb_max(upper, x); } GB_ASSERT(lower <= upper); i64 bits = MAX_BITS; if (bs->underlying != nullptr) { Type *u = check_type(c, bs->underlying); if (!is_type_integer(u)) { gbString ts = type_to_string(u); error(bs->underlying, "Expected an underlying integer for the bit set, got %s", ts); gb_string_free(ts); return; } type->BitSet.underlying = u; bits = 8*type_size_of(u); } if (upper - lower >= MAX_BITS) { error(bs->elem, "bit_set range is greater than %lld bits, %lld bits are required", MAX_BITS, (upper-lower+1)); } type->BitSet.lower = lower; type->BitSet.upper = upper; } } } } bool check_type_specialization_to(CheckerContext *ctx, Type *specialization, Type *type, bool compound, bool modify_type) { if (type == nullptr || type == t_invalid) { return true; } Type *t = base_type(type); Type *s = base_type(specialization); if (t->kind != s->kind) { return false; } if (is_type_untyped(t)) { Operand o = {Addressing_Value}; o.type = default_type(type); bool can_convert = check_cast_internal(ctx, &o, specialization); return can_convert; } else if (t->kind == Type_Struct) { if (t->Struct.polymorphic_parent == specialization) { return true; } if (t->Struct.polymorphic_parent == s->Struct.polymorphic_parent && s->Struct.polymorphic_params != nullptr && t->Struct.polymorphic_params != nullptr) { TypeTuple *s_tuple = &s->Struct.polymorphic_params->Tuple; TypeTuple *t_tuple = &t->Struct.polymorphic_params->Tuple; GB_ASSERT(t_tuple->variables.count == s_tuple->variables.count); for_array(i, s_tuple->variables) { Entity *s_e = s_tuple->variables[i]; Entity *t_e = t_tuple->variables[i]; Type *st = s_e->type; Type *tt = t_e->type; // NOTE(bill, 2018-12-14): This is needed to override polymorphic named constants in types if (st->kind == Type_Generic && t_e->kind == Entity_Constant) { Entity *e = scope_lookup(st->Generic.scope, st->Generic.name); GB_ASSERT(e != nullptr); if (modify_type) { e->kind = Entity_Constant; e->Constant.value = t_e->Constant.value; e->type = t_e->type; } } else { if (st->kind == Type_Basic && tt->kind == Type_Basic && s_e->kind == Entity_Constant && t_e->kind == Entity_Constant) { if (!compare_exact_values(Token_CmpEq, s_e->Constant.value, t_e->Constant.value)) return false; } else { bool ok = is_polymorphic_type_assignable(ctx, st, tt, true, modify_type); } } } if (modify_type) { // NOTE(bill): This is needed in order to change the actual type but still have the types defined within it gb_memmove(specialization, type, gb_size_of(Type)); } return true; } } else if (t->kind == Type_Union) { if (t->Union.polymorphic_parent == specialization) { return true; } if (t->Union.polymorphic_parent == s->Union.polymorphic_parent && s->Union.polymorphic_params != nullptr && t->Union.polymorphic_params != nullptr) { TypeTuple *s_tuple = &s->Union.polymorphic_params->Tuple; TypeTuple *t_tuple = &t->Union.polymorphic_params->Tuple; GB_ASSERT(t_tuple->variables.count == s_tuple->variables.count); for_array(i, s_tuple->variables) { Entity *s_e = s_tuple->variables[i]; Entity *t_e = t_tuple->variables[i]; Type *st = s_e->type; Type *tt = t_e->type; // NOTE(bill, 2018-12-14): This is needed to override polymorphic named constants in types if (st->kind == Type_Generic && t_e->kind == Entity_Constant) { Entity *e = scope_lookup(st->Generic.scope, st->Generic.name); GB_ASSERT(e != nullptr); if (modify_type) { e->kind = Entity_Constant; e->Constant.value = t_e->Constant.value; e->type = t_e->type; } } else { bool ok = is_polymorphic_type_assignable(ctx, st, tt, true, modify_type); } } if (modify_type) { // NOTE(bill): This is needed in order to change the actual type but still have the types defined within it gb_memmove(specialization, type, gb_size_of(Type)); } return true; } } if (specialization->kind == Type_Named && type->kind != Type_Named) { return false; } if (is_polymorphic_type_assignable(ctx, base_type(specialization), base_type(type), compound, modify_type)) { return true; } return false; } Type *determine_type_from_polymorphic(CheckerContext *ctx, Type *poly_type, Operand operand) { bool modify_type = !ctx->no_polymorphic_errors; bool show_error = modify_type && !ctx->hide_polymorphic_errors; if (!is_operand_value(operand)) { if (show_error) { error(operand.expr, "Cannot determine polymorphic type from parameter"); } return t_invalid; } if (is_polymorphic_type_assignable(ctx, poly_type, operand.type, false, modify_type)) { if (show_error) { set_procedure_abi_types(ctx->allocator, poly_type); } return poly_type; } if (show_error) { gbString pts = type_to_string(poly_type); gbString ots = type_to_string(operand.type); defer (gb_string_free(pts)); defer (gb_string_free(ots)); error(operand.expr, "Cannot determine polymorphic type from parameter: '%s' to '%s'", ots, pts); } return t_invalid; } bool is_expr_from_a_parameter(CheckerContext *ctx, Ast *expr) { if (expr == nullptr) { return false; } expr = unparen_expr(expr); if (expr->kind == Ast_SelectorExpr) { Ast *lhs = expr->SelectorExpr.expr; return is_expr_from_a_parameter(ctx, lhs); } else if (expr->kind == Ast_Ident) { Operand x= {}; Entity *e = check_ident(ctx, &x, expr, nullptr, nullptr, false); if (e->flags & EntityFlag_Param) { return true; } } return false; } ParameterValue handle_parameter_value(CheckerContext *ctx, Type *in_type, Type **out_type_, Ast *expr, bool allow_caller_location) { ParameterValue param_value = {}; if (expr == nullptr) { return param_value; } Operand o = {}; if (allow_caller_location && expr->kind == Ast_BasicDirective && expr->BasicDirective.name == "caller_location") { init_core_source_code_location(ctx->checker); param_value.kind = ParameterValue_Location; o.type = t_source_code_location; } else { if (in_type) { check_expr_with_type_hint(ctx, &o, expr, in_type); } else { check_expr(ctx, &o, expr); } if (is_operand_nil(o)) { param_value.kind = ParameterValue_Nil; } else if (o.mode != Addressing_Constant) { if (expr->kind == Ast_ProcLit) { param_value.kind = ParameterValue_Constant; param_value.value = exact_value_procedure(expr); } else { Entity *e = nullptr; // if (o.mode == Addressing_Value && is_type_proc(o.type)) { if (o.mode == Addressing_Value || o.mode == Addressing_Variable) { Operand x = {}; if (expr->kind == Ast_Ident) { e = check_ident(ctx, &x, expr, nullptr, nullptr, false); } else if (expr->kind == Ast_SelectorExpr) { e = check_selector(ctx, &x, expr, nullptr); } } if (e != nullptr) { if (e->kind == Entity_Procedure) { param_value.kind = ParameterValue_Constant; param_value.value = exact_value_procedure(e->identifier); add_entity_use(ctx, e->identifier, e); } else { if (e->flags & EntityFlag_Param) { error(expr, "Default parameter cannot be another parameter"); } else { if (is_expr_from_a_parameter(ctx, expr)) { error(expr, "Default parameter cannot be another parameter"); } else { param_value.kind = ParameterValue_Value; param_value.ast_value = expr; add_entity_use(ctx, e->identifier, e); } } } } else if (allow_caller_location && o.mode == Addressing_Context) { param_value.kind = ParameterValue_Value; param_value.ast_value = expr; } else { error(expr, "Default parameter must be a constant"); } } } else { if (o.value.kind != ExactValue_Invalid) { param_value.kind = ParameterValue_Constant; param_value.value = o.value; } else { error(o.expr, "Invalid constant parameter"); } } } if (in_type) { check_assignment(ctx, &o, in_type, str_lit("parameter value")); } if (out_type_) *out_type_ = default_type(o.type); return param_value; } Type *check_get_params(CheckerContext *ctx, Scope *scope, Ast *_params, bool *is_variadic_, isize *variadic_index_, bool *success_, isize *specialization_count_, Array *operands) { if (_params == nullptr) { return nullptr; } bool allow_polymorphic_types = ctx->allow_polymorphic_types; bool success = true; ast_node(field_list, FieldList, _params); Array params = field_list->list; if (params.count == 0) { if (success_) *success_ = success; return nullptr; } isize variable_count = 0; for_array(i, params) { Ast *field = params[i]; if (ast_node_expect(field, Ast_Field)) { ast_node(f, Field, field); variable_count += gb_max(f->names.count, 1); } } isize min_variable_count = variable_count; for (isize