void check_expr (Checker *c, Operand *operand, AstNode *expression); void check_multi_expr (Checker *c, Operand *operand, AstNode *expression); void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression); ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint = NULL); Type * check_type (Checker *c, AstNode *expression, Type *named_type = NULL, CycleChecker *cycle_checker = NULL); void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def, CycleChecker *cycle_checker); Entity * check_selector (Checker *c, Operand *operand, AstNode *node); void check_not_tuple (Checker *c, Operand *operand); b32 check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value); void convert_to_typed (Checker *c, Operand *operand, Type *target_type); gbString expr_to_string (AstNode *expression); void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type, CycleChecker *cycle_checker = NULL); void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body); void update_expr_type (Checker *c, AstNode *e, Type *type, b32 final); b32 check_is_assignable_to_using_subtype(Checker *c, Type *dst, Type *src) { return false; } b32 check_is_assignable_to(Checker *c, Operand *operand, Type *type, b32 is_argument = false) { if (operand->mode == Addressing_Invalid || type == t_invalid) { return true; } Type *s = operand->type; if (are_types_identical(s, type)) return true; Type *src = get_base_type(s); Type *dst = get_base_type(type); if (is_type_untyped(src)) { switch (dst->kind) { case Type_Basic: if (operand->mode == Addressing_Constant) return check_value_is_expressible(c, operand->value, dst, NULL); if (src->kind == Type_Basic) return src->Basic.kind == Basic_UntypedBool && is_type_boolean(dst); break; case Type_Pointer: return src->Basic.kind == Basic_UntypedPointer; } } if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) return true; if (is_type_pointer(dst) && is_type_rawptr(src)) return true; if (is_type_rawptr(dst) && is_type_pointer(src)) return true; if (dst->kind == Type_Array && src->kind == Type_Array) { if (are_types_identical(dst->Array.elem, src->Array.elem)) { return dst->Array.count == src->Array.count; } } if (dst->kind == Type_Slice && src->kind == Type_Slice) { if (are_types_identical(dst->Slice.elem, src->Slice.elem)) { return true; } } if (is_argument) { // Polymorphism for subtyping if (check_is_assignable_to_using_subtype(c, dst, src)) { return true; } } return false; } // NOTE(bill): `content_name` is for debugging // TODO(bill): Maybe allow assignment to tuples? void check_assignment(Checker *c, Operand *operand, Type *type, String context_name, b32 is_argument = false) { check_not_tuple(c, operand); if (operand->mode == Addressing_Invalid) return; if (is_type_untyped(operand->type)) { Type *target_type = type; if (type == NULL) target_type = default_type(operand->type); convert_to_typed(c, operand, target_type); if (operand->mode == Addressing_Invalid) return; } if (type != NULL) { if (!check_is_assignable_to(c, operand, type, is_argument)) { gbString type_string = type_to_string(type); gbString op_type_string = type_to_string(operand->type); gbString expr_str = expr_to_string(operand->expr); defer (gb_string_free(type_string)); defer (gb_string_free(op_type_string)); defer (gb_string_free(expr_str)); // TODO(bill): is this a good enough error message? error(&c->error_collector, ast_node_token(operand->expr), "Cannot assign value `%s` of type `%s` to `%s` in %.*s", expr_str, op_type_string, type_string, LIT(context_name)); operand->mode = Addressing_Invalid; } } } void populate_using_entity_map(Checker *c, AstNode *node, Type *t, Map *entity_map) { t = get_base_type(type_deref(t)); gbString str = expr_to_string(node); defer (gb_string_free(str)); switch (t->kind) { // IMPORTANT HACK(bill): The positions of fields and field_count // must be same for Struct and Union case Type_Struct: case Type_Union: for (isize i = 0; i < t->Struct.field_count; i++) { Entity *f = t->Struct.fields[i]; GB_ASSERT(f->kind == Entity_Variable); String name = f->token.string; HashKey key = hash_string(name); Entity **found = map_get(entity_map, key); if (found != NULL) { Entity *e = *found; // TODO(bill): Better type error error(&c->error_collector, e->token, "`%.*s` is already declared in `%s`", LIT(name), str); } else { map_set(entity_map, key, f); add_entity(c, c->context.scope, NULL, f); if (f->Variable.anonymous) { populate_using_entity_map(c, node, f->type, entity_map); } } } break; } } void check_fields(Checker *c, AstNode *node, AstNode *field_list, Entity **fields, isize field_count, CycleChecker *cycle_checker, String context) { Map entity_map = {}; map_init(&entity_map, gb_heap_allocator()); defer (map_destroy(&entity_map)); isize field_index = 0; for (AstNode *field = field_list; field != NULL; field = field->next) { ast_node(f, Field, field); Type *type = check_type(c, f->type, NULL, cycle_checker); if (f->is_using) { if (f->name_count > 1) { error(&c->error_collector, ast_node_token(f->name_list), "Cannot apply `using` to more than one of the same type"); } } for (AstNode *name = f->name_list; name != NULL; name = name->next) { ast_node(i, Ident, name); Token name_token = i->token; Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, f->is_using); HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(&c->error_collector, name_token, "`%.*s` is already declared in this %.*s", LIT(name_token.string), LIT(context)); } else { map_set(&entity_map, key, e); fields[field_index++] = e; } add_entity_use(&c->info, name, e); } if (f->is_using) { Type *t = get_base_type(type_deref(type)); if (t->kind != Type_Struct && t->kind != Type_Union) { Token name_token = f->name_list->Ident.token; error(&c->error_collector, name_token, "`using` on a field `%.*s` must be a structure or union", LIT(name_token.string)); continue; } populate_using_entity_map(c, node, type, &entity_map); } } } void check_const_decl(Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr); void check_struct_type(Checker *c, Type *struct_type, AstNode *node, CycleChecker *cycle_checker) { GB_ASSERT(node->kind == AstNode_StructType); GB_ASSERT(struct_type->kind == Type_Struct); ast_node(st, StructType, node); isize field_count = 0; isize other_field_count = 0; for (AstNode *decl = st->decl_list; decl != NULL; decl = decl->next) { switch (decl->kind) { case_ast_node(vd, VarDecl, decl); if (vd->kind == Declaration_Mutable) { field_count += vd->name_count; } else { other_field_count += vd->name_count; } case_end; case_ast_node(td, TypeDecl, decl); other_field_count += 1; case_end; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); Map entity_map = {}; map_init(&entity_map, gb_heap_allocator()); defer (map_destroy(&entity_map)); Entity **other_fields = gb_alloc_array(c->allocator, Entity *, other_field_count); isize other_field_index = 0; // TODO(bill): Random declarations with DeclInfo #if 0 Entity *e; DeclInfo *d;d check_entity_decl(c, e, d, NULL); #endif for (AstNode *decl = st->decl_list; decl != NULL; decl = decl->next) { if (decl->kind == AstNode_VarDecl) { ast_node(vd, VarDecl, decl); if (vd->kind != Declaration_Immutable) continue; isize entity_count = vd->name_count; isize entity_index = 0; Entity **entities = gb_alloc_array(c->allocator, Entity *, entity_count); for (AstNode *name = vd->name_list, *value = vd->value_list; name != NULL && value != NULL; name = name->next, value = value->next) { GB_ASSERT(name->kind == AstNode_Ident); ExactValue v = {ExactValue_Invalid}; ast_node(i, Ident, name); Token name_token = i->token; Entity *e = make_entity_constant(c->allocator, c->context.scope, name_token, NULL, v); entities[entity_index++] = e; check_const_decl(c, e, vd->type, value); } isize lhs_count = vd->name_count; isize rhs_count = vd->value_count; // TODO(bill): Better error messages or is this good enough? if (rhs_count == 0 && vd->type == NULL) { error(&c->error_collector, ast_node_token(node), "Missing type or initial expression"); } else if (lhs_count < rhs_count) { error(&c->error_collector, ast_node_token(node), "Extra initial expression"); } AstNode *name = vd->name_list; for (isize i = 0; i < entity_count; i++, name = name->next) { Entity *e = entities[i]; Token name_token = name->Ident.token; HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(&c->error_collector, name_token, "`%.*s` is already declared in this structure", LIT(name_token.string)); } else { map_set(&entity_map, key, e); other_fields[other_field_index++] = e; } add_entity(c, c->context.scope, name, e); } } else if (decl->kind == AstNode_TypeDecl) { ast_node(td, TypeDecl, decl); ast_node(name, Ident, td->name); Token name_token = name->token; Entity *e = make_entity_type_name(c->allocator, c->context.scope, name->token, NULL); check_type_decl(c, e, td->type, NULL, NULL); add_entity(c, c->context.scope, td->name, e); HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(&c->error_collector, name_token, "`%.*s` is already declared in this structure", LIT(name_token.string)); } else { map_set(&entity_map, key, e); other_fields[other_field_index++] = e; } add_entity_use(&c->info, td->name, e); } } isize field_index = 0; for (AstNode *decl = st->decl_list; decl != NULL; decl = decl->next) { if (decl->kind != AstNode_VarDecl) continue; ast_node(vd, VarDecl, decl); if (vd->kind != Declaration_Mutable) continue; Type *type = check_type(c, vd->type, NULL, cycle_checker); if (vd->is_using) { if (vd->name_count > 1) { error(&c->error_collector, ast_node_token(vd->name_list), "Cannot apply `using` to more than one of the same type"); } } for (AstNode *name = vd->name_list; name != NULL; name = name->next) { ast_node(i, Ident, name); Token name_token = i->token; Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, vd->is_using); HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(&c->error_collector, name_token, "`%.*s` is already declared in this structure", LIT(name_token.string)); } else { map_set(&entity_map, key, e); fields[field_index++] = e; add_entity(c, c->context.scope, name, e); } add_entity_use(&c->info, name, e); } if (vd->is_using) { Type *t = get_base_type(type_deref(type)); if (t->kind != Type_Struct && t->kind != Type_Union) { Token name_token = vd->name_list->Ident.token; error(&c->error_collector, name_token, "`using` on a field `%.