package math_cmplx import "core:math" import "core:math/bits" // The original C code, the long comment, and the constants // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. // The go code is a simplified version of the original C. // // Cephes Math Library Release 2.8: June, 2000 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier // // The readme file at http://netlib.sandia.gov/cephes/ says: // Some software in this archive may be from the book _Methods and // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster // International, 1989) or from the Cephes Mathematical Library, a // commercial product. In either event, it is copyrighted by the author. // What you see here may be used freely but it comes with no support or // guarantee. // // The two known misprints in the book are repaired here in the // source listings for the gamma function and the incomplete beta // integral. // // Stephen L. Moshier // moshier@na-net.ornl.gov sin_complex128 :: proc "contextless" (x: complex128) -> complex128 { // Complex circular sine // // DESCRIPTION: // // If // z = x + iy, // // then // // w = sin x cosh y + i cos x sinh y. // // csin(z) = -i csinh(iz). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC -10,+10 8400 5.3e-17 1.3e-17 // IEEE -10,+10 30000 3.8e-16 1.0e-16 // Also tested by csin(casin(z)) = z. switch re, im := real(x), imag(x); { case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)): return complex(math.nan_f64(), im) case math.is_inf(im, 0): switch { case re == 0: return x case math.is_inf(re, 0) || math.is_nan(re): return complex(math.nan_f64(), im) } case re == 0 && math.is_nan(im): return x } s, c := math.sincos(real(x)) sh, ch := _sinhcosh_f64(imag(x)) return complex(s*ch, c*sh) } cos_complex128 :: proc "contextless" (x: complex128) -> complex128 { // Complex circular cosine // // DESCRIPTION: // // If // z = x + iy, // // then // // w = cos x cosh y - i sin x sinh y. // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC -10,+10 8400 4.5e-17 1.3e-17 // IEEE -10,+10 30000 3.8e-16 1.0e-16 switch re, im := real(x), imag(x); { case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)): return complex(math.nan_f64(), -im*math.copy_sign(0, re)) case math.is_inf(im, 0): switch { case re == 0: return complex(math.inf_f64(1), -re*math.copy_sign(0, im)) case math.is_inf(re, 0) || math.is_nan(re): return complex(math.inf_f64(1), math.nan_f64()) } case re == 0 && math.is_nan(im): return complex(math.nan_f64(), 0) } s, c := math.sincos(real(x)) sh, ch := _sinhcosh_f64(imag(x)) return complex(c*ch, -s*sh) } sinh_complex128 :: proc "contextless" (x: complex128) -> complex128 { // Complex hyperbolic sine // // DESCRIPTION: // // csinh z = (cexp(z) - cexp(-z))/2 // = sinh x * cos y + i cosh x * sin y . // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // IEEE -10,+10 30000 3.1e-16 8.2e-17 switch re, im := real(x), imag(x); { case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)): return complex(re, math.nan_f64()) case math.is_inf(re, 0): switch { case im == 0: return complex(re, im) case math.is_inf(im, 0) || math.is_nan(im): return complex(re, math.nan_f64()) } case im == 0 && math.is_nan(re): return complex(math.nan_f64(), im) } s, c := math.sincos(imag(x)) sh, ch := _sinhcosh_f64(real(x)) return complex(c*sh, s*ch) } cosh_complex128 :: proc "contextless" (x: complex128) -> complex128 { // Complex hyperbolic cosine // // DESCRIPTION: // // ccosh(z) = cosh x cos y + i sinh x sin y . // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // IEEE -10,+10 30000 2.9e-16 8.1e-17 switch re, im := real(x), imag(x); { case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)): return complex(math.nan_f64(), re*math.copy_sign(0, im)) case math.is_inf(re, 0): switch { case im == 0: return complex(math.inf_f64(1), im*math.copy_sign(0, re)) case math.is_inf(im, 0) || math.is_nan(im): return complex(math.inf_f64(1), math.nan_f64()) } case im == 0 && math.is_nan(re): return complex(math.nan_f64(), im) } s, c := math.sincos(imag(x)) sh, ch := _sinhcosh_f64(real(x)) return complex(c*ch, s*sh) } tan_complex128 :: proc "contextless" (x: complex128) -> complex128 { // Complex circular tangent // // DESCRIPTION: // // If // z = x + iy, // // then // // sin 2x + i sinh 2y // w = --------------------. // cos 2x + cosh 2y // // On the real axis the denominator is zero at odd multiples // of PI/2. The denominator is evaluated by its Taylor // series near these points. // // ctan(z) = -i ctanh(iz). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC -10,+10 5200 7.1e-17 1.6e-17 // IEEE -10,+10 30000 7.2e-16 1.2e-16 // Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. switch re, im := real(x), imag(x); { case math.is_inf(im, 0): switch { case math.is_inf(re, 0) || math.is_nan(re): return complex(math.copy_sign(0, re), math.copy_sign(1, im)) } return complex(math.copy_sign(0, math.sin(2*re)), math.copy_sign(1, im)) case re == 0 && math.is_nan(im): return x } d := math.cos(2*real(x)) + math.cosh(2*imag(x)) if abs(d) < 0.25 { d = _tan_series_f64(x) } if d == 0 { return inf_complex128() } return complex(math.sin(2*real(x))/d, math.sinh(2*imag(x))/d) } tanh_complex128 :: proc "contextless" (x: complex128) -> complex128 { switch re, im := real(x), imag(x); { case math.is_inf(re, 0): switch { case math.is_inf(im, 0) || math.is_nan(im): return complex(math.copy_sign(1, re), math.copy_sign(0, im)) } return complex(math.copy_sign(1, re), math.copy_sign(0, math.sin(2*im))) case im == 0 && math.is_nan(re): return x } d := math.cosh(2*real(x)) + math.cos(2*imag(x)) if d == 0 { return inf_complex128() } return complex(math.sinh(2*real(x))/d, math.sin(2*imag(x))/d) } cot_complex128 :: proc "contextless" (x: complex128) -> complex128 { d := math.cosh(2*imag(x)) - math.cos(2*real(x)) if abs(d) < 0.25 { d = _tan_series_f64(x) } if d == 0 { return inf_complex128() } return complex(math.sin(2*real(x))/d, -math.sinh(2*imag(x))/d) } @(private="file") _sinhcosh_f64 :: proc "contextless" (x: f64) -> (sh, ch: f64) { if abs(x) <= 0.5 { return math.sinh(x), math.cosh(x) } e := math.exp(x) ei := 0.5 / e e *= 0.5 return e - ei, e + ei } // taylor series of cosh(2y) - cos(2x) @(private) _tan_series_f64 :: proc "contextless" (z: complex128) -> f64 { MACH_EPSILON :: 1.0 / (1 << 53) x := abs(2 * real(z)) y := abs(2 * imag(z)) x = _reduce_pi_f64(x) x, y = x * x, y * y x2, y2 := 1.0, 1.0 f, rn, d := 1.0, 0.0, 0.0 for { rn += 1 f *= rn rn += 1 f *= rn x2 *= x y2 *= y t := y2 + x2 t /= f d += t rn += 1 f *= rn rn += 1 f *= rn x2 *= x y2 *= y t = y2 - x2 t /= f d += t if !