i = params.count-1; i >= 0; i--) { Ast *field = params[i]; if (field->kind == Ast_Field) { ast_node(f, Field, field); if (f->default_value == nullptr) { break; } min_variable_count--; } } bool is_variadic = false; isize variadic_index = -1; bool is_c_vararg = false; auto variables = array_make(ctx->allocator, 0, variable_count); for_array(i, params) { Ast *param = params[i]; if (param->kind != Ast_Field) { continue; } ast_node(p, Field, param); Ast *type_expr = unparen_expr(p->type); Type *type = nullptr; Ast *default_value = unparen_expr(p->default_value); ParameterValue param_value = {}; bool is_type_param = false; bool is_type_polymorphic_type = false; bool detemine_type_from_operand = false; Type *specialization = nullptr; bool is_using = (p->flags&FieldFlag_using) != 0; if (type_expr == nullptr) { param_value = handle_parameter_value(ctx, nullptr, &type, default_value, true); } else { if (type_expr->kind == Ast_Ellipsis) { type_expr = type_expr->Ellipsis.expr; is_variadic = true; variadic_index = variables.count; if (p->names.count != 1) { error(param, "Invalid AST: Invalid variadic parameter with multiple names"); success = false; } } if (type_expr->kind == Ast_TypeidType) { ast_node(tt, TypeidType, type_expr); if (tt->specialization) { specialization = check_type(ctx, tt->specialization); if (specialization == t_invalid){ specialization = nullptr; } if (operands != nullptr) { detemine_type_from_operand = true; type = t_invalid; } else { type = alloc_type_generic(ctx->scope, 0, str_lit(""), specialization); } } else { type = t_typeid; } } else { bool prev = ctx->allow_polymorphic_types; if (operands != nullptr) { ctx->allow_polymorphic_types = true; } type = check_type(ctx, type_expr); ctx->allow_polymorphic_types = prev; if (is_type_polymorphic(type)) { is_type_polymorphic_type = true; } } if (default_value != nullptr) { if (type_expr != nullptr && type_expr->kind == Ast_TypeidType) { error(type_expr, "A type parameter may not have a default value"); } else { param_value = handle_parameter_value(ctx, type, nullptr, default_value, true); } } } if (type == nullptr) { error(param, "Invalid parameter type"); type = t_invalid; } if (is_type_untyped(type)) { if (is_type_untyped_undef(type)) { error(param, "Cannot determine parameter type from ---"); } else { error(param, "Cannot determine parameter type from a nil"); } type = t_invalid; } if (is_type_empty_union(type)) { gbString str = type_to_string(type); error(param, "Invalid use of an empty union '%s'", str); gb_string_free(str); type = t_invalid; } if (p->flags&FieldFlag_c_vararg) { if (p->type == nullptr || p->type->kind != Ast_Ellipsis) { error(param, "'#c_vararg' can only be applied to variadic type fields"); p->flags &= ~FieldFlag_c_vararg; // Remove the flag } else { is_c_vararg = true; } } for_array(j, p->names) { Ast *name = p->names[j]; bool is_poly_name = false; switch (name->kind) { case Ast_Ident: break; case Ast_PolyType: GB_ASSERT(name->PolyType.specialization == nullptr); is_poly_name = true; name = name->PolyType.type; break; } if (!ast_node_expect(name, Ast_Ident)) { continue; } if (is_poly_name) { if (type_expr != nullptr && type_expr->kind == Ast_TypeidType) { is_type_param = true; } else { if (param_value.kind != ParameterValue_Invalid) { error(default_value, "Constant parameters cannot have a default value"); param_value.kind = ParameterValue_Invalid; } } } Entity *param = nullptr; if (is_type_param) { if (operands != nullptr) { Operand o = (*operands)[variables.count]; if (o.mode == Addressing_Type) { type = o.type; } else { if (!ctx->no_polymorphic_errors) { error(o.expr, "Expected a type to assign to the type parameter"); } success = false; type = t_invalid; } if (is_type_polymorphic(type)) { gbString str = type_to_string(type); error(o.expr, "Cannot pass polymorphic type as a parameter, got '%s'", str); gb_string_free(str); success = false; type = t_invalid; } if (is_type_untyped(default_type(type))) { gbString str = type_to_string(type); error(o.expr, "Cannot determine type from the parameter, got '%s'", str); gb_string_free(str); success = false; type = t_invalid; } bool modify_type = !ctx->no_polymorphic_errors; if (specialization != nullptr && !check_type_specialization_to(ctx, specialization, type, false, modify_type)) { if (!ctx->no_polymorphic_errors) { gbString t = type_to_string(type); gbString s = type_to_string(specialization); error(o.expr, "Cannot convert type '%s' to the specialization '%s'", t, s); gb_string_free(s); gb_string_free(t); } success = false; type = t_invalid; } } if (p->flags&FieldFlag_auto_cast) { error(name, "'auto_cast' can only be applied to variable fields"); p->flags &= ~FieldFlag_auto_cast; } if (p->flags&FieldFlag_const) { error(name, "'#const' can only be applied to variable fields"); p->flags &= ~FieldFlag_const; } param = alloc_entity_type_name(scope, name->Ident.token, type, EntityState_Resolved); param->TypeName.is_type_alias = true; } else { ExactValue poly_const = {}; if (operands != nullptr && variables.count < operands->count) { Operand op = (*operands)[variables.count]; if (op.expr == nullptr) { // NOTE(bill): 2019-03-30 // This is just to add the error message to determine_type_from_polymorphic which // depends on valid position information op.expr = _params; } if (is_type_polymorphic_type) { type = determine_type_from_polymorphic(ctx, type, op); if (type == t_invalid) { success = false; } else if (!ctx->no_polymorphic_errors) { // NOTE(bill): The type should be determined now and thus, no need to determine the type any more is_type_polymorphic_type = false; } } if (is_poly_name) { bool valid = false; if (is_type_proc(op.type)) { Entity *proc_entity = entity_from_expr(op.expr); valid = proc_entity != nullptr; poly_const = exact_value_procedure(proc_entity->identifier ? proc_entity->identifier : op.expr); } if (!valid) { if (op.mode == Addressing_Constant) { poly_const = op.value; } else { error(op.expr, "Expected a constant value for this polymorphic name parameter"); success = false; } } } if (is_type_untyped(default_type(type))) { gbString str = type_to_string(type); error(op.expr, "Cannot determine type from the parameter, got '%s'", str); gb_string_free(str); success = false; type = t_invalid; } } if (p->flags&FieldFlag_no_alias) { if (!is_type_pointer(type)) { error(name, "'#no_alias' can only be applied to fields of pointer type"); p->flags &= ~FieldFlag_no_alias; // Remove the flag } } if (is_poly_name) { if (p->flags&FieldFlag_no_alias) { error(name, "'#no_alias' can only be applied to non constant values"); p->flags &= ~FieldFlag_no_alias; // Remove the flag } if (p->flags&FieldFlag_auto_cast) { error(name, "'auto_cast' can only be applied to variable fields"); p->flags &= ~FieldFlag_auto_cast; } if (p->flags&FieldFlag_const) { error(name, "'#const' can only be applied to variable fields"); p->flags &= ~FieldFlag_const; } if (!is_type_constant_type(type) && !is_type_polymorphic(type)) { gbString str = type_to_string(type); error(params[i], "A parameter must be a valid constant type, got %s", str); gb_string_free(str); } param = alloc_entity_const_param(scope, name->Ident.token, type, poly_const, is_type_polymorphic(type)); } else { param = alloc_entity_param(scope, name->Ident.token, type, is_using, true); param->Variable.param_value = param_value; } } if (p->flags&FieldFlag_no_alias) { param->flags |= EntityFlag_NoAlias; } if (p->flags&FieldFlag_auto_cast) { param->flags |= EntityFlag_AutoCast; } if (p->flags&FieldFlag_const) { param->flags |= EntityFlag_ConstInput; } param->state = EntityState_Resolved; // NOTE(bill): This should have be resolved whilst determining it add_entity(ctx->checker, scope, name, param); if (is_using) { add_entity_use(ctx, name, param); } array_add(&variables, param); } } if (is_variadic) { GB_ASSERT(variadic_index >= 0); } if (is_variadic) { GB_ASSERT(params.count > 0); // NOTE(bill): Change last variadic parameter to be a slice // Custom Calling convention for variadic parameters Entity *end = variables[variadic_index]; end->type = alloc_type_slice(end->type); end->flags |= EntityFlag_Ellipsis; if (is_c_vararg) { end->flags |= EntityFlag_CVarArg; } } isize specialization_count = 0; if (scope != nullptr) { for_array(i, scope->elements.entries) { Entity *e = scope->elements.entries[i].value; if (e->kind == Entity_TypeName) { Type *t = e->type; if (t->kind == Type_Generic && t->Generic.specialized != nullptr) { specialization_count += 1; } } } } Type *tuple = alloc_type_tuple(); tuple->Tuple.variables = variables; if (success_) *success_ = success; if (specialization_count_) *specialization_count_ = specialization_count; if (is_variadic_) *is_variadic_ = is_variadic; if (variadic_index_) *variadic_index_ = variadic_index; return tuple; } Type *check_get_results(CheckerContext *ctx, Scope *scope, Ast *_results) { if (_results == nullptr) { return nullptr; } ast_node(field_list, FieldList, _results); Array results = field_list->list; if (results.count == 0) { return nullptr; } Type *tuple = alloc_type_tuple(); isize variable_count = 0; for_array(i, results) { Ast *field = results[i]; if (ast_node_expect(field, Ast_Field)) { ast_node(f, Field, field); variable_count += gb_max(f->names.count, 1); } } auto variables = array_make(ctx->allocator, 0, variable_count); for_array(i, results) { ast_node(field, Field, results[i]); Ast *default_value = unparen_expr(field->default_value); ParameterValue param_value = {}; Type *type = nullptr; if (field->type == nullptr) { param_value = handle_parameter_value(ctx, nullptr, &type, default_value, false); } else { type = check_type(ctx, field->type); if (default_value != nullptr) { param_value = handle_parameter_value(ctx, type, nullptr, default_value, false); } } if (type == nullptr) { error(results[i], "Invalid parameter type"); type = t_invalid; } if (is_type_untyped(type)) { error(results[i], "Cannot determine parameter type from a nil"); type = t_invalid; } if (field->names.count == 0) { Token token = ast_token(field->type); token.string = str_lit(""); Entity *param = alloc_entity_param(scope, token, type, false, false); param->Variable.param_value = param_value; array_add(&variables, param); } else { for_array(j, field->names) { Token token = ast_token(results[i]); if (field->type != nullptr) { token = ast_token(field->type); } token.string = str_lit(""); Ast *name = field->names[j]; if (name->kind != Ast_Ident) { error(name, "Expected an identifer for as the field name"); } else { token = name->Ident.token; } if (is_blank_ident(token)) { error(name, "Result value cannot be a blank identifer `_`"); } Entity *param = alloc_entity_param(scope, token, type, false, false); param->flags |= EntityFlag_Result; param->Variable.param_value = param_value; array_add(&variables, param); add_entity(ctx->checker, scope, name, param); // NOTE(bill): Removes `declared but not used` when using -vet add_entity_use(ctx, name, param); } } } for_array(i, variables) { String x = variables[i]->token.string; if (x.len == 0 || is_blank_ident(x)) { continue; } for (isize j = i+1; j < variables.count; j++) { String y = variables[j]->token.string; if (y.len == 0 || is_blank_ident(y)) { continue; } if (x == y) { error(variables[j]->token, "Duplicate return value name '%.*s'", LIT(y)); } } } tuple->Tuple.variables = variables; return tuple; } Array systemv_distribute_struct_fields(Type *t) { Type *bt = core_type(t); isize distributed_cap = 1; if (bt->kind == Type_Struct) { distributed_cap = bt->Struct.fields.count; } auto distributed = array_make(heap_allocator(), 0, distributed_cap); i64 sz = type_size_of(bt); switch (bt->kind) { case Type_Basic: switch (bt->Basic.kind){ case Basic_complex64: array_add(&distributed, t_f32); array_add(&distributed, t_f32); break; case Basic_complex128: array_add(&distributed, t_f64); array_add(&distributed, t_f64); break; case Basic_quaternion128: array_add(&distributed, t_f32); array_add(&distributed, t_f32); array_add(&distributed, t_f32); array_add(&distributed, t_f32); break; case Basic_quaternion256: goto DEFAULT; case Basic_string: array_add(&distributed, t_u8_ptr); array_add(&distributed, t_int); break; case Basic_any: GB_ASSERT(type_size_of(t_uintptr) == type_size_of(t_typeid)); array_add(&distributed, t_rawptr); array_add(&distributed, t_uintptr); break; case Basic_u128: case Basic_i128: if (build_context.ODIN_OS == "windows") { array_add(&distributed, alloc_type_simd_vector(2, t_u64)); } else { array_add(&distributed, bt); } break; default: goto DEFAULT; } break; case Type_Struct: if (bt->Struct.is_raw_union) { goto DEFAULT; } else { // IMPORTANT TOOD(bill): handle #packed structs correctly // IMPORTANT TODO(bill): handle #align structs correctly for_array(field_index, bt->Struct.fields) { Entity *f = bt->Struct.fields[field_index]; auto nested = systemv_distribute_struct_fields(f->type); array_add_elems(&distributed, nested.data, nested.count); array_free(&nested); } } break; case Type_Array: for (i64 i = 0; i < bt->Array.count; i++) { array_add(&distributed, bt->Array.elem); } break; case Type_BitSet: array_add(&distributed, bit_set_to_int(bt)); break; case Type_Tuple: GB_PANIC("Invalid struct field type"); break; case Type_Slice: array_add(&distributed, t_rawptr); array_add(&distributed, t_int); break; case Type_Union: case Type_DynamicArray: case Type_Map: case Type_BitField: // TODO(bill): Ignore? // NOTE(bill, 2019-10-10): Odin specific, don't worry about C calling convention yet goto DEFAULT; case Type_Pointer: case Type_Proc: case Type_SimdVector: // TODO(bill): Is this correct logic? default: DEFAULT:; if (sz > 0) { array_add(&distributed, bt); } break; } return distributed; } Type *struct_type_from_systemv_distribute_struct_fields(Type *abi_type) { GB_ASSERT(is_type_tuple(abi_type)); Type *final_type = alloc_type_struct(); final_type->Struct.fields = abi_type->Tuple.variables; return final_type; } Type *handle_single_distributed_type_parameter(Array const &types, bool packed, isize *offset) { GB_ASSERT(types.count > 0); if (types.count == 1) { if (offset) *offset = 1; i64 sz = type_size_of(types[0]); if (is_type_float(types[0])) { return types[0]; } switch (sz) { case 0: GB_PANIC("Zero sized type found!"); case 1: return t_u8; case 2: return t_u16; case 4: return t_u32; case 8: return t_u64; default: return types[0]; } } else if (types.count >= 2) { if (types[0] == t_f32 && types[1] == t_f32) { if (offset) *offset = 2; return alloc_type_simd_vector(2, t_f32); } else if (type_size_of(types[0]) == 8) { if (offset) *offset = 1; return types[0]; } i64 total_size = 0; isize i = 0; if (packed) { for (; i < types.count && total_size < 8; i += 1) { Type *t = types[i]; i64 s = type_size_of(t); total_size += s; } } else { for (; i < types.count && total_size < 8; i += 1) { Type *t = types[i]; i64 s = gb_max(type_size_of(t), 0); i64 a = gb_max(type_align_of(t), 1); isize ts = align_formula(total_size, a); if (ts >= 8) { break; } total_size = ts + s; } } if (offset) *offset = i; switch (total_size) { case 1: return t_u8; case 2: return t_u16; case 4: return t_u32; case 8: return t_u64; } return t_u64; } return nullptr; } Type *handle_struct_system_v_amd64_abi_type(Type *t) { if (type_size_of(t) > 16) { return alloc_type_pointer(t); } Type *original_type = t; Type *bt = core_type(t); t = base_type(t); i64 size = type_size_of(bt); switch (t->kind) { case Type_Slice: case Type_Struct: break; case Type_Basic: switch (bt->Basic.kind) { case Basic_string: case Basic_any: case Basic_complex64: case Basic_complex128: case Basic_quaternion128: break; default: return original_type; } break; default: return original_type; } bool is_packed = false; if (is_type_struct(bt)) { is_packed = bt->Struct.is_packed; } if (is_type_raw_union(bt)) { // TODO(bill): Handle raw union correctly for return t; } else { auto field_types = systemv_distribute_struct_fields(bt); defer (array_free(&field_types)); GB_ASSERT(field_types.count <= 16); Type *final_type = nullptr; if (field_types.count == 0) { final_type = t; } else if (field_types.count == 1) { final_type = field_types[0]; } else { if (size <= 8) { isize offset = 0; final_type = handle_single_distributed_type_parameter(field_types, is_packed, &offset); } else { isize offset = 0; isize next_offset = 0; Type *two_types[2] = {}; two_types[0] = handle_single_distributed_type_parameter(field_types, is_packed, &offset); auto remaining = array_slice(field_types, offset, field_types.count); two_types[1] = handle_single_distributed_type_parameter(remaining, is_packed, &next_offset); GB_ASSERT(offset + next_offset == field_types.count); auto variables = array_make(heap_allocator(), 2); variables[0] = alloc_entity_param(nullptr, empty_token, two_types[0], false, false); variables[1] = alloc_entity_param(nullptr, empty_token, two_types[1], false, false); final_type = alloc_type_tuple(); final_type->Tuple.variables = variables; if (t->kind == Type_Struct) { // NOTE(bill): Make this packed final_type->Tuple.is_packed = t->Struct.is_packed; } } } GB_ASSERT(final_type != nullptr); i64 ftsz = type_size_of(final_type); i64 otsz = type_size_of(original_type); if (ftsz != otsz) { // TODO(bill): Handle this case which will be caused by #packed most likely switch (otsz) { case 1: case 2: case 4: case 8: GB_PANIC("Incorrectly handled case for handle_struct_system_v_amd64_abi_type, %s %lld vs %s %lld", type_to_string(final_type), ftsz, type_to_string(original_type), otsz); } } return final_type; } } Type *type_to_abi_compat_param_type(gbAllocator a, Type *original_type, ProcCallingConvention cc) { Type *new_type = original_type; if (is_type_boolean(original_type)) { Type *t = core_type(base_type(new_type)); if (t == t_bool) { return t_llvm_bool; } return new_type; } if (cc == ProcCC_None || cc == ProcCC_PureNone) { return new_type; } if (build_context.ODIN_ARCH == "386") { return new_type; } if (is_type_simd_vector(original_type)) { return new_type; } if (build_context.ODIN_ARCH == "amd64") { if (is_type_integer_128bit(original_type)) { if (build_context.ODIN_OS == "windows") { return alloc_type_simd_vector(2, t_u64); } else { return original_type; } } } if (build_context.ODIN_OS == "windows") { // NOTE(bill): Changing the passing parameter value type is to match C's ABI // IMPORTANT TODO(bill): This only matches the ABI on MSVC at the moment // SEE: https://msdn.microsoft.com/en-us/library/zthk2dkh.aspx Type *bt = core_type(original_type); switch (bt->kind) { // Okay to pass by value (usually) // Especially the only Odin types case Type_Basic: { i64 sz = bt->Basic.size; // if (sz > 8 && build_context.word_size < 8) { if (sz > 8) { new_type = alloc_type_pointer(original_type); } break; } case Type_Pointer: break; case Type_Proc: break; // NOTE(bill): Just a pointer // Odin specific case Type_Slice: case Type_Array: case Type_DynamicArray: case Type_Map: case Type_Union: // Could be in C too case Type_Struct: { i64 align = type_align_of(original_type); i64 size = type_size_of(original_type); switch (8*size) { case 8: new_type = t_u8; break; case 16: new_type = t_u16; break; case 32: new_type = t_u32; break; case 64: new_type = t_u64; break; default: new_type = alloc_type_pointer(original_type); break; } break; } } } else if (build_context.ODIN_OS == "linux" || build_context.ODIN_OS == "darwin") { Type *bt = core_type(original_type); switch (bt->kind) { // Okay to pass by value (usually) // Especially the only Odin types case Type_Basic: { i64 sz = bt->Basic.size; // if (sz > 8 && build_context.word_size < 8) { if (sz > 8) { new_type = alloc_type_pointer(original_type); } break; } case Type_Pointer: break; case Type_Proc: break; // NOTE(bill): Just a pointer default: { i64 size = type_size_of(original_type); if (size > 16) { new_type = alloc_type_pointer(original_type); } else if (build_context.ODIN_ARCH == "amd64") { // NOTE(bill): System V AMD64 ABI new_type = handle_struct_system_v_amd64_abi_type(bt); if (are_types_identical(core_type(original_type), new_type)) { new_type = original_type; } return new_type; } break; } } } else { // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for // their architectures } return new_type; } Type *reduce_tuple_to_single_type(Type *original_type) { if (original_type != nullptr) { Type *t = core_type(original_type); if (t->kind == Type_Tuple && t->Tuple.variables.count == 1) { return t->Tuple.variables[0]->type; } } return original_type; } Type *type_to_abi_compat_result_type(gbAllocator a, Type *original_type, ProcCallingConvention cc) { Type *new_type = original_type; if (new_type == nullptr) { return nullptr; } GB_ASSERT(is_type_tuple(original_type)); Type *single_type = reduce_tuple_to_single_type(original_type); if (is_type_simd_vector(single_type)) { return new_type; } if (build_context.ODIN_OS == "windows") { if (build_context.ODIN_ARCH == "amd64") { if (is_type_integer_128bit(single_type)) { if (cc == ProcCC_None || cc == ProcCC_PureNone) { return original_type; } else { return alloc_type_simd_vector(2, t_u64); } } } Type *bt = core_type(reduce_tuple_to_single_type(original_type)); // NOTE(bill): This is just reversed engineered from LLVM IR output switch (bt->kind) { // Okay to pass by value // Especially the only Odin types case Type_Pointer: break; case Type_Proc: break; // NOTE(bill): Just a pointer case Type_Basic: break; default: { i64 align = type_align_of(original_type); i64 size = type_size_of(original_type); switch (8*size) { #if 1 case 8: new_type = t_u8; break; case 16: new_type = t_u16; break; case 32: new_type = t_u32; break; case 64: new_type = t_u64; break; #endif } break; } } } else if (build_context.ODIN_OS == "linux" || build_context.ODIN_OS == "darwin") { if (build_context.ODIN_ARCH == "amd64") { } } else { // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for // their architectures } if (is_type_integer_128bit(single_type)) { if (build_context.word_size == 8) { return original_type; } } if (new_type != original_type) { Type *tuple = alloc_type_tuple(); auto variables = array_make(a, 0, 1); array_add(&variables, alloc_entity_param(original_type->Tuple.variables[0]->scope, empty_token, new_type, false, false)); tuple->Tuple.variables = variables; new_type = tuple; } new_type->cached_size = -1; new_type->cached_align = -1; return new_type; } bool abi_compat_return_by_pointer(gbAllocator a, ProcCallingConvention cc, Type *abi_return_type) { if (abi_return_type == nullptr) { return false; } if (cc == ProcCC_None || cc == ProcCC_PureNone) { return false; } Type *single_type = reduce_tuple_to_single_type(abi_return_type); if (is_type_simd_vector(single_type)) { return false; } if (build_context.word_size == 8) { if (is_type_integer_128bit(single_type)) { return false; } } if (build_context.ODIN_OS == "windows") { i64 size = 8*type_size_of(abi_return_type); switch (size) { case 0: case 8: case 16: case 32: case 64: return false; default: return true; } } else { if (is_type_integer_128bit(single_type)) { return build_context.word_size < 8; } } return false; } void set_procedure_abi_types(gbAllocator allocator, Type *type) { type = base_type(type); if (type->kind != Type_Proc) { return; } if (type->Proc.abi_types_set) { return; } type->Proc.abi_compat_params = array_make(allocator, cast(isize)type->Proc.param_count); for (i32 i = 0; i < type->Proc.param_count; i++) { Entity *e = type->Proc.params->Tuple.variables[i]; if (e->kind == Entity_Variable) { Type *original_type = e->type; Type *new_type = type_to_abi_compat_param_type(allocator, original_type, type->Proc.calling_convention); type->Proc.abi_compat_params[i] = new_type; switch (type->Proc.calling_convention) { case ProcCC_Odin: case ProcCC_Contextless: case ProcCC_Pure: if (is_type_pointer(new_type) & !is_type_pointer(e->type)) { e->flags |= EntityFlag_ImplicitReference; } break; } if (build_context.ODIN_OS == "linux" || build_context.ODIN_OS == "darwin") { if (is_type_pointer(new_type) & !is_type_pointer(e->type)) { e->flags |= EntityFlag_ByVal; } } } } for (i32 i = 0; i < type->Proc.param_count; i++) { Entity *e = type->Proc.params->Tuple.variables[i]; if (e->kind == Entity_Variable) { set_procedure_abi_types(allocator, e->type); } } for (i32 i = 0; i < type->Proc.result_count; i++) { Entity *e = type->Proc.results->Tuple.variables[i]; if (e->kind == Entity_Variable) { set_procedure_abi_types(allocator, e->type); } } // NOTE(bill): The types are the same type->Proc.abi_compat_result_type = type_to_abi_compat_result_type(allocator, type->Proc.results, type->Proc.calling_convention); type->Proc.return_by_pointer = abi_compat_return_by_pointer(allocator, type->Proc.calling_convention, type->Proc.abi_compat_result_type); type->Proc.abi_types_set = true; } // NOTE(bill): 'operands' is for generating non generic procedure type bool check_procedure_type(CheckerContext *ctx, Type *type, Ast *proc_type_node, Array *operands) { ast_node(pt, ProcType, proc_type_node); if (ctx->polymorphic_scope == nullptr && ctx->allow_polymorphic_types) { ctx->polymorphic_scope = ctx->scope; } CheckerContext c_ = *ctx; CheckerContext *c = &c_; c->curr_proc_sig = type; c->in_proc_sig = true; ProcCallingConvention cc = pt->calling_convention; if (cc == ProcCC_ForeignBlockDefault) { cc = ProcCC_CDecl; if (c->foreign_context.default_cc > 0) { cc = c->foreign_context.default_cc; } } GB_ASSERT(cc > 0); if (cc == ProcCC_Odin) { c->scope->flags |= ScopeFlag_ContextDefined; } else { c->scope->flags &= ~ScopeFlag_ContextDefined; } bool variadic = false; isize variadic_index = -1; bool success = true; isize specialization_count = 0; Type *params = check_get_params(c, c->scope, pt->params, &variadic, &variadic_index, &success, &specialization_count, operands); Type *results = check_get_results(c, c->scope, pt->results); isize param_count = 0; isize result_count = 0; if (params) param_count = params ->Tuple.variables.count; if (results) result_count = results->Tuple.variables.count; if (param_count > 0) { for_array(i, params->Tuple.variables) { Entity *param = params->Tuple.variables[i]; if (param->kind == Entity_Variable) { ParameterValue pv = param->Variable.param_value; if (pv.kind == ParameterValue_Constant && pv.value.kind == ExactValue_Procedure) { type->Proc.has_proc_default_values = true; break; } } } } if (result_count > 0) { Entity *first = results->Tuple.variables[0]; type->Proc.has_named_results = first->token.string != ""; } if (result_count == 0 && cc == ProcCC_Pure) { error(proc_type_node, "\"pure\" procedures must have at least 1 return value"); } bool optional_ok = (pt->tags & ProcTag_optional_ok) != 0; if (optional_ok) { if (result_count != 2) { error(proc_type_node, "A procedure type with the #optional_ok tag requires 2 return values, got %td", result_count); } else { Entity *second = results->Tuple.variables[1]; if (is_type_polymorphic(second->type)) { // ignore } else if (is_type_boolean(second->type)) { // GOOD } else { error(second->token, "Second return value of an #optional_ok procedure must be a boolean, got %s", type_to_string(second->type)); } } } type->Proc.node = proc_type_node; type->Proc.scope = c->scope; type->Proc.params = params; type->Proc.param_count = cast(i32)param_count; type->Proc.results = results; type->Proc.result_count = cast(i32)result_count; type->Proc.variadic = variadic; type->Proc.variadic_index = cast(i32)variadic_index; type->Proc.calling_convention = cc; type->Proc.is_polymorphic = pt->generic; type->Proc.specialization_count = specialization_count; type->Proc.diverging = pt->diverging; type->Proc.optional_ok = optional_ok; type->Proc.tags = pt->tags; if (param_count > 0) { Entity *end = params->Tuple.variables[param_count-1]; if (end->flags&EntityFlag_CVarArg) { if (cc == ProcCC_StdCall || cc == ProcCC_CDecl) { type->Proc.c_vararg = true; } else { error(end->token, "Calling convention does not support #c_vararg"); } } } bool is_polymorphic = false; for (isize i = 0; i < param_count; i++) { Entity *e = params->Tuple.variables[i]; if (e->kind != Entity_Variable) { is_polymorphic = true; break; } else if (is_type_polymorphic(e->type)) { is_polymorphic = true; break; } } for (isize i = 0; i < result_count; i++) { Entity *e = results->Tuple.variables[i]; if (e->kind != Entity_Variable) { is_polymorphic = true; break; } else if (is_type_polymorphic(e->type)) { is_polymorphic = true; break; } } type->Proc.is_polymorphic = is_polymorphic; return success; } i64 check_array_count(CheckerContext *ctx, Operand *o, Ast *e) { if (e == nullptr) { return 0; } if (e->kind == Ast_UnaryExpr && e->UnaryExpr.op.kind == Token_Question) { return -1; } check_expr_or_type(ctx, o, e); if (o->mode == Addressing_Type && o->type->kind == Type_Generic) { if (ctx->allow_polymorphic_types) { if (o->type->Generic.specialized) { o->type->Generic.specialized = nullptr; error(o->expr, "Polymorphic array length cannot have a specialization"); } return 0; } } if (o->mode == Addressing_Type) { if (is_type_enum(o->type)) { return -1; } } if (o->mode != Addressing_Constant) { if (o->mode != Addressing_Invalid) { o->mode = Addressing_Invalid; error(e, "Array count must be a constant"); } return 0; } Type *type = core_type(o->type); if (is_type_untyped(type) || is_type_integer(type)) { if (o->value.kind == ExactValue_Integer) { BigInt count = o->value.value_integer; if (o->value.value_integer.neg) { gbAllocator a = heap_allocator(); String str = big_int_to_string(a, &count); error(e, "Invalid negative array count, %.*s", LIT(str)); gb_free(a, str.text); return 0; } switch (count.len) { case 0: return 0; case 1: return count.d.word; } gbAllocator a = heap_allocator(); String str = big_int_to_string(a, &count); error(e, "Array count too large, %.*s", LIT(str)); gb_free(a, str.text); return 0; } } error(e, "Array count must be an integer"); return 0; } Type *make_optional_ok_type(Type *value, bool typed) { // LEAK TODO(bill): probably don't reallocate everything here and reuse the same one for the same type if possible gbAllocator a = heap_allocator(); Type *t = alloc_type_tuple(); array_init(&t->Tuple.variables, a, 0, 2); array_add (&t->Tuple.variables, alloc_entity_field(nullptr, blank_token, value, false, 0)); array_add (&t->Tuple.variables, alloc_entity_field(nullptr, blank_token, typed ? t_bool : t_untyped_bool, false, 1)); return t; } void init_map_entry_type(Type *type) { GB_ASSERT(type->kind == Type_Map); if (type->Map.entry_type != nullptr) return; // NOTE(bill): The preload types may have not been set yet GB_ASSERT(t_map_key != nullptr); gbAllocator a = heap_allocator(); Type *entry_type = alloc_type_struct(); /* struct { hash: __MapKey; next: int; key: Key; value: Value; } */ Ast *dummy_node = alloc_ast_node(nullptr, Ast_Invalid); Scope *s = create_scope(builtin_pkg->scope, a); auto fields = array_make(a, 0, 3); array_add(&fields, alloc_entity_field(s, make_token_ident(str_lit("key")), t_map_key, false, 0, EntityState_Resolved)); array_add(&fields, alloc_entity_field(s, make_token_ident(str_lit("next")), t_int, false, 1, EntityState_Resolved)); array_add(&fields, alloc_entity_field(s, make_token_ident(str_lit("value")), type->Map.value, false, 2, EntityState_Resolved)); entry_type->Struct.fields = fields; // type_set_offsets(a, entry_type); type->Map.entry_type = entry_type; } void init_map_internal_types(Type *type) { GB_ASSERT(type->kind == Type_Map); init_map_entry_type(type); if (type->Map.internal_type != nullptr) return; if (type->Map.generated_struct_type != nullptr) return; Type *key = type->Map.key; Type *value = type->Map.value; GB_ASSERT(key != nullptr); GB_ASSERT(value != nullptr); Type *generated_struct_type = alloc_type_struct(); /* struct { hashes: []int; entries: [dynamic]EntryType; } */ gbAllocator a = heap_allocator(); Ast *dummy_node = alloc_ast_node(nullptr, Ast_Invalid); Scope *s = create_scope(builtin_pkg->scope, a); Type *hashes_type = alloc_type_slice(t_int); Type *entries_type = alloc_type_dynamic_array(type->Map.entry_type); auto fields = array_make(a, 0, 2); array_add(&fields, alloc_entity_field(s, make_token_ident(str_lit("hashes")), hashes_type, false, 0, EntityState_Resolved)); array_add(&fields, alloc_entity_field(s, make_token_ident(str_lit("entries")), entries_type, false, 1, EntityState_Resolved)); generated_struct_type->Struct.fields = fields; type_set_offsets(generated_struct_type); type->Map.generated_struct_type = generated_struct_type; type->Map.internal_type = generated_struct_type; type->Map.lookup_result_type = make_optional_ok_type(value); } void check_map_type(CheckerContext *ctx, Type *type, Ast *node) { GB_ASSERT(type->kind == Type_Map); ast_node(mt, MapType, node); Type *key = check_type(ctx, mt->key); Type *value = check_type(ctx, mt->value); if (!is_type_valid_for_keys(key)) { if (is_type_boolean(key)) { error(node, "A boolean cannot be used as a key for a map, use an array instead for this case"); } else { gbString str = type_to_string(key); error(node, "Invalid type of a key for a map, got '%s'", str); gb_string_free(str); } } type->Map.key = key; type->Map.value = value; if (is_type_string(key)) { add_package_dependency(ctx, "runtime", "default_hash_string"); } else { add_package_dependency(ctx, "runtime", "default_hash_ptr"); } init_core_map_type(ctx->checker); init_map_internal_types(type); // error(node, "'map' types are not yet implemented"); } Type *make_soa_struct_fixed(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem, i64 count, Type *generic_type) { Type *bt_elem = base_type(elem); if (!is_type_struct(elem) && !is_type_raw_union(elem) && !