*s` must be a structure or union", LIT(name_token.string)); continue; } populate_using_entity_map(c, node, type, &entity_map); } } struct_type->Struct.is_packed = st->is_packed; struct_type->Struct.fields = fields; struct_type->Struct.field_count = field_count; struct_type->Struct.other_fields = other_fields; struct_type->Struct.other_field_count = other_field_count; } void check_union_type(Checker *c, Type *union_type, AstNode *node, CycleChecker *cycle_checker) { GB_ASSERT(node->kind == AstNode_UnionType); GB_ASSERT(union_type->kind == Type_Union); ast_node(ut, UnionType, node); isize field_count = 0; for (AstNode *field = ut->field_list; field != NULL; field = field->next) { for (AstNode *name = field->Field.name_list; name != NULL; name = name->next) { GB_ASSERT(name->kind == AstNode_Ident); field_count++; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); check_fields(c, node, ut->field_list, fields, field_count, cycle_checker, make_string("union")); union_type->Union.fields = fields; union_type->Union.field_count = field_count; } void check_enum_type(Checker *c, Type *enum_type, AstNode *node) { GB_ASSERT(node->kind == AstNode_EnumType); GB_ASSERT(enum_type->kind == Type_Enum); ast_node(et, EnumType, node); Map entity_map = {}; map_init(&entity_map, gb_heap_allocator()); defer (map_destroy(&entity_map)); Type *base_type = t_int; if (et->base_type != NULL) { base_type = check_type(c, et->base_type); } if (base_type == NULL || !is_type_integer(base_type)) { error(&c->error_collector, et->token, "Base type for enumeration must be an integer"); return; } else if (base_type == NULL) { base_type = t_int; } enum_type->Enum.base = base_type; Entity **fields = gb_alloc_array(c->allocator, Entity *, et->field_count); isize field_index = 0; ExactValue iota = make_exact_value_integer(-1); for (AstNode *field = et->field_list; field != NULL; field = field->next) { ast_node(f, FieldValue, field); Token name_token = f->field->Ident.token; Operand o = {}; if (f->value != NULL) { check_expr(c, &o, f->value); if (o.mode != Addressing_Constant) { error(&c->error_collector, ast_node_token(f->value), "Enumeration value must be a constant integer"); o.mode = Addressing_Invalid; } if (o.mode != Addressing_Invalid) { check_assignment(c, &o, base_type, make_string("enumeration")); } if (o.mode != Addressing_Invalid) { iota = o.value; } else { Token add_token = {Token_Add}; iota = exact_binary_operator_value(add_token, iota, make_exact_value_integer(1)); } } else { Token add_token = {Token_Add}; iota = exact_binary_operator_value(add_token, iota, make_exact_value_integer(1)); } Entity *e = make_entity_constant(c->allocator, c->context.scope, name_token, enum_type, iota); HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key)) { // TODO(bill): Scope checking already checks the declaration error(&c->error_collector, name_token, "`%.*s` is already declared in this enumeration", LIT(name_token.string)); } else { map_set(&entity_map, key, e); fields[field_index++] = e; } add_entity_use(&c->info, f->field, e); } enum_type->Enum.fields = fields; enum_type->Enum.field_count = et->field_count; } Type *check_get_params(Checker *c, Scope *scope, AstNode *field_list, isize field_count) { if (field_list == NULL || field_count == 0) return NULL; Type *tuple = make_type_tuple(c->allocator); Entity **variables = gb_alloc_array(c->allocator, Entity *, field_count); isize variable_index = 0; for (AstNode *field = field_list; field != NULL; field = field->next) { ast_node(f, Field, field); AstNode *type_expr = f->type; if (type_expr) { Type *type = check_type(c, type_expr); for (AstNode *name = f->name_list; name != NULL; name = name->next) { if (name->kind == AstNode_Ident) { ast_node(i, Ident, name); Entity *param = make_entity_param(c->allocator, scope, i->token, type); add_entity(c, scope, name, param); variables[variable_index++] = param; } else { error(&c->error_collector, ast_node_token(name), "Invalid parameter (invalid AST)"); } } } } tuple->Tuple.variables = variables; tuple->Tuple.variable_count = field_count; return tuple; } Type *check_get_results(Checker *c, Scope *scope, AstNode *list, isize list_count) { if (list == NULL) return NULL; Type *tuple = make_type_tuple(c->allocator); Entity **variables = gb_alloc_array(c->allocator, Entity *, list_count); isize variable_index = 0; for (AstNode *item = list; item != NULL; item = item->next) { Type *type = check_type(c, item); Token token = ast_node_token(item); token.string = make_string(""); // NOTE(bill): results are not named // TODO(bill): Should I have named results? Entity *param = make_entity_param(c->allocator, scope, token, type); // NOTE(bill): No need to record variables[variable_index++] = param; } tuple->Tuple.variables = variables; tuple->Tuple.variable_count = list_count; return tuple; } void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) { ast_node(pt, ProcType, proc_type_node); isize param_count = pt->param_count; isize result_count = pt->result_count; // gb_printf("%td -> %td\n", param_count, result_count); Type *params = check_get_params(c, c->context.scope, pt->param_list, param_count); Type *results = check_get_results(c, c->context.scope, pt->result_list, result_count); type->Proc.scope = c->context.scope; type->Proc.params = params; type->Proc.param_count = pt->param_count; type->Proc.results = results; type->Proc.result_count = pt->result_count; } void check_identifier(Checker *c, Operand *o, AstNode *n, Type *named_type, CycleChecker *cycle_checker = NULL) { GB_ASSERT(n->kind == AstNode_Ident); o->mode = Addressing_Invalid; o->expr = n; ast_node(i, Ident, n); Entity *e = scope_lookup_entity(c, c->context.scope, i->token.string); if (e == NULL) { error(&c->error_collector, i->token, "Undeclared type or identifier `%.*s`", LIT(i->token.string)); return; } add_entity_use(&c->info, n, e); CycleChecker local_cycle_checker = {}; if (cycle_checker == NULL) { cycle_checker = &local_cycle_checker; } defer (if (local_cycle_checker.path != NULL) { gb_array_free(local_cycle_checker.path); }); if (e->type == NULL) { auto *found = map_get(&c->info.entities, hash_pointer(e)); if (found != NULL) { check_entity_decl(c, e, *found, named_type, cycle_checker); } else { GB_PANIC("Internal Compiler Error: DeclInfo not found!"); } } if (e->type == NULL) { GB_PANIC("Compiler error: How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(i->token.string)); return; } Type *type = e->type; switch (e->kind) { case Entity_Constant: add_declaration_dependency(c, e); if (type == t_invalid) return; o->value = e->Constant.value; GB_ASSERT(o->value.kind != ExactValue_Invalid); o->mode = Addressing_Constant; break; case Entity_Variable: add_declaration_dependency(c, e); e->Variable.used = true; if (type == t_invalid) return; o->mode = Addressing_Variable; break; case Entity_TypeName: { o->mode = Addressing_Type; #if 0 // TODO(bill): Fix cyclical dependancy checker gb_for_array(i, cycle_checker->path) { Entity *prev = cycle_checker->path[i]; if (prev == e) { error(&c->error_collector, e->token, "Illegal declaration cycle for %.*s", LIT(e->token.string)); for (isize j = i; j < gb_array_count(cycle_checker->path); j++) { Entity *ref = cycle_checker->path[j]; error(&c->error_collector, ref->token, "\t%.*s refers to", LIT(ref->token.string)); } error(&c->error_collector, e->token, "\t%.*s", LIT(e->token.string)); type = t_invalid; break; } } #endif } break; case Entity_Procedure: add_declaration_dependency(c, e); o->mode = Addressing_Value; break; case Entity_Builtin: o->builtin_id = e->Builtin.id; o->mode = Addressing_Builtin; break; case Entity_UsingVariable: // TODO(bill): Entity_UsingVariable: is this correct? o->mode = Addressing_Variable; break; default: GB_PANIC("Compiler error: Unknown EntityKind"); break; } o->type = type; } i64 check_array_count(Checker *c, AstNode *e) { if (e) { Operand o = {}; check_expr(c, &o, e); if (o.mode != Addressing_Constant) { if (o.mode != Addressing_Invalid) { error(&c->error_collector, ast_node_token(e), "Array count must be a constant"); } return 0; } if (is_type_untyped(o.type) || is_type_integer(o.type)) { if (o.value.kind == ExactValue_Integer) { i64 count = o.value.value_integer; if (count >= 0) return count; error(&c->error_collector, ast_node_token(e), "Invalid array count"); return 0; } } error(&c->error_collector, ast_node_token(e), "Array count must be an integer"); } return 0; } Type *check_type(Checker *c, AstNode *e, Type *named_type, CycleChecker *cycle_checker) { ExactValue null_value = {ExactValue_Invalid}; Type *type = NULL; gbString err_str = NULL; defer (gb_string_free(err_str)); switch (e->kind) { case_ast_node(i, Ident, e); Operand operand = {}; check_identifier(c, &operand, e, named_type, cycle_checker); switch (operand.mode) { case Addressing_Type: { type = operand.type; set_base_type(named_type, type); goto end; } break; case Addressing_Invalid: break; case Addressing_NoValue: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as a type", err_str); break; default: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as a type when not a type", err_str); break; } case_end; case_ast_node(se, SelectorExpr, e); Operand o = {}; o.mode = Addressing_Type; o.type = check_type(c, se->expr, named_type, cycle_checker); // gb_printf_err("mode: %.*s\n", LIT(addressing_mode_strings[o.mode])); check_selector(c, &o, e); // gb_printf_err("%s.%s\n", expr_to_string(se->expr), expr_to_string(se->selector)); // gb_printf_err("%s\n", type_to_string(o.type)); // gb_printf_err("mode: %.