(is_type_array(elem) && bt_elem->Array.count <= 4)) { gbString str = type_to_string(elem); error(elem_expr, "Invalid type for an #soa array, expected a struct or array of length 4 or below, got '%s'", str); gb_string_free(str); return alloc_type_array(elem, count, generic_type); } Type *soa_struct = nullptr; Scope *scope = nullptr; if (is_type_array(elem)) { Type *old_array = base_type(elem); soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), old_array->Array.count); soa_struct->Struct.tags = array_make(heap_allocator(), old_array->Array.count); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Fixed; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = count; scope = create_scope(ctx->scope, ctx->allocator); soa_struct->Struct.scope = scope; String params_xyzw[4] = { str_lit("x"), str_lit("y"), str_lit("z"), str_lit("w") }; for (i64 i = 0; i < old_array->Array.count; i++) { Type *array_type = alloc_type_array(old_array->Array.elem, count); Token token = {}; token.string = params_xyzw[i]; Entity *new_field = alloc_entity_field(scope, token, array_type, false, cast(i32)i); soa_struct->Struct.fields[i] = new_field; add_entity(ctx->checker, scope, nullptr, new_field); add_entity_use(ctx, nullptr, new_field); } } else { GB_ASSERT(is_type_struct(elem)); Type *old_struct = base_type(elem); soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), old_struct->Struct.fields.count); soa_struct->Struct.tags = array_make(heap_allocator(), old_struct->Struct.tags.count); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Fixed; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = count; scope = create_scope(old_struct->Struct.scope->parent, ctx->allocator); soa_struct->Struct.scope = scope; for_array(i, old_struct->Struct.fields) { Entity *old_field = old_struct->Struct.fields[i]; if (old_field->kind == Entity_Variable) { Type *array_type = alloc_type_array(old_field->type, count); Entity *new_field = alloc_entity_field(scope, old_field->token, array_type, false, old_field->Variable.field_src_index); soa_struct->Struct.fields[i] = new_field; add_entity(ctx->checker, scope, nullptr, new_field); add_entity_use(ctx, nullptr, new_field); } else { soa_struct->Struct.fields[i] = old_field; } soa_struct->Struct.tags[i] = old_struct->Struct.tags[i]; } } Token token = {}; token.string = str_lit("Base_Type"); Entity *base_type_entity = alloc_entity_type_name(scope, token, elem, EntityState_Resolved); add_entity(ctx->checker, scope, nullptr, base_type_entity); add_type_info_type(ctx, soa_struct); return soa_struct; } Type *make_soa_struct_slice(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem) { Type *bt_elem = base_type(elem); bool is_polymorphic = is_type_polymorphic(elem); if (!is_polymorphic && !is_type_struct(elem) && !is_type_raw_union(elem) && !(is_type_array(elem) && bt_elem->Array.count <= 4)) { GB_ASSERT(elem_expr != nullptr); gbString str = type_to_string(elem); error(elem_expr, "Invalid type for an #soa array, expected a struct or array of length 4 or below, got '%s'", str); gb_string_free(str); return alloc_type_slice(elem); } Type *soa_struct = nullptr; Scope *scope = nullptr; isize field_count = 0; if (is_polymorphic) { field_count = 0; soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), field_count+1); soa_struct->Struct.tags = array_make(heap_allocator(), field_count+1); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Slice; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = 0; soa_struct->Struct.is_polymorphic = true; scope = create_scope(ctx->scope, ctx->allocator); soa_struct->Struct.scope = scope; } else if (is_type_array(elem)) { Type *old_array = base_type(elem); field_count = old_array->Array.count; soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), field_count+1); soa_struct->Struct.tags = array_make(heap_allocator(), field_count+1); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Slice; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = 0; scope = create_scope(ctx->scope, ctx->allocator); soa_struct->Struct.scope = scope; String params_xyzw[4] = { str_lit("x"), str_lit("y"), str_lit("z"), str_lit("w") }; for (i64 i = 0; i < field_count; i++) { Type *array_type = alloc_type_pointer(old_array->Array.elem); Token token = {}; token.string = params_xyzw[i]; Entity *new_field = alloc_entity_field(scope, token, array_type, false, cast(i32)i); new_field->flags |= EntityFlag_SoaPtrField; soa_struct->Struct.fields[i] = new_field; add_entity(ctx->checker, scope, nullptr, new_field); add_entity_use(ctx, nullptr, new_field); } } else { GB_ASSERT(is_type_struct(elem)); Type *old_struct = base_type(elem); field_count = old_struct->Struct.fields.count; soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), field_count+1); soa_struct->Struct.tags = array_make(heap_allocator(), old_struct->Struct.tags.count+1); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Slice; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = 0; scope = create_scope(old_struct->Struct.scope->parent, ctx->allocator); soa_struct->Struct.scope = scope; for_array(i, old_struct->Struct.fields) { Entity *old_field = old_struct->Struct.fields[i]; if (old_field->kind == Entity_Variable) { Type *array_type = alloc_type_pointer(old_field->type); Entity *new_field = alloc_entity_field(scope, old_field->token, array_type, false, old_field->Variable.field_src_index); new_field->flags |= EntityFlag_SoaPtrField; soa_struct->Struct.fields[i] = new_field; add_entity(ctx->checker, scope, nullptr, new_field); add_entity_use(ctx, nullptr, new_field); } else { soa_struct->Struct.fields[i] = old_field; } soa_struct->Struct.tags[i] = old_struct->Struct.tags[i]; } } Entity *len_field = alloc_entity_field(scope, empty_token, t_int, false, cast(i32)field_count); soa_struct->Struct.fields[field_count] = len_field; add_entity(ctx->checker, scope, nullptr, len_field); add_entity_use(ctx, nullptr, len_field); Token token = {}; token.string = str_lit("Base_Type"); Entity *base_type_entity = alloc_entity_type_name(scope, token, elem, EntityState_Resolved); add_entity(ctx->checker, scope, nullptr, base_type_entity); add_type_info_type(ctx, soa_struct); return soa_struct; } Type *make_soa_struct_dynamic_array(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem) { Type *bt_elem = base_type(elem); bool is_polymorphic = is_type_polymorphic(elem); if (!is_polymorphic && !is_type_struct(elem) && !is_type_raw_union(elem) && !