*s\n", LIT(addressing_mode_strings[o.mode])); if (o.mode == Addressing_Type) { set_base_type(type, o.type); return o.type; } case_end; case_ast_node(pe, ParenExpr, e); return check_type(c, pe->expr, named_type, cycle_checker); case_end; case_ast_node(at, ArrayType, e); if (at->count != NULL) { type = make_type_array(c->allocator, check_type(c, at->elem, NULL, cycle_checker), check_array_count(c, at->count)); set_base_type(named_type, type); } else { type = make_type_slice(c->allocator, check_type(c, at->elem)); set_base_type(named_type, type); } goto end; case_end; case_ast_node(vt, VectorType, e); Type *elem = check_type(c, vt->elem); Type *be = get_base_type(elem); i64 count = check_array_count(c, vt->count); if (!is_type_boolean(be) && !is_type_numeric(be)) { err_str = type_to_string(elem); error(&c->error_collector, ast_node_token(vt->elem), "Vector element type must be numerical or a boolean. Got `%s`", err_str); } type = make_type_vector(c->allocator, elem, count); set_base_type(named_type, type); goto end; case_end; case_ast_node(st, StructType, e); type = make_type_struct(c->allocator); set_base_type(named_type, type); check_open_scope(c, e); check_struct_type(c, type, e, cycle_checker); check_close_scope(c); type->Struct.node = e; goto end; case_end; case_ast_node(st, UnionType, e); type = make_type_union(c->allocator); set_base_type(named_type, type); check_open_scope(c, e); check_union_type(c, type, e, cycle_checker); check_close_scope(c); type->Union.node = e; goto end; case_end; case_ast_node(et, EnumType, e); type = make_type_enum(c->allocator); set_base_type(named_type, type); check_enum_type(c, type, e); goto end; case_end; case_ast_node(pt, PointerType, e); type = make_type_pointer(c->allocator, check_type(c, pt->type)); set_base_type(named_type, type); goto end; case_end; case_ast_node(pt, ProcType, e); type = alloc_type(c->allocator, Type_Proc); set_base_type(named_type, type); check_procedure_type(c, type, e); goto end; case_end; default: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` is not a type", err_str); break; } type = t_invalid; set_base_type(named_type, type); end: GB_ASSERT(is_type_typed(type)); add_type_and_value(&c->info, e, Addressing_Type, type, null_value); return type; } b32 check_unary_op(Checker *c, Operand *o, Token op) { // TODO(bill): Handle errors correctly Type *type = get_base_type(base_vector_type(get_base_type(o->type))); gbString str = NULL; defer (gb_string_free(str)); switch (op.kind) { case Token_Add: case Token_Sub: if (!is_type_numeric(type)) { str = expr_to_string(o->expr); error(&c->error_collector, op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str); } break; case Token_Xor: if (!is_type_integer(type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); } break; case Token_Not: if (!is_type_boolean(type)) { str = expr_to_string(o->expr); error(&c->error_collector, op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string)); } break; default: error(&c->error_collector, op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } b32 check_binary_op(Checker *c, Operand *o, Token op) { // TODO(bill): Handle errors correctly Type *type = get_base_type(base_vector_type(o->type)); switch (op.kind) { case Token_Add: case Token_Sub: case Token_Mul: case Token_Quo: case Token_AddEq: case Token_SubEq: case Token_MulEq: case Token_QuoEq: if (!is_type_numeric(type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string)); return false; } break; case Token_Mod: case Token_And: case Token_Or: case Token_Xor: case Token_AndNot: case Token_ModEq: case Token_AndEq: case Token_OrEq: case Token_XorEq: case Token_AndNotEq: if (!is_type_integer(type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); return false; } break; case Token_CmpAnd: case Token_CmpOr: case Token_CmpAndEq: case Token_CmpOrEq: if (!is_type_boolean(type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string)); return false; } break; default: error(&c->error_collector, op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } b32 check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) { if (in_value.kind == ExactValue_Invalid) return true; if (is_type_boolean(type)) { return in_value.kind == ExactValue_Bool; } else if (is_type_string(type)) { return in_value.kind == ExactValue_String; } else if (is_type_integer(type)) { if (in_value.kind != ExactValue_Integer) return false; if (out_value) *out_value = in_value; i64 i = in_value.value_integer; i64 s = 8*type_size_of(c->sizes, c->allocator, type); u64 umax = ~0ull; if (s < 64) { umax = (1ull << s) - 1ull; } i64 imax = (1ll << (s-1ll)); switch (type->Basic.kind) { case Basic_i8: case Basic_i16: case Basic_i32: case Basic_i64: case Basic_int: return gb_is_between(i, -imax, imax-1); case Basic_u8: case Basic_u16: case Basic_u32: case Basic_u64: case Basic_uint: return !(i < 0 || cast(u64)i > umax); case Basic_UntypedInteger: return true; default: GB_PANIC("Compiler error: Unknown integer type!"); break; } } else if (is_type_float(type)) { ExactValue v = exact_value_to_float(in_value); if (v.kind != ExactValue_Float) return false; switch (type->Basic.kind) { case Basic_f32: if (out_value) *out_value = v; return true; case Basic_f64: if (out_value) *out_value = v; return true; case Basic_UntypedFloat: return true; } } else if (is_type_pointer(type)) { if (in_value.kind == ExactValue_Pointer) return true; if (in_value.kind == ExactValue_Integer) return true; if (out_value) *out_value = in_value; } return false; } void check_is_expressible(Checker *c, Operand *o, Type *type) { GB_ASSERT(type->kind == Type_Basic); GB_ASSERT(o->mode == Addressing_Constant); if (!check_value_is_expressible(c, o->value, type, &o->value)) { gbString a = expr_to_string(o->expr); gbString b = type_to_string(type); defer (gb_string_free(a)); defer (gb_string_free(b)); if (is_type_numeric(o->type) && is_type_numeric(type)) { if (!is_type_integer(o->type) && is_type_integer(type)) { error(&c->error_collector, ast_node_token(o->expr), "`%s` truncated to `%s`", a, b); } else { error(&c->error_collector, ast_node_token(o->expr), "`%s = %lld` overflows `%s`", a, o->value.value_integer, b); } } else { error(&c->error_collector, ast_node_token(o->expr), "Cannot convert `%s` to `%s`", a, b); } o->mode = Addressing_Invalid; } } b32 check_is_expr_vector_index(Checker *c, AstNode *expr) { // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode expr = unparen_expr(expr); if (expr->kind == AstNode_IndexExpr) { ast_node(ie, IndexExpr, expr); Type *t = type_of_expr(&c->info, ie->expr); if (t != NULL) { return is_type_vector(get_base_type(t)); } } return false; } void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) { if (op.kind == Token_Pointer) { // Pointer address if (o->mode != Addressing_Variable || check_is_expr_vector_index(c, o->expr)) { ast_node(ue, UnaryExpr, node); gbString str = expr_to_string(ue->expr); defer (gb_string_free(str)); error(&c->error_collector, op, "Cannot take the pointer address of `%s`", str); o->mode = Addressing_Invalid; return; } o->mode = Addressing_Value; o->type = make_type_pointer(c->allocator, o->type); return; } if (!check_unary_op(c, o, op)) { o->mode = Addressing_Invalid; return; } if (o->mode == Addressing_Constant) { Type *type = get_base_type(o->type); GB_ASSERT(type->kind == Type_Basic); i32 precision = 0; if (is_type_unsigned(type)) precision = cast(i32)(8 * type_size_of(c->sizes, c->allocator, type)); o->value = exact_unary_operator_value(op, o->value, precision); if (is_type_typed(type)) { if (node != NULL) o->expr = node; check_is_expressible(c, o, type); } return; } o->mode = Addressing_Value; } void check_comparison(Checker *c, Operand *x, Operand *y, Token op) { gbString err_str = NULL; defer ({ if (err_str != NULL) gb_string_free(err_str); }); if (check_is_assignable_to(c, x, y->type) || check_is_assignable_to(c, y, x->type)) { b32 defined = false; switch (op.kind) { case Token_CmpEq: case Token_NotEq: defined = is_type_comparable(get_base_type(x->type)); break; case Token_Lt: case Token_Gt: case Token_LtEq: case Token_GtEq: { defined = is_type_ordered(get_base_type(x->type)); } break; } if (!defined) { gbString type_string = type_to_string(x->type); err_str = gb_string_make(gb_heap_allocator(), gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(op.string), type_string)); gb_string_free(type_string); } } else { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); defer(gb_string_free(xt)); defer(gb_string_free(yt)); err_str = gb_string_make(gb_heap_allocator(), gb_bprintf("mismatched types `%s` and `%s`", xt, yt)); } if (err_str != NULL) { error(&c->error_collector, op, "Cannot compare expression, %s", err_str); return; } if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { x->value = make_exact_value_bool(compare_exact_values(op, x->value, y->value)); } else { x->mode = Addressing_Value; update_expr_type(c, x->expr, default_type(x->type), true); update_expr_type(c, y->expr, default_type(y->type), true); } if (is_type_vector(get_base_type(y->type))) { x->type = make_type_vector(c->allocator, t_bool, get_base_type(y->type)->Vector.count); } else { x->type = t_untyped_bool; } } void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) { GB_ASSERT(node->kind == AstNode_BinaryExpr); ast_node(be, BinaryExpr, node); ExactValue x_val = {}; if (x->mode == Addressing_Constant) { x_val = exact_value_to_integer(x->value); } b32 x_is_untyped = is_type_untyped(x->type); if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) { gbString err_str = expr_to_string(x->expr); defer (gb_string_free(err_str)); error(&c->error_collector, ast_node_token(node), "Shifted operand `%s` must be an integer", err_str); x->mode = Addressing_Invalid; return; } if (is_type_unsigned(y->type)) { } else if (is_type_untyped(y->type)) { convert_to_typed(c, y, t_untyped_integer); if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; return; } } else { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(&c->error_collector, ast_node_token(node), "Shift amount `%s` must be an unsigned integer", err_str); x->mode = Addressing_Invalid; return; } if (x->mode == Addressing_Constant) { if (y->mode == Addressing_Constant) { ExactValue y_val = exact_value_to_integer(y->value); if (y_val.kind != ExactValue_Integer) { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(&c->error_collector, ast_node_token(node), "Shift amount `%s` must be an unsigned integer", err_str); x->mode = Addressing_Invalid; return; } u64 amount = cast(u64)y_val.value_integer; if (amount > 1074) { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(&c->error_collector, ast_node_token(node), "Shift amount too large: `%s`", err_str); x->mode = Addressing_Invalid; return; } if (!is_type_integer(x->type)) { // NOTE(bill): It could be an untyped float but still representable // as an integer x->type = t_untyped_integer; } x->value = exact_value_shift(be->op, x_val, make_exact_value_integer(amount)); if (is_type_typed(x->type)) { check_is_expressible(c, x, get_base_type(x->type)); } return; } if (x_is_untyped) { ExpressionInfo *info = map_get(&c->info.untyped, hash_pointer(x->expr)); if (info != NULL) { info->is_lhs = true; } x->mode = Addressing_Value; return; } } if (y->mode == Addressing_Constant && y->value.value_integer < 0) { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(&c->error_collector, ast_node_token(node), "Shift amount cannot be negative: `%s`", err_str); } x->mode = Addressing_Value; } b32 check_castable_to(Checker *c, Operand *operand, Type *y) { if (check_is_assignable_to(c, operand, y)) return true; Type *x = operand->type; Type *xb = get_enum_base_type(get_base_type(x)); Type *yb = get_enum_base_type(get_base_type(y)); if (are_types_identical(xb, yb)) return true; // Cast between booleans and integers if (is_type_boolean(x) || is_type_integer(x)) { if (is_type_boolean(y) || is_type_integer(y)) return true; } // Cast between numbers if (is_type_integer(x) || is_type_float(x)) { if (is_type_integer(y) || is_type_float(y)) return true; } // Cast between pointers if (is_type_pointer(x)) { if (is_type_pointer(y)) return true; } // // untyped integers -> pointers // if (is_type_untyped(xb) && is_type_integer(xb)) { // if (is_type_pointer(yb)) // return true; // } // (u)int <-> pointer if (is_type_pointer(xb) || (is_type_int_or_uint(xb) && !is_type_untyped(xb))) { if (is_type_pointer(yb)) return true; } if (is_type_pointer(xb)) { if (is_type_pointer(yb) || (is_type_int_or_uint(yb) && !is_type_untyped(yb))) return true; } // []byte/[]u8 <-> string if (is_type_u8_slice(xb) && is_type_string(yb)) { return true; } if (is_type_string(xb) && is_type_u8_slice(yb)) { return true; } // proc <-> proc if (is_type_proc(xb) && is_type_proc(yb)) { return true; } // proc -> rawptr if (is_type_proc(xb) && is_type_rawptr(yb)) { return true; } return false; } void check_binary_expr(Checker *c, Operand *x, AstNode *node) { GB_ASSERT(node->kind == AstNode_BinaryExpr); Operand y_ = {}, *y = &y_; gbString err_str = NULL; defer (gb_string_free(err_str)); ast_node(be, BinaryExpr, node); if (be->op.kind == Token_as) { check_expr(c, x, be->left); Type *type = check_type(c, be->right); if (x->mode == Addressing_Invalid) return; b32 is_const_expr = x->mode == Addressing_Constant; b32 can_convert = false; Type *base_type = get_base_type(type); if (is_const_expr && is_type_constant_type(base_type)) { if (base_type->kind == Type_Basic) { if (check_value_is_expressible(c, x->value, base_type, &x->value)) { can_convert = true; } } } else if (check_castable_to(c, x, type)) { x->mode = Addressing_Value; can_convert = true; } if (!can_convert) { gbString expr_str = expr_to_string(x->expr); gbString type_str = type_to_string(type); defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(x->expr), "Cannot cast `%s` as `%s`", expr_str, type_str); x->mode = Addressing_Invalid; return; } if (is_type_untyped(x->type)) { Type *final_type = type; if (is_const_expr && !is_type_constant_type(type)) { final_type = default_type(x->type); } update_expr_type(c, x->expr, final_type, true); } x->type = type; return; } else if (be->op.kind == Token_transmute) { check_expr(c, x, be->left); Type *type = check_type(c, be->right); if (x->mode == Addressing_Invalid) return; if (x->mode == Addressing_Constant) { gbString expr_str = expr_to_string(x->expr); defer (gb_string_free(expr_str)); error(&c->error_collector, ast_node_token(x->expr), "Cannot transmute constant expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } if (is_type_untyped(x->type)) { gbString expr_str = expr_to_string(x->expr); defer (gb_string_free(expr_str)); error(&c->error_collector, ast_node_token(x->expr), "Cannot transmute untyped expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } i64 otz = type_size_of(c->sizes, c->allocator, x->type); i64 ttz = type_size_of(c->sizes, c->allocator, type); if (otz != ttz) { gbString expr_str = expr_to_string(x->expr); gbString type_str = type_to_string(type); defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(x->expr), "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, otz, ttz); x->mode = Addressing_Invalid; return; } x->type = type; return; } check_expr(c, x, be->left); check_expr(c, y, be->right); if (x->mode == Addressing_Invalid) { return; } if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; x->expr = y->expr; return; } Token op = be->op; if (token_is_shift(op)) { check_shift(c, x, y, node); return; } convert_to_typed(c, x, y->type); if (x->mode == Addressing_Invalid) return; convert_to_typed(c, y, x->type); if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; return; } if (token_is_comparison(op)) { check_comparison(c, x, y, op); return; } if (!are_types_identical(x->type, y->type)) { if (x->type != t_invalid && y->type != t_invalid) { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); defer (gb_string_free(xt)); defer (gb_string_free(yt)); err_str = expr_to_string(x->expr); error(&c->error_collector, op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", err_str, xt, yt); } x->mode = Addressing_Invalid; return; } if (!check_binary_op(c, x, op)) { x->mode = Addressing_Invalid; return; } switch (op.kind) { case Token_Quo: case Token_Mod: case Token_QuoEq: case Token_ModEq: if ((x->mode == Addressing_Constant || is_type_integer(x->type)) && y->mode == Addressing_Constant) { b32 fail = false; switch (y->value.kind) { case ExactValue_Integer: if (y->value.value_integer == 0) fail = true; break; case ExactValue_Float: if (y->value.value_float == 0.0) fail = true; break; } if (fail) { error(&c->error_collector, ast_node_token(y->expr), "Division by zero not allowed"); x->mode = Addressing_Invalid; return; } } } if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { ExactValue a = x->value; ExactValue b = y->value; Type *type = get_base_type(x->type); GB_ASSERT(type->kind == Type_Basic); if (op.kind == Token_Quo && is_type_integer(type)) { op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers } x->value = exact_binary_operator_value(op, a, b); if (is_type_typed(type)) { if (node != NULL) x->expr = node; check_is_expressible(c, x, type); } return; } x->mode = Addressing_Value; } void update_expr_type(Checker *c, AstNode *e, Type *type, b32 final) { HashKey key = hash_pointer(e); ExpressionInfo *found = map_get(&c->info.untyped, key); if (found == NULL) return; switch (e->kind) { case_ast_node(ue, UnaryExpr, e); if (found->value.kind != ExactValue_Invalid) break; update_expr_type(c, ue->expr, type, final); case_end; case_ast_node(be, BinaryExpr, e); if (found->value.kind != ExactValue_Invalid) break; if (!token_is_comparison(be->op)) { if (token_is_shift(be->op)) { update_expr_type(c, be->left, type, final); } else { update_expr_type(c, be->left, type, final); update_expr_type(c, be->right, type, final); } } case_end; } if (!final && is_type_untyped(type)) { found->type = get_base_type(type); map_set(&c->info.untyped, key, *found); } else { ExpressionInfo old = *found; map_remove(&c->info.untyped, key); if (old.is_lhs && !is_type_integer(type)) { gbString expr_str = expr_to_string(e); gbString type_str = type_to_string(type); defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(e), "Shifted operand %s must be an integer, got %s", expr_str, type_str); return; } add_type_and_value(&c->info, e, found->mode, type, found->value); } } void update_expr_value(Checker *c, AstNode *e, ExactValue value) { ExpressionInfo *found = map_get(&c->info.untyped, hash_pointer(e)); if (found) found->value = value; } void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) { gbString expr_str = expr_to_string(operand->expr); gbString type_str = type_to_string(target_type); char *extra_text = ""; defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); if (operand->mode == Addressing_Constant) { if (operand->value.value_integer == 0) { // NOTE(bill): Doesn't matter what the type is as it's still zero in the union extra_text = " - Did you want `null`?"; } } error(&c->error_collector, ast_node_token(operand->expr), "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text); operand->mode = Addressing_Invalid; } void convert_to_typed(Checker *c, Operand *operand, Type *target_type) { GB_ASSERT_NOT_NULL(target_type); if (operand->mode == Addressing_Invalid || is_type_typed(operand->type) || target_type == t_invalid) { return; } if (is_type_untyped(target_type)) { Type *x = operand->type; Type *y = target_type; if (is_type_numeric(x) && is_type_numeric(y)) { if (x < y) { operand->type = target_type; update_expr_type(c, operand->expr, target_type, false); } } else if (x != y) { convert_untyped_error(c, operand, target_type); } return; } Type *t = get_enum_base_type(get_base_type(target_type)); switch (t->kind) { case Type_Basic: if (operand->mode == Addressing_Constant) { check_is_expressible(c, operand, t); if (operand->mode == Addressing_Invalid) { return; } update_expr_value(c, operand->expr, operand->value); } else { // TODO(bill): Is this really needed? switch (operand->type->Basic.kind) { case Basic_UntypedBool: if (!is_type_boolean(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; case Basic_UntypedInteger: case Basic_UntypedFloat: case Basic_UntypedRune: if (!is_type_numeric(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; } } break; case Type_Pointer: switch (operand->type->Basic.kind) { case Basic_UntypedPointer: target_type = t_untyped_pointer; break; default: convert_untyped_error(c, operand, target_type); return; } break; case Type_Proc: switch (operand->type->Basic.kind) { case Basic_UntypedPointer: break; default: convert_untyped_error(c, operand, target_type); return; } break; default: convert_untyped_error(c, operand, target_type); return; } operand->type = target_type; } b32 check_index_value(Checker *c, AstNode *index_value, i64 max_count, i64 *value) { Operand operand = {Addressing_Invalid}; check_expr(c, &operand, index_value); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } convert_to_typed(c, &operand, t_int); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } if (!is_type_integer(get_enum_base_type(operand.type))) { gbString