(is_type_array(elem) && bt_elem->Array.count <= 4)) { GB_ASSERT(elem_expr != nullptr); gbString str = type_to_string(elem); error(elem_expr, "Invalid type for an #soa array, expected a struct or array of length 4 or below, got '%s'", str); gb_string_free(str); return alloc_type_dynamic_array(elem); } Type *soa_struct = nullptr; Scope *scope = nullptr; isize field_count = 0; if (is_polymorphic) { field_count = 0; soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), field_count+3); soa_struct->Struct.tags = array_make(heap_allocator(), field_count+3); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Dynamic; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = 0; soa_struct->Struct.is_polymorphic = true; scope = create_scope(ctx->scope, ctx->allocator); soa_struct->Struct.scope = scope; } else if (is_type_array(elem)) { Type *old_array = base_type(elem); field_count = old_array->Array.count; soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), field_count+3); soa_struct->Struct.tags = array_make(heap_allocator(), field_count+3); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Dynamic; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = 0; scope = create_scope(ctx->scope, ctx->allocator); soa_struct->Struct.scope = scope; String params_xyzw[4] = { str_lit("x"), str_lit("y"), str_lit("z"), str_lit("w") }; for (i64 i = 0; i < field_count; i++) { Type *array_type = alloc_type_pointer(old_array->Array.elem); Token token = {}; token.string = params_xyzw[i]; Entity *new_field = alloc_entity_field(scope, token, array_type, false, cast(i32)i); new_field->flags |= EntityFlag_SoaPtrField; soa_struct->Struct.fields[i] = new_field; add_entity(ctx->checker, scope, nullptr, new_field); add_entity_use(ctx, nullptr, new_field); } } else { GB_ASSERT(is_type_struct(elem)); Type *old_struct = base_type(elem); field_count = old_struct->Struct.fields.count; soa_struct = alloc_type_struct(); soa_struct->Struct.fields = array_make(heap_allocator(), field_count+3); soa_struct->Struct.tags = array_make(heap_allocator(), old_struct->Struct.tags.count+3); soa_struct->Struct.node = array_typ_expr; soa_struct->Struct.soa_kind = StructSoa_Dynamic; soa_struct->Struct.soa_elem = elem; soa_struct->Struct.soa_count = 0; scope = create_scope(old_struct->Struct.scope->parent, ctx->allocator); soa_struct->Struct.scope = scope; for_array(i, old_struct->Struct.fields) { Entity *old_field = old_struct->Struct.fields[i]; if (old_field->kind == Entity_Variable) { Type *array_type = alloc_type_pointer(old_field->type); Entity *new_field = alloc_entity_field(scope, old_field->token, array_type, false, old_field->Variable.field_src_index); new_field->flags |= EntityFlag_SoaPtrField; soa_struct->Struct.fields[i] = new_field; add_entity(ctx->checker, scope, nullptr, new_field); add_entity_use(ctx, nullptr, new_field); } else { soa_struct->Struct.fields[i] = old_field; } soa_struct->Struct.tags[i] = old_struct->Struct.tags[i]; } } Entity *len_field = alloc_entity_field(scope, empty_token, t_int, false, cast(i32)field_count); soa_struct->Struct.fields[field_count+0] = len_field; add_entity(ctx->checker, scope, nullptr, len_field); add_entity_use(ctx, nullptr, len_field); Entity *cap_field = alloc_entity_field(scope, empty_token, t_int, false, cast(i32)field_count); soa_struct->Struct.fields[field_count+1] = cap_field; add_entity(ctx->checker, scope, nullptr, cap_field); add_entity_use(ctx, nullptr, cap_field); Token token = {}; token.string = str_lit("allocator"); Entity *allocator_field = alloc_entity_field(scope, token, t_allocator, false, cast(i32)field_count); soa_struct->Struct.fields[field_count+2] = allocator_field; add_entity(ctx->checker, scope, nullptr, allocator_field); add_entity_use(ctx, nullptr, allocator_field); token.string = str_lit("Base_Type"); Entity *base_type_entity = alloc_entity_type_name(scope, token, elem, EntityState_Resolved); add_entity(ctx->checker, scope, nullptr, base_type_entity); add_type_info_type(ctx, soa_struct); return soa_struct; } bool check_type_internal(CheckerContext *ctx, Ast *e, Type **type, Type *named_type) { GB_ASSERT_NOT_NULL(type); if (e == nullptr) { *type = t_invalid; return true; } switch (e->kind) { case_ast_node(i, Ident, e); Operand o = {}; Entity *entity = check_ident(ctx, &o, e, named_type, nullptr, false); gbString err_str = nullptr; defer (gb_string_free(err_str)); switch (o.mode) { case Addressing_Invalid: break; case Addressing_Type: { *type = o.type; if (!ctx->in_polymorphic_specialization) { Type *t = base_type(o.type); if (t != nullptr && is_type_polymorphic_record_unspecialized(t)) { err_str = expr_to_string(e); error(e, "Invalid use of a non-specialized polymorphic type '%s'", err_str); return true; } } // if (ctx->type_level == 0 && entity->state == EntityState_InProgress) { // error(entity->token, "Illegal declaration cycle of `%.*s`", LIT(entity->token.string)); // for_array(j, *ctx->type_path) { // Entity *k = (*ctx->type_path)[j]; // error(k->token, "\t%.*s refers to", LIT(k->token.string)); // } // error(entity->token, "\t%.*s", LIT(entity->token.string)); // *type = t_invalid; // } return true; } case Addressing_NoValue: err_str = expr_to_string(e); error(e, "'%s' used as a type", err_str); break; default: err_str = expr_to_string(e); error(e, "'%s' used as a type when not a type", err_str); break; } case_end; case_ast_node(ht, HelperType, e); return check_type_internal(ctx, ht->type, type, named_type); case_end; case_ast_node(dt, DistinctType, e); error(e, "Invalid use of a distinct type"); // NOTE(bill): Treat it as a HelperType to remove errors return check_type_internal(ctx, dt->type, type, named_type); case_end; case_ast_node(tt, TypeidType, e); e->tav.mode = Addressing_Type; e->tav.type = t_typeid; *type = t_typeid; set_base_type(named_type, *type); return true; case_end; case_ast_node(pt, PolyType, e); Ast *ident = pt->type; if (ident->kind != Ast_Ident) { error(ident, "Expected an identifier after the $"); *type = t_invalid; return false; } Token token = ident->Ident.token; Type *specific = nullptr; if (pt->specialization != nullptr) { CheckerContext c = *ctx; c.in_polymorphic_specialization = true; Ast *s = pt->specialization; specific = check_type(&c, s); } Type *t = alloc_type_generic(ctx->scope, 0, token.string, specific); if (ctx->allow_polymorphic_types) { Scope *ps = ctx->polymorphic_scope; Scope *s = ctx->scope; Scope *entity_scope = s; if (ps != nullptr && ps != s) { // TODO(bill): Is this check needed? // GB_ASSERT_MSG(is_scope_an_ancestor(ps, s) >= 0); entity_scope = ps; } Entity *e = alloc_entity_type_name(entity_scope, token, t); t->Generic.entity = e; e->TypeName.is_type_alias = true; e->state = EntityState_Resolved; add_entity(ctx->checker, ps, ident, e); add_entity(ctx->checker, s, ident, e); } else { error(ident, "Invalid use of a polymorphic parameter '$%.*s'", LIT(token.string)); *type = t_invalid; return false; } *type = t; set_base_type(named_type, *type); return true; case_end; case_ast_node(se, SelectorExpr, e); Operand o = {}; check_selector(ctx, &o, e, nullptr); gbString err_str; switch (o.mode) { case Addressing_Invalid: break; case Addressing_Type: GB_ASSERT(o.type != nullptr); *type = o.type; return true; case Addressing_NoValue: err_str = expr_to_string(e); error(e, "'%s' used as a type", err_str); gb_string_free(err_str); break; default: err_str = expr_to_string(e); error(e, "'%s' is not a type", err_str); gb_string_free(err_str); break; } case_end; case_ast_node(pe, ParenExpr, e); *type = check_type_expr(ctx, pe->expr, named_type); set_base_type(named_type, *type); return true; case_end; case_ast_node(ue, UnaryExpr, e); switch (ue->op.kind) { case Token_Pointer: *type = alloc_type_pointer(check_type(ctx, ue->expr)); set_base_type(named_type, *type); return true; } case_end; case_ast_node(pt, PointerType, e); *type = alloc_type_pointer(check_type(ctx, pt->type)); set_base_type(named_type, *type); return true; case_end; case_ast_node(rt, RelativeType, e); GB_ASSERT(rt->tag->kind == Ast_CallExpr); ast_node(ce, CallExpr, rt->tag); Type *base_integer = nullptr; if (ce->args.count != 1) { error(rt->type, "#relative expected 1 type argument, got %td", ce->args.count); } else { base_integer = check_type(ctx, ce->args[0]); if (!is_type_integer(base_integer)) { error(rt->type, "#relative base types must be an integer"); base_integer = nullptr; } else if (type_size_of(base_integer) > 64) { error(rt->type, "#relative base integer types be less than or equal to 64-bits"); base_integer = nullptr; } } Type *relative_type = nullptr; Type *base_type = check_type(ctx, rt->type); if (!is_type_pointer(base_type) && !is_type_slice(base_type)) { error(rt->type, "#relative types can only be a pointer or slice"); relative_type = base_type; } else if (base_integer == nullptr) { relative_type = base_type; } else { if (is_type_pointer(base_type)) { relative_type = alloc_type_relative_pointer(base_type, base_integer); } else if (is_type_slice(base_type)) { relative_type = alloc_type_relative_slice(base_type, base_integer); } } GB_ASSERT(relative_type != nullptr); *type = relative_type; set_base_type(named_type, *type); return true; case_end; case_ast_node(ot, OpaqueType, e); Type *elem = strip_opaque_type(check_type_expr(ctx, ot->type, nullptr)); *type = alloc_type_opaque(elem); set_base_type(named_type, *type); return true; case_end; case_ast_node(at, ArrayType, e); if (at->count != nullptr) { Operand o = {}; i64 count = check_array_count(ctx, &o, at->count); Type *generic_type = nullptr; Type *elem = check_type_expr(ctx, at->elem, nullptr); if (o.mode == Addressing_Type && o.type->kind == Type_Generic) { generic_type = o.type; } else if (o.mode == Addressing_Type && is_type_enum(o.type)) { Type *index = o.type; Type *bt = base_type(index); GB_ASSERT(bt->kind == Type_Enum); Type *t = alloc_type_enumerated_array(elem, index, bt->Enum.min_value, bt->Enum.max_value, Token_Invalid); bool is_partial = false; if (at->tag != nullptr) { GB_ASSERT(at->tag->kind == Ast_BasicDirective); String name = at->tag->BasicDirective.name; if (name == "partial") { is_partial = true; } else { error(at->tag, "Invalid tag applied to an enumerated array, got #%.*s", LIT(name)); } } if (!is_partial && t->EnumeratedArray.count > bt->Enum.fields.count) { error(e, "Non-contiguous enumeration used as an index in an enumerated array"); long long ea_count = cast(long long)t->EnumeratedArray.count; long long enum_count = cast(long long)t->Enum.fields.count; error_line("\tenumerated array length: %lld\n", ea_count); error_line("\tenum field count: %lld\n", enum_count); error_line("\tSuggestion: prepend #partial to the enumerated array to allow for non-named elements\n"); if (2*enum_count < ea_count) { error_line("\tWarning: the number of named elements is much smaller than the length of the array, are you sure this is what you want?\n"); error_line("\t this warning will be removed if #partial is applied\n"); } } *type = t; goto array_end; } if (count < 0) { error(at->count, "? can only be used in conjuction with compound literals"); count = 0; } if (at->tag != nullptr) { GB_ASSERT(at->tag->kind == Ast_BasicDirective); String name = at->tag->BasicDirective.name; if (name == "soa") { *type = make_soa_struct_fixed(ctx, e, at->elem, elem, count, generic_type); } else if (name == "simd") { if (!is_type_valid_vector_elem(elem)) { gbString str = type_to_string(elem); error(at->elem, "Invalid element type for 'intrinsics.simd_vector', expected an integer or float with no specific endianness, got '%s'", str); gb_string_free(str); *type = alloc_type_array(elem, count, generic_type); goto array_end; } *type = alloc_type_simd_vector(count, elem); } else { error(at->tag, "Invalid tag applied to array, got #%.*s", LIT(name)); *type = alloc_type_array(elem, count, generic_type); } } else { *type = alloc_type_array(elem, count, generic_type); } } else { Type *elem = check_type(ctx, at->elem); if (at->tag != nullptr) { GB_ASSERT(at->tag->kind == Ast_BasicDirective); String name = at->tag->BasicDirective.name; if (name == "soa") { *type = make_soa_struct_slice(ctx, e, at->elem, elem); } else { error(at->tag, "Invalid tag applied to array, got #%.*s", LIT(name)); *type = alloc_type_slice(elem); } } else { *type = alloc_type_slice(elem); } } array_end: set_base_type(named_type, *type); return true; case_end; case_ast_node(dat, DynamicArrayType, e); Type *elem = check_type(ctx, dat->elem); if (dat->tag != nullptr) { GB_ASSERT(dat->tag->kind == Ast_BasicDirective); String name = dat->tag->BasicDirective.name; if (name == "soa") { *type = make_soa_struct_dynamic_array(ctx, e, dat->elem, elem); } else { error(dat->tag, "Invalid tag applied to dynamic array, got #%.*s", LIT(name)); *type = alloc_type_dynamic_array(elem); } } else { *type = alloc_type_dynamic_array(elem); } set_base_type(named_type, *type); return true; case_end; case_ast_node(st, StructType, e); CheckerContext c = *ctx; c.in_polymorphic_specialization = false; c.type_level += 1; *type = alloc_type_struct(); set_base_type(named_type, *type); check_open_scope(&c, e); check_struct_type(&c, *type, e, nullptr, named_type); check_close_scope(&c); (*type)->Struct.node = e; return true; case_end; case_ast_node(ut, UnionType, e); CheckerContext c = *ctx; c.in_polymorphic_specialization = false; c.type_level += 1; *type = alloc_type_union(); set_base_type(named_type, *type); check_open_scope(&c, e); check_union_type(&c, *type, e, nullptr, named_type); check_close_scope(&c); (*type)->Union.node = e; return true; case_end; case_ast_node(et, EnumType, e); bool ips = ctx->in_polymorphic_specialization; defer (ctx->in_polymorphic_specialization = ips); ctx->in_polymorphic_specialization = false; ctx->in_enum_type = true; *type = alloc_type_enum(); set_base_type(named_type, *type); check_open_scope(ctx, e); check_enum_type(ctx, *type, named_type, e); check_close_scope(ctx); (*type)->Enum.node = e; ctx->in_enum_type = false; return true; case_end; case_ast_node(et, BitFieldType, e); *type = alloc_type_bit_field(); set_base_type(named_type, *type); check_open_scope(ctx, e); check_bit_field_type(ctx, *type, e); check_close_scope(ctx); return true; case_end; case_ast_node(bs, BitSetType, e); *type = alloc_type_bit_set(); set_base_type(named_type, *type); check_bit_set_type(ctx, *type, named_type, e); return true; case_end; case_ast_node(pt, ProcType, e); bool ips = ctx->in_polymorphic_specialization; defer (ctx->in_polymorphic_specialization = ips); ctx->in_polymorphic_specialization = false; *type = alloc_type(Type_Proc); set_base_type(named_type, *type); check_open_scope(ctx, e); check_procedure_type(ctx, *type, e); check_close_scope(ctx); return true; case_end; case_ast_node(mt, MapType, e); bool ips = ctx->in_polymorphic_specialization; defer (ctx->in_polymorphic_specialization = ips); ctx->in_polymorphic_specialization = false; *type = alloc_type(Type_Map); set_base_type(named_type, *type); check_map_type(ctx, *type, e); return true; case_end; case_ast_node(ce, CallExpr, e); Operand o = {}; check_expr_or_type(ctx, &o, e); if (o.mode == Addressing_Type) { *type = o.type; set_base_type(named_type, *type); return true; } case_end; case_ast_node(te, TernaryExpr, e); Operand o = {}; check_expr_or_type(ctx, &o, e); if (o.mode == Addressing_Type) { *type = o.type; set_base_type(named_type, *type); return true; } case_end; case_ast_node(te, TernaryIfExpr, e); Operand o = {}; check_expr_or_type(ctx, &o, e); if (o.mode == Addressing_Type) { *type = o.type; set_base_type(named_type, *type); return true; } case_end; case_ast_node(te, TernaryWhenExpr, e); Operand o = {}; check_expr_or_type(ctx, &o, e); if (o.mode == Addressing_Type) { *type = o.type; set_base_type(named_type, *type); return true; } case_end; } *type = t_invalid; return false; } Type *check_type(CheckerContext *ctx, Ast *e) { CheckerContext c = *ctx; c.type_path = new_checker_type_path(); defer (destroy_checker_type_path(c.type_path)); return check_type_expr(&c, e, nullptr); } Type *check_type_expr(CheckerContext *ctx, Ast *e, Type *named_type) { Type *type = nullptr; bool ok = check_type_internal(ctx, e, &type, named_type); if (!ok) { gbString err_str = expr_to_string(e); error(e, "'%s' is not a type", err_str); gb_string_free(err_str); type = t_invalid; } if (type == nullptr) { type = t_invalid; } if (type->kind == Type_Named && type->Named.base == nullptr) { // IMPORTANT TODO(bill): Is this a serious error?! #if 0 error(e, "Invalid type definition of '%.*s'", LIT(type->Named.name)); #endif type->Named.base = t_invalid; } if (is_type_polymorphic(type)) { type->flags |= TypeFlag_Polymorphic; } else if (is_type_polymorphic(type, true)) { type->flags |= TypeFlag_PolySpecialized; } #if 0 if (!ctx->allow_polymorphic_types && is_type_polymorphic(type)) { gbString str = type_to_string(type); error(e, "Invalid use of a polymorphic type '%s'", str); gb_string_free(str); type = t_invalid; } #endif if (is_type_typed(type)) { add_type_and_value(&ctx->checker->info, e, Addressing_Type, type, empty_exact_value); } else { gbString name = type_to_string(type); error(e, "Invalid type definition of %s", name); gb_string_free(name); type = t_invalid; } set_base_type(named_type, type); return type; }