expr_str = expr_to_string(operand.expr); error(&c->error_collector, ast_node_token(operand.expr), "Index `%s` must be an integer", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (operand.mode == Addressing_Constant) { if (max_count >= 0) { // NOTE(bill): Do array bound checking i64 i = exact_value_to_integer(operand.value).value_integer; if (i < 0) { gbString expr_str = expr_to_string(operand.expr); error(&c->error_collector, ast_node_token(operand.expr), "Index `%s` cannot be a negative value", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (value) *value = i; if (i >= max_count) { gbString expr_str = expr_to_string(operand.expr); error(&c->error_collector, ast_node_token(operand.expr), "Index `%s` is out of bounds range [0, %lld)", expr_str, max_count); gb_string_free(expr_str); return false; } return true; } } // NOTE(bill): It's alright :D if (value) *value = -1; return true; } struct Selection { Entity *entity; gbArray(isize) index; b32 indirect; // Set if there was a pointer deref anywhere down the line }; Selection empty_selection = {}; Selection make_selection(Entity *entity, gbArray(isize) index, b32 indirect) { Selection s = {entity, index, indirect}; return s; } void selection_add_index(Selection *s, isize index) { if (s->index == NULL) { gb_array_init(s->index, gb_heap_allocator()); } gb_array_append(s->index, index); } Selection lookup_field(Type *type_, String field_name, AddressingMode mode, Selection sel = empty_selection) { GB_ASSERT(type_ != NULL); if (are_strings_equal(field_name, make_string("_"))) { return empty_selection; } Type *type = type_deref(type_); b32 is_ptr = type != type_; type = get_base_type(type); switch (type->kind) { case Type_Struct: if (mode == Addressing_Type) { for (isize i = 0; i < type->Struct.other_field_count; i++) { Entity *f = type->Struct.other_fields[i]; GB_ASSERT(f->kind != Entity_Variable); String str = f->token.string; if (are_strings_equal(field_name, str)) { selection_add_index(&sel, i); sel.entity = f; return sel; } } } else { for (isize i = 0; i < type->Struct.field_count; i++) { Entity *f = type->Struct.fields[i]; GB_ASSERT(f->kind == Entity_Variable && f->Variable.is_field); String str = f->token.string; if (are_strings_equal(field_name, str)) { selection_add_index(&sel, i); sel.entity = f; return sel; } if (f->Variable.anonymous) { isize prev_count = 0; if (sel.index != NULL) { prev_count = gb_array_count(sel.index); } selection_add_index(&sel, i); // HACK(bill): Leaky memory sel = lookup_field(f->type, field_name, mode, sel); if (sel.entity != NULL) { // gb_printf("%.*s, %.*s, %.*s\n", LIT(field_name), LIT(str), LIT(sel.entity->token.string)); if (is_type_pointer(f->type)) sel.indirect = true; return sel; } gb_array_count(sel.index) = prev_count; } } } break; case Type_Union: for (isize i = 0; i < type->Union.field_count; i++) { Entity *f = type->Union.fields[i]; GB_ASSERT(f->kind == Entity_Variable && f->Variable.is_field); String str = f->token.string; if (are_strings_equal(field_name, str)) { selection_add_index(&sel, i); sel.entity = f; return sel; } } for (isize i = 0; i < type->Union.field_count; i++) { Entity *f = type->Union.fields[i]; GB_ASSERT(f->kind == Entity_Variable && f->Variable.is_field); String str = f->token.string; if (f->Variable.anonymous) { selection_add_index(&sel, i); // HACK(bill): Leaky memory sel = lookup_field(f->type, field_name, mode, sel); if (sel.entity != NULL && is_type_pointer(f->type)) { sel.indirect = true; } return sel; } } break; case Type_Enum: if (mode == Addressing_Type) { for (isize i = 0; i < type->Enum.field_count; i++) { Entity *f = type->Enum.fields[i]; GB_ASSERT(f->kind == Entity_Constant); String str = f->token.string; if (are_strings_equal(field_name, str)) { // Enums are constant expression return make_selection(f, NULL, i); } } } break; } return sel; } Entity *check_selector(Checker *c, Operand *operand, AstNode *node) { GB_ASSERT(node->kind == AstNode_SelectorExpr); ast_node(se, SelectorExpr, node); AstNode *op_expr = se->expr; AstNode *selector = se->selector; if (selector) { Entity *entity = lookup_field(operand->type, selector->Ident.token.string, operand->mode).entity; if (entity == NULL) { gbString op_str = expr_to_string(op_expr); gbString type_str = type_to_string(operand->type); gbString sel_str = expr_to_string(selector); defer (gb_string_free(op_str)); defer (gb_string_free(type_str)); defer (gb_string_free(sel_str)); error(&c->error_collector, ast_node_token(op_expr), "`%s` (`%s`) has no field `%s`", op_str, type_str, sel_str); operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } add_entity_use(&c->info, selector, entity); operand->type = entity->type; operand->expr = node; if (entity->kind == Entity_Constant) { operand->mode = Addressing_Constant; operand->value = entity->Constant.value; } else if (entity->kind == Entity_TypeName) { operand->mode = Addressing_Type; } else { if (operand->mode != Addressing_Variable) operand->mode = Addressing_Value; } return entity; } else { operand->mode = Addressing_Invalid; operand->expr = node; } return NULL; } b32 check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) { GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); BuiltinProc *bp = &builtin_procs[id]; { char *err = NULL; if (ce->arg_list_count < bp->arg_count) err = "Too few"; if (ce->arg_list_count > bp->arg_count && !bp->variadic) err = "Too many"; if (err) { ast_node(proc, Ident, ce->proc); error(&c->error_collector, ce->close, "`%s` arguments for `%.*s`, expected %td, got %td", err, LIT(proc->token.string), bp->arg_count, ce->arg_list_count); return false; } } switch (id) { case BuiltinProc_new: case BuiltinProc_new_slice: case BuiltinProc_size_of: case BuiltinProc_align_of: case BuiltinProc_offset_of: // NOTE(bill): The first arg is a Type, this will be checked case by case break; default: check_multi_expr(c, operand, ce->arg_list); } switch (id) { case BuiltinProc_new: { // new :: proc(Type) -> ^Type Type *type = check_type(c, ce->arg_list); if (type == NULL || type == t_invalid) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `size_of`"); return false; } operand->mode = Addressing_Value; operand->type = make_type_pointer(c->allocator, type); } break; case BuiltinProc_new_slice: { // new_slice :: proc(Type, len: int[, cap: int]) -> []Type Type *type = check_type(c, ce->arg_list); if (type == NULL || type == t_invalid) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `size_of`"); return false; } AstNode *len = ce->arg_list->next; AstNode *cap = len->next; Operand op = {}; check_expr(c, &op, len); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Length for `new_slice` must be an integer, got `%s`", type_str); return false; } if (cap != NULL) { check_expr(c, &op, len); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Capacity for `new_slice` must be an integer, got `%s`", type_str); return false; } if (cap->next != NULL) { error(&c->error_collector, ast_node_token(call), "Too many arguments to `new_slice`, expected either 2 or 3"); return false; } } operand->mode = Addressing_Value; operand->type = make_type_slice(c->allocator, type); } break; case BuiltinProc_delete: { // delete :: proc(ptr: ^T) Type *type = get_base_type(operand->type); if (!is_type_pointer(type) && !is_type_slice(type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Expected a pointer or slice to `delete`, got `%s`", type_str); return false; } operand->mode = Addressing_NoValue; operand->type = NULL; } break; case BuiltinProc_size_of: { // size_of :: proc(Type) -> int Type *type = check_type(c, ce->arg_list); if (!type) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `size_of`"); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, type)); operand->type = t_int; } break; case BuiltinProc_size_of_val: // size_of_val :: proc(val: Type) -> int check_assignment(c, operand, NULL, make_string("argument of `size_of`")); if (operand->mode == Addressing_Invalid) return false; operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, operand->type)); operand->type = t_int; break; case BuiltinProc_align_of: { // align_of :: proc(Type) -> int Type *type = check_type(c, ce->arg_list); if (!type) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `align_of`"); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, type)); operand->type = t_int; } break; case BuiltinProc_align_of_val: // align_of_val :: proc(val: Type) -> int check_assignment(c, operand, NULL, make_string("argument of `align_of`")); if (operand->mode == Addressing_Invalid) return false; operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, operand->type)); operand->type = t_int; break; case BuiltinProc_offset_of: { // offset_val :: proc(Type, field) -> int Type *type = get_base_type(check_type(c, ce->arg_list)); AstNode *field_arg = unparen_expr(ce->arg_list->next); if (type) { if (type->kind != Type_Struct) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a structure type for `offset_of`"); return false; } if (field_arg == NULL || field_arg->kind != AstNode_Ident) { error(&c->error_collector, ast_node_token(field_arg), "Expected an identifier for field argument"); return false; } } ast_node(arg, Ident, field_arg); Selection sel = lookup_field(type, arg->token.string, operand->mode); if (sel.entity == NULL) { gbString type_str = type_to_string(type); error(&c->error_collector, ast_node_token(ce->arg_list), "`%s` has no field named `%.*s`", type_str, LIT(arg->token.string)); return false; } operand->mode = Addressing_Constant; // IMPORTANT TODO(bill): Fix for anonymous fields operand->value = make_exact_value_integer(type_offset_of(c->sizes, c->allocator, type, sel.index[0])); operand->type = t_int; } break; case BuiltinProc_offset_of_val: { // offset_val :: proc(val: expression) -> int AstNode *arg = unparen_expr(ce->arg_list); if (arg->kind != AstNode_SelectorExpr) { gbString str = expr_to_string(arg); error(&c->error_collector, ast_node_token(arg), "`%s` is not a selector expression", str); return false; } ast_node(s, SelectorExpr, arg); check_expr(c, operand, s->expr); if (operand->mode == Addressing_Invalid) return false; Type *type = operand->type; if (get_base_type(type)->kind == Type_Pointer) { Type *p = get_base_type(type); if (get_base_type(p)->kind == Type_Struct) type = p->Pointer.elem; } ast_node(i, Ident, s->selector); Selection sel = lookup_field(type, i->token.string, operand->mode); if (sel.entity == NULL) { gbString type_str = type_to_string(type); error(&c->error_collector, ast_node_token(arg), "`%s` has no field named `%.*s`", type_str, LIT(i->token.string)); return false; } operand->mode = Addressing_Constant; // IMPORTANT TODO(bill): Fix for anonymous fields operand->value = make_exact_value_integer(type_offset_of(c->sizes, c->allocator, type, sel.index[0])); operand->type = t_int; } break; case BuiltinProc_static_assert: // static_assert :: proc(cond: bool) if (operand->mode != Addressing_Constant || !is_type_boolean(operand->type)) { gbString str = expr_to_string(ce->arg_list); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(call), "`%s` is not a constant boolean", str); return false; } if (!operand->value.value_bool) { gbString str = expr_to_string(ce->arg_list); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(call), "Static assertion: `%s`", str); return true; } break; // TODO(bill): Should these be procedures and are their names appropriate? case BuiltinProc_len: case BuiltinProc_cap: { Type *t = get_base_type(operand->type); AddressingMode mode = Addressing_Invalid; ExactValue value = {}; switch (t->kind) { case Type_Basic: if (id == BuiltinProc_len) { if (is_type_string(t)) { if (operand->mode == Addressing_Constant) { mode = Addressing_Constant; value = make_exact_value_integer(operand->value.value_string); } else { mode = Addressing_Value; } } } break; case Type_Array: mode = Addressing_Constant; value = make_exact_value_integer(t->Array.count); break; case Type_Vector: mode = Addressing_Constant; value = make_exact_value_integer(t->Vector.count); break; case Type_Slice: mode = Addressing_Value; break; } if (mode == Addressing_Invalid) { gbString str = expr_to_string(operand->expr); error(&c->error_collector, ast_node_token(operand->expr), "Invalid expression `%s` for `%.*s`", str, LIT(bp->name)); gb_string_free(str); return false; } operand->mode = mode; operand->type = t_int; operand->value = value; } break; case BuiltinProc_copy: { // copy :: proc(x, y: []Type) -> int Type *dest_type = NULL, *src_type = NULL; Type *d = get_base_type(operand->type); if (d->kind == Type_Slice) dest_type = d->Slice.elem; Operand op = {}; check_expr(c, &op, ce->arg_list->next); if (op.mode == Addressing_Invalid) return false; Type *s = get_base_type(op.type); if (s->kind == Type_Slice) src_type = s->Slice.elem; if (dest_type == NULL || src_type == NULL) { error(&c->error_collector, ast_node_token(call), "`copy` only expects slices as arguments"); return false; } if (!are_types_identical(dest_type, src_type)) { gbString d_arg = expr_to_string(ce->arg_list); gbString s_arg = expr_to_string(ce->arg_list->next); gbString d_str = type_to_string(dest_type); gbString s_str = type_to_string(src_type); defer (gb_string_free(d_arg)); defer (gb_string_free(s_arg)); defer (gb_string_free(d_str)); defer (gb_string_free(s_str)); error(&c->error_collector, ast_node_token(call), "Arguments to `copy`, %s, %s, have different elem types: %s vs %s", d_arg, s_arg, d_str, s_str); return false; } operand->type = t_int; // Returns number of elems copied operand->mode = Addressing_Value; } break; case BuiltinProc_append: { // append :: proc(x : ^[]Type, y : Type) -> bool Type *x_type = NULL, *y_type = NULL; x_type = get_base_type(operand->type); Operand op = {}; check_expr(c, &op, ce->arg_list->next); if (op.mode == Addressing_Invalid) return false; y_type = get_base_type(op.type); if (!(is_type_pointer(x_type) && is_type_slice(x_type->Pointer.elem))) { error(&c->error_collector, ast_node_token(call), "First argument to `append` must be a pointer to a slice"); return false; } Type *elem_type = x_type->Pointer.elem->Slice.elem; if (!check_is_assignable_to(c, &op, elem_type)) { gbString d_arg = expr_to_string(ce->arg_list); gbString s_arg = expr_to_string(ce->arg_list->next); gbString d_str = type_to_string(elem_type); gbString s_str = type_to_string(y_type); defer (gb_string_free(d_arg)); defer (gb_string_free(s_arg)); defer (gb_string_free(d_str)); defer (gb_string_free(s_str)); error(&c->error_collector, ast_node_token(call), "Arguments to `append`, %s, %s, have different element types: %s vs %s", d_arg, s_arg, d_str, s_str); return false; } operand->type = t_bool; // Returns if it was successful operand->mode = Addressing_Value; } break; case BuiltinProc_swizzle: { // swizzle :: proc(v: {N}T, T...) -> {M}T Type *vector_type = get_base_type(operand->type); if (!is_type_vector(vector_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "You can only `swizzle` a vector, got `%s`", type_str); return false; } isize max_count = vector_type->Vector.count; isize arg_count = 0; for (AstNode *arg = ce->arg_list->next; arg != NULL; arg = arg->next) { Operand op = {}; check_expr(c, &op, arg); if (op.mode == Addressing_Invalid) return false; Type *arg_type = get_base_type(op.type); if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) { error(&c->error_collector, ast_node_token(op.expr), "Indices to `swizzle` must be constant integers"); return false; } if (op.value.value_integer < 0) { error(&c->error_collector, ast_node_token(op.expr), "Negative `swizzle` index"); return false; } if (max_count <= op.value.value_integer) { error(&c->error_collector, ast_node_token(op.expr), "`swizzle` index exceeds vector length"); return false; } arg_count++; } if (arg_count > max_count) { error(&c->error_collector, ast_node_token(call), "Too many `swizzle` indices, %td > %td", arg_count, max_count); return false; } Type *elem_type = vector_type->Vector.elem; operand->type = make_type_vector(c->allocator, elem_type, arg_count); operand->mode = Addressing_Value; } break; case BuiltinProc_ptr_offset: { // ptr_offset :: proc(ptr: ^T, offset: int) -> ^T // ^T cannot be rawptr Type *ptr_type = get_base_type(operand->type); if (!is_type_pointer(ptr_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Expected a pointer to `ptr_offset`, got `%s`", type_str); return false; } if (ptr_type == t_rawptr) { error(&c->error_collector, ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } AstNode *offset = ce->arg_list->next; Operand op = {}; check_expr(c, &op, offset); if (op.mode == Addressing_Invalid) return false; Type *offset_type = get_base_type(op.type); if (!is_type_integer(offset_type)) { error(&c->error_collector, ast_node_token(op.expr), "Pointer offsets for `ptr_offset` must be an integer"); return false; } if (operand->mode == Addressing_Constant && op.mode == Addressing_Constant) { u8 *ptr = cast(u8 *)operand->value.value_pointer; isize elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem); ptr += elem_size * op.value.value_integer; operand->value.value_pointer = ptr; } else { operand->mode = Addressing_Value; } } break; case BuiltinProc_ptr_sub: { // ptr_sub :: proc(a, b: ^T) -> int // ^T cannot be rawptr Type *ptr_type = get_base_type(operand->type); if (!is_type_pointer(ptr_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Expected a pointer to `ptr_add`, got `%s`", type_str); return false; } if (ptr_type == t_rawptr) { error(&c->error_collector, ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } AstNode *offset = ce->arg_list->next; Operand op = {}; check_expr(c, &op, offset); if (op.mode == Addressing_Invalid) return false; if (!is_type_pointer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Expected a pointer to `ptr_add`, got `%s`", type_str); return false; } if (get_base_type(op.type) == t_rawptr) { error(&c->error_collector, ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } if (!are_types_identical(operand->type, op.type)) { gbString a = type_to_string(operand->type); gbString b = type_to_string(op.type); defer (gb_string_free(a)); defer (gb_string_free(b)); error(&c->error_collector, ast_node_token(op.expr), "`ptr_sub` requires to pointer of the same type. Got `%s` and `%s`.", a, b); return false; } operand->type = t_int; if (operand->mode == Addressing_Constant && op.mode == Addressing_Constant) { u8 *ptr_a = cast(u8 *)operand->value.value_pointer; u8 *ptr_b = cast(u8 *)op.value.value_pointer; isize elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem); operand->value = make_exact_value_integer((ptr_a - ptr_b) / elem_size); } else { operand->mode = Addressing_Value; } } break; case BuiltinProc_slice_ptr: { // slice_ptr :: proc(a: ^T, len: int[, cap: int]) -> []T // ^T cannot be rawptr Type *ptr_type = get_base_type(operand->type); if (!is_type_pointer(ptr_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Expected a pointer to `slice_ptr`, got `%s`", type_str); return false; } if (ptr_type == t_rawptr) { error(&c->error_collector, ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } AstNode *len = ce->arg_list->next; AstNode *cap = len->next; Operand op = {}; check_expr(c, &op, len); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Length for `slice_ptr` must be an integer, got `%s`", type_str); return false; } if (cap != NULL) { check_expr(c, &op, len); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(call), "Capacity for `slice_ptr` must be an integer, got `%s`", type_str); return false; } if (cap->next != NULL) { error(&c->error_collector, ast_node_token(call), "Too many arguments to `slice_ptr`, expected either 2 or 3"); return false; } } operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem); operand->mode = Addressing_Value; } break; } return true; } void check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) { GB_ASSERT(call->kind == AstNode_CallExpr); GB_ASSERT(proc_type->kind == Type_Proc); ast_node(ce, CallExpr, call); isize error_code = 0; isize param_index = 0; isize param_count = 0; if (proc_type->Proc.params) param_count = proc_type->Proc.params->Tuple.variable_count; if (ce->arg_list_count == 0 && param_count == 0) return; if (ce->arg_list_count > param_count) { error_code = +1; } else { Entity **sig_params = proc_type->Proc.params->Tuple.variables; AstNode *call_arg = ce->arg_list; for (; call_arg != NULL; call_arg = call_arg->next) { check_multi_expr(c, operand, call_arg); if (operand->mode == Addressing_Invalid) continue; if (operand->type->kind != Type_Tuple) { check_not_tuple(c, operand); check_assignment(c, operand, sig_params[param_index]->type, make_string("argument"), true); param_index++; } else { auto *tuple = &operand->type->Tuple; isize i = 0; for (; i < tuple->variable_count && param_index < param_count; i++, param_index++) { Entity *e = tuple->variables[i]; operand->type = e->type; operand->mode = Addressing_Value; check_not_tuple(c, operand); check_assignment(c, operand, sig_params[param_index]->type, make_string("argument"), true); } if (i < tuple->variable_count && param_index == param_count) { error_code = +1; break; } } if (param_index >= param_count) break; } if (param_index < param_count) { error_code = -1; } else if (call_arg != NULL && call_arg->next != NULL) { error_code = +1; } } if (error_code != 0) { char *err_fmt = ""; if (error_code < 0) { err_fmt = "Too few arguments for `%s`, expected %td arguments"; } else { err_fmt = "Too many arguments for `%s`, expected %td arguments"; } gbString proc_str = expr_to_string(ce->proc); error(&c->error_collector, ast_node_token(call), err_fmt, proc_str, param_count); gb_string_free(proc_str); operand->mode = Addressing_Invalid; } } ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) { GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); check_expr_or_type(c, operand, ce->proc); if (operand->mode == Addressing_Invalid) { for (AstNode *arg = ce->arg_list; arg != NULL; arg = arg->next) check_expr_base(c, operand, arg); operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } if (operand->mode == Addressing_Builtin) { i32 id = operand->builtin_id; if (!check_builtin_procedure(c, operand, call, id)) operand->mode = Addressing_Invalid; operand->expr = call; return builtin_procs[id].kind; } Type *proc_type = get_base_type(operand->type); if (proc_type == NULL || proc_type->kind != Type_Proc) { AstNode *e = operand->expr; gbString str = expr_to_string(e); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(e), "Cannot call a non-procedure: `%s`", str); operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } check_call_arguments(c, operand, proc_type, call); auto *proc = &proc_type->Proc; if (proc->result_count == 0) { operand->mode = Addressing_NoValue; } else if (proc->result_count == 1) { operand->mode = Addressing_Value; operand->type = proc->results->Tuple.variables[0]->type; } else { operand->mode = Addressing_Value; operand->type = proc->results; } operand->expr = call; return Expr_Stmt; } void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) { check_expr_base(c, o, e, t); check_not_tuple(c, o); char *err_str = NULL; switch (o->mode) { case Addressing_NoValue: err_str = "used as a value"; break; case Addressing_Type: err_str = "is not an expression"; break; case Addressing_Builtin: err_str = "must be called"; break; } if (err_str != NULL) { gbString str = expr_to_string(e); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(e), "`%s` %s", str, err_str); o->mode = Addressing_Invalid; } } ExprKind check__expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExprKind kind = Expr_Stmt; o->mode = Addressing_Invalid; o->type = t_invalid; switch (node->kind) { case_ast_node(be, BadExpr, node) goto error; case_end; case_ast_node(i, Ident, node); check_identifier(c, o, node, type_hint); case_end; case_ast_node(bl, BasicLit, node); Type *t = t_invalid; switch (bl->kind) { case Token_Integer: t = t_untyped_integer; break; case Token_Float: t = t_untyped_float; break; case Token_String: t = t_untyped_string; break; case Token_Rune: t = t_untyped_rune; break; default: GB_PANIC("Unknown literal"); break; } o->mode = Addressing_Constant; o->type = t; o->value = make_exact_value_from_basic_literal(*bl); case_end; case_ast_node(pl, ProcLit, node); check_open_scope(c, pl->type); c->context.decl = make_declaration_info(c->allocator, c->context.scope); defer (check_close_scope(c)); Type *proc_type = check_type(c, pl->type); if (proc_type != NULL) { check_proc_body(c, empty_token, c->context.decl, proc_type, pl->body); o->mode = Addressing_Value; o->type = proc_type; } else { gbString str = expr_to_string(node); error(&c->error_collector, ast_node_token(node), "Invalid procedure literal `%s`", str); gb_string_free(str); goto error; } case_end; case_ast_node(cl, CompoundLit, node); Type *type = type_hint; b32 ellipsis_array = false; if (cl->type != NULL) { type = NULL; // [..]Type if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) { if (cl->type->ArrayType.count->kind == AstNode_Ellipsis) { type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1); ellipsis_array = true; } } if (type == NULL) { type = check_type(c, cl->type); } } if (type == NULL) { error(&c->error_collector, ast_node_token(node), "Missing type in compound literal"); goto error; } Type *t = get_base_type(type); switch (t->kind) { case Type_Struct: { if (cl->elem_count == 0) break; // NOTE(bill): No need to init { // Checker values AstNode *elem = cl->elem_list; isize field_count = t->Struct.field_count; if (elem->kind == AstNode_FieldValue) { b32 *fields_visited = gb_alloc_array(c->allocator, b32, field_count); for (; elem != NULL; elem = elem->next) { if (elem->kind != AstNode_FieldValue) { error(&c->error_collector, ast_node_token(elem), "Mixture of `field = value` and value elements in a structure literal is not allowed"); continue; } ast_node(kv, FieldValue, elem); if (kv->field->kind != AstNode_Ident) { gbString expr_str = expr_to_string(kv->field); defer (gb_string_free(expr_str)); error(&c->error_collector, ast_node_token(elem), "Invalid field name `%s` in structure literal", expr_str); continue; } String name = kv->field->Ident.token.string; Selection sel = lookup_field(type, kv->field->Ident.token.string, o->mode); if (sel.entity == NULL) { error(&c->error_collector, ast_node_token(elem), "Unknown field `%.*s` in structure literal", LIT(name)); continue; } if (gb_array_count(sel.index) > 1) { error(&c->error_collector, ast_node_token(elem), "You cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name)); continue; } Entity *field = t->Struct.fields[sel.index[0]]; add_entity_use(&c->info, kv->field, field); if (fields_visited[sel.index[0]]) { error(&c->error_collector, ast_node_token(elem), "Duplicate field `%.*s` in structure literal", LIT(name)); continue; } fields_visited[sel.index[0]] = true; check_expr(c, o, kv->value); check_assignment(c, o, field->type, make_string("structure literal")); } } else { isize index = 0; for (; elem != NULL; elem = elem->next, index++) { if (elem->kind == AstNode_FieldValue) { error(&c->error_collector, ast_node_token(elem), "Mixture of `field = value` and value elements in a structure literal is not allowed"); continue; } Entity *field = t->Struct.fields[index]; check_expr(c, o, elem); if (index >= field_count) { error(&c->error_collector, ast_node_token(o->expr), "Too many values in structure literal, expected %td", field_count); break; } check_assignment(c, o, field->type, make_string("structure literal")); } if (cl->elem_count < field_count) { error(&c->error_collector, cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elem_count); } } } } break; case Type_Slice: case Type_Array: case Type_Vector: { Type *elem_type = NULL; String context_name = {}; if (t->kind == Type_Slice) { elem_type = t->Slice.elem; context_name = make_string("slice literal"); } else if (t->kind == Type_Vector) { elem_type = t->Vector.elem; context_name = make_string("vector literal"); } else { elem_type = t->Array.elem; context_name = make_string("array literal"); } i64 index = 0; i64 max = 0; for (AstNode *elem = cl->elem_list; elem != NULL; elem = elem->next, index++) { AstNode *e = elem; if (e->kind == AstNode_FieldValue) { error(&c->error_collector, ast_node_token(e), "`field = value` is only allowed in structure literals"); continue; } if (t->kind == Type_Array && t->Array.count >= 0 && index >= t->Array.count) { error(&c->error_collector, ast_node_token(elem), "Index %lld is out of bounds (>= %lld) for array literal", index, t->Array.count); } if (t->kind == Type_Vector && t->Vector.count >= 0 && index >= t->Vector.count) { error(&c->error_collector, ast_node_token(elem), "Index %lld is out of bounds (>= %lld) for vector literal", index, t->Vector.count); } Operand o = {}; check_expr_with_type_hint(c, &o, e, elem_type); check_assignment(c, &o, elem_type, context_name); } if (max < index) max = index; if (t->kind == Type_Vector) { if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) { error(&c->error_collector, ast_node_token(cl->elem_list), "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index); } } if (t->kind == Type_Array && ellipsis_array) { t->Array.count = max; } } break; default: { gbString str = type_to_string(type); error(&c->error_collector, ast_node_token(node), "Invalid compound literal type `%s`", str); gb_string_free(str); goto error; } break; } o->mode = Addressing_Value; o->type = type; case_end; case_ast_node(pe, ParenExpr, node); kind = check_expr_base(c, o, pe->expr, type_hint); o->expr = node; case_end; case_ast_node(te, TagExpr, node); // TODO(bill): Tag expressions error(&c->error_collector, ast_node_token(node), "Tag expressions are not supported yet"); kind = check_expr_base(c, o, te->expr, type_hint); o->expr = node; case_end; case_ast_node(ue, UnaryExpr, node); check_expr(c, o, ue->expr); if (o->mode == Addressing_Invalid) goto error; check_unary_expr(c, o, ue->op, node); if (o->mode == Addressing_Invalid) goto error; case_end; case_ast_node(be, BinaryExpr, node); check_binary_expr(c, o, node); if (o->mode == Addressing_Invalid) goto error; case_end; case_ast_node(se, SelectorExpr, node); check_expr_base(c, o, se->expr); check_selector(c, o, node); case_end; case_ast_node(ie, IndexExpr, node); check_expr(c, o, ie->expr); if (o->mode == Addressing_Invalid) goto error; b32 valid = false; i64 max_count = -1; Type *t = get_base_type(o->type); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { valid = true; if (o->mode == Addressing_Constant) { max_count = o->value.value_string.len; } if (o->mode != Addressing_Variable) o->mode = Addressing_Value; o->type = t_u8; } break; case Type_Array: valid = true; max_count = t->Array.count; if (o->mode != Addressing_Variable) o->mode = Addressing_Value; o->type = t->Array.elem; break; case Type_Vector: valid = true; max_count = t->Vector.count; if (o->mode != Addressing_Variable) o->mode = Addressing_Value; o->type = t->Vector.elem; break; case Type_Slice: valid = true; o->type = t->Slice.elem; o->mode = Addressing_Variable; break; case Type_Pointer: { Type *bt = get_base_type(t->Pointer.elem); if (bt->kind == Type_Array) { valid = true; max_count = bt->Array.count; o->mode = Addressing_Variable; o->type = bt->Array.elem; } } break; } if (!valid) { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Cannot index `%s`", str); gb_string_free(str); goto error; } if (ie->index == NULL) { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Missing index for `%s`", str); gb_string_free(str); goto error; } check_index_value(c, ie->index, max_count, NULL); case_end; case_ast_node(se, SliceExpr, node); check_expr(c, o, se->expr); if (o->mode == Addressing_Invalid) goto error; b32 valid = false; i64 max_count = -1; Type *t = get_base_type(o->type); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { valid = true; if (o->mode == Addressing_Constant) { max_count = o->value.value_string.len; } o->type = t_string; } break; case Type_Array: valid = true; max_count = t->Array.count; if (o->mode != Addressing_Variable) { gbString str = expr_to_string(node); error(&c->error_collector, ast_node_token(node), "Cannot slice array `%s`, value is not addressable", str); gb_string_free(str); goto error; } o->type = make_type_slice(c->allocator, t->Array.elem); break; case Type_Slice: valid = true; break; case Type_Pointer: { Type *bt = get_base_type(t->Pointer.elem); if (bt->kind == Type_Array) { valid = true; max_count = bt->Array.count; o->type = make_type_slice(c->allocator, bt->Array.elem); } } break; } if (!valid) { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Cannot slice `%s`", str); gb_string_free(str); goto error; } o->mode = Addressing_Value; i64 indices[3] = {}; AstNode *nodes[3] = {se->low, se->high, se->max}; for (isize i = 0; i < gb_count_of(nodes); i++) { i64 index = max_count; if (nodes[i] != NULL) { i64 capacity = -1; if (max_count >= 0) capacity = max_count; i64 j = 0; if (check_index_value(c, nodes[i], capacity, &j)) { index = j; } } else if (i == 0) { index = 0; } indices[i] = index; } for (isize i = 0; i < gb_count_of(indices); i++) { i64 a = indices[i]; for (isize j = i+1; j < gb_count_of(indices); j++) { i64 b = indices[j]; if (a > b && b >= 0) { error(&c->error_collector, se->close, "Invalid slice indices: [%td > %td]", a, b); } } } case_end; case_ast_node(ce, CallExpr, node); return check_call_expr(c, o, node); case_end; case_ast_node(de, DerefExpr, node); check_expr_or_type(c, o, de->expr); if (o->mode == Addressing_Invalid) { goto error; } else { Type *t = get_base_type(o->type); if (t->kind == Type_Pointer) { o->mode = Addressing_Variable; o->type = t->Pointer.elem; } else { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Cannot dereference `%s`", str); gb_string_free(str); goto error; } } case_end; case AstNode_ProcType: case AstNode_PointerType: case AstNode_ArrayType: case AstNode_VectorType: case AstNode_StructType: case AstNode_UnionType: o->mode = Addressing_Type; o->type = check_type(c, node); break; } kind = Expr_Expr; o->expr = node; return kind; error: o->mode = Addressing_Invalid; o->expr = node; return kind; } ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExprKind kind = check__expr_base(c, o, node, type_hint); Type *type = NULL; ExactValue value = {ExactValue_Invalid}; switch (o->mode) { case Addressing_Invalid: type = t_invalid; break; case Addressing_NoValue: type = NULL; break; case Addressing_Constant: type = o->type; value = o->value; break; default: type = o->type; break; } if (type != NULL && is_type_untyped(type)) { add_untyped(&c->info, node, false, o->mode, type, value); } else { add_type_and_value(&c->info, node, o->mode, type, value); } return kind; } void check_multi_expr(Checker *c, Operand *o, AstNode *e) { gbString err_str = NULL; defer (gb_string_free(err_str)); check_expr_base(c, o, e); switch (o->mode) { default: return; // NOTE(bill): Valid case Addressing_NoValue: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as value", err_str); break; case Addressing_Type: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` is not an expression", err_str); break; } o->mode = Addressing_Invalid; } void check_not_tuple(Checker *c, Operand *o) { if (o->mode == Addressing_Value) { // NOTE(bill): Tuples are not first class thus never named if (o->type->kind == Type_Tuple) { isize count = o->type->Tuple.variable_count; GB_ASSERT(count != 1); error(&c->error_collector, ast_node_token(o->expr), "%td-valued tuple found where single value expected", count); o->mode = Addressing_Invalid; } } } void check_expr(Checker *c, Operand *o, AstNode *e) { check_multi_expr(c, o, e); check_not_tuple(c, o); } void check_expr_or_type(Checker *c, Operand *o, AstNode *e) { check_expr_base(c, o, e); check_not_tuple(c, o); if (o->mode == Addressing_NoValue) { AstNode *e = o->expr; gbString str = expr_to_string(e); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(e), "`%s` used as value or type", str); o->mode = Addressing_Invalid; } } gbString write_expr_to_string(gbString str, AstNode *node); gbString write_field_list_to_string(gbString str, AstNode *field_list, char *sep) { isize i = 0; for (AstNode *field = field_list; field != NULL; field = field->next) { ast_node(f, Field, field); if (i > 0) str = gb_string_appendc(str, sep); str = write_expr_to_string(str, field); i++; } return str; } gbString string_append_token(gbString str, Token token) { if (token.string.len > 0) return gb_string_append_length(str, token.string.text, token.string.len); return str; } gbString write_expr_to_string(gbString str, AstNode *node) { if (node == NULL) return str; if (is_ast_node_stmt(node)) { GB_ASSERT("stmt passed to write_expr_to_string"); } switch (node->kind) { default: str = gb_string_appendc(str, "(BadExpr)"); break; case_ast_node(i, Ident, node); str = string_append_token(str, i->token); case_end; case_ast_node(bl, BasicLit, node); str = string_append_token(str, *bl); case_end; case_ast_node(pl, ProcLit, node); str = write_expr_to_string(str, pl->type); case_end; case_ast_node(cl, CompoundLit, node); str = gb_string_appendc(str, "("); str = write_expr_to_string(str, cl->type); str = gb_string_appendc(str, " lit)"); case_end; case_ast_node(te, TagExpr, node); str = gb_string_appendc(str, "#"); str = string_append_token(str, te->name); str = write_expr_to_string(str, te->expr); case_end; case_ast_node(ue, UnaryExpr, node); str = string_append_token(str, ue->op); str = write_expr_to_string(str, ue->expr); case_end; case_ast_node(be, BinaryExpr, node); str = write_expr_to_string(str, be->left); str = gb_string_appendc(str, " "); str = string_append_token(str, be->op); str = gb_string_appendc(str, " "); str = write_expr_to_string(str, be->right); case_end; case_ast_node(pe, ParenExpr, node); str = gb_string_appendc(str, "("); str = write_expr_to_string(str, pe->expr); str = gb_string_appendc(str, ")"); case_end; case_ast_node(se, SelectorExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "."); str = write_expr_to_string(str, se->selector); case_end; case_ast_node(ie, IndexExpr, node); str = write_expr_to_string(str, ie->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, ie->index); str = gb_string_appendc(str, "]"); case_end; case_ast_node(se, SliceExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, se->low); str = gb_string_appendc(str, ":"); str = write_expr_to_string(str, se->high); if (se->triple_indexed) { str = gb_string_appendc(str, ":"); str = write_expr_to_string(str, se->max); } str = gb_string_appendc(str, "]"); case_end; case_ast_node(e, Ellipsis, node); str = gb_string_appendc(str, ".."); case_end; case_ast_node(fv, FieldValue, node); str = write_expr_to_string(str, fv->field); str = gb_string_appendc(str, " = "); str = write_expr_to_string(str, fv->value); case_end; case_ast_node(pt, PointerType, node); str = gb_string_appendc(str, "^"); str = write_expr_to_string(str, pt->type); case_end; case_ast_node(at, ArrayType, node); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, at->count); str = gb_string_appendc(str, "]"); str = write_expr_to_string(str, at->elem); case_end; case_ast_node(vt, VectorType, node); str = gb_string_appendc(str, "{"); str = write_expr_to_string(str, vt->count); str = gb_string_appendc(str, "}"); str = write_expr_to_string(str, vt->elem); case_end; case_ast_node(f, Field, node); if (f->is_using) { str = gb_string_appendc(str, "using "); } isize i = 0; for (AstNode *name = f->name_list; name != NULL; name = name->next) { if (i > 0) str = gb_string_appendc(str, ", "); str = write_expr_to_string(str, name); i++; } str = gb_string_appendc(str, ": "); str = write_expr_to_string(str, f->type); case_end; case_ast_node(ce, CallExpr, node); str = write_expr_to_string(str, ce->proc); str = gb_string_appendc(str, "("); isize i = 0; for (AstNode *arg = ce->arg_list; arg != NULL; arg = arg->next) { if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, arg); i++; } str = gb_string_appendc(str, ")"); case_end; case_ast_node(pt, ProcType, node); str = gb_string_appendc(str, "proc("); str = write_field_list_to_string(str, pt->param_list, ", "); str = gb_string_appendc(str, ")"); case_end; case_ast_node(st, StructType, node); str = gb_string_appendc(str, "struct{"); // str = write_field_list_to_string(str, st->decl_list, ", "); str = gb_string_appendc(str, "}"); case_end; case_ast_node(st, UnionType, node); str = gb_string_appendc(str, "union{"); // str = write_field_list_to_string(str, st->decl_list, ", "); str = gb_string_appendc(str, "}"); case_end; case_ast_node(et, EnumType, node); str = gb_string_appendc(str, "enum "); if (et->base_type != NULL) { str = write_expr_to_string(str, et->base_type); str = gb_string_appendc(str, " "); } str = gb_string_appendc(str, "{"); str = gb_string_appendc(str, "}"); case_end; } return str; } gbString expr_to_string(AstNode *expression) { return write_expr_to_string(gb_string_make(gb_heap_allocator(), ""), expression); }