(abs(t/d) > MACH_EPSILON) { // don't use <=, because of floating point nonsense and NaN break } } return d } // _reduce_pi_f64 reduces the input argument x to the range (-PI/2, PI/2]. // x must be greater than or equal to 0. For small arguments it // uses Cody-Waite reduction in 3 f64 parts based on: // "Elementary Function Evaluation: Algorithms and Implementation" // Jean-Michel Muller, 1997. // For very large arguments it uses Payne-Hanek range reduction based on: // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit" @(private) _reduce_pi_f64 :: proc "contextless" (x: f64) -> f64 #no_bounds_check { x := x // REDUCE_THRESHOLD is the maximum value of x where the reduction using // Cody-Waite reduction still gives accurate results. This threshold // is set by t*PIn being representable as a f64 without error // where t is given by t = floor(x * (1 / PI)) and PIn are the leading partial // terms of PI. Since the leading terms, PI1 and PI2 below, have 30 and 32 // trailing zero bits respectively, t should have less than 30 significant bits. // t < 1<<30 -> floor(x*(1/PI)+0.5) < 1<<30 -> x < (1<<30-1) * PI - 0.5 // So, conservatively we can take x < 1<<30. REDUCE_THRESHOLD :: f64(1 << 30) if abs(x) < REDUCE_THRESHOLD { // Use Cody-Waite reduction in three parts. // PI1, PI2 and PI3 comprise an extended precision value of PI // such that PI ~= PI1 + PI2 + PI3. The parts are chosen so // that PI1 and PI2 have an approximately equal number of trailing // zero bits. This ensures that t*PI1 and t*PI2 are exact for // large integer values of t. The full precision PI3 ensures the // approximation of PI is accurate to 102 bits to handle cancellation // during subtraction. PI1 :: 0h400921fb40000000 // 3.141592502593994 PI2 :: 0h3e84442d00000000 // 1.5099578831723193e-07 PI3 :: 0h3d08469898cc5170 // 1.0780605716316238e-14 t := x / math.PI t += 0.5 t = f64(i64(t)) // i64(t) = the multiple return ((x - t*PI1) - t*PI2) - t*PI3 } // Must apply Payne-Hanek range reduction MASK :: 0x7FF SHIFT :: 64 - 11 - 1 BIAS :: 1023 FRAC_MASK :: 1<>SHIFT&MASK) - BIAS - SHIFT ix &= FRAC_MASK ix |= 1 << SHIFT // bdpi is the binary digits of 1/PI as a u64 array, // that is, 1/PI = SUM bdpi[i]*2^(-64*i). // 19 64-bit digits give 1216 bits of precision // to handle the largest possible f64 exponent. @static bdpi := [?]u64{ 0x0000000000000000, 0x517cc1b727220a94, 0xfe13abe8fa9a6ee0, 0x6db14acc9e21c820, 0xff28b1d5ef5de2b0, 0xdb92371d2126e970, 0x0324977504e8c90e, 0x7f0ef58e5894d39f, 0x74411afa975da242, 0x74ce38135a2fbf20, 0x9cc8eb1cc1a99cfa, 0x4e422fc5defc941d, 0x8ffc4bffef02cc07, 0xf79788c5ad05368f, 0xb69b3f6793e584db, 0xa7a31fb34f2ff516, 0xba93dd63f5f2f8bd, 0x9e839cfbc5294975, 0x35fdafd88fc6ae84, 0x2b0198237e3db5d5, } // Use the exponent to extract the 3 appropriate u64 digits from bdpi, // B ~ (z0, z1, z2), such that the product leading digit has the exponent -64. // Note, exp >= 50 since x >= REDUCE_THRESHOLD and exp < 971 for maximum f64. digit, bitshift := uint(exp+64)/64, uint(exp+64)%64 z0 := (bdpi[digit] << bitshift) | (bdpi[digit+1] >> (64 - bitshift)) z1 := (bdpi[digit+1] << bitshift) | (bdpi[digit+2] >> (64 - bitshift)) z2 := (bdpi[digit+2] << bitshift) | (bdpi[digit+3] >> (64 - bitshift)) // Multiply mantissa by the digits and extract the upper two digits (hi, lo). z2hi, _ := bits.mul(z2, ix) z1hi, z1lo := bits.mul(z1, ix) z0lo := z0 * ix lo, c := bits.add(z1lo, z2hi, 0) hi, _ := bits.add(z0lo, z1hi, c) // Find the magnitude of the fraction. lz := uint(bits.leading_zeros(hi)) e := u64(BIAS - (lz + 1)) // Clear implicit mantissa bit and shift into place. hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1))) hi >>= 64 - SHIFT // Include the exponent and convert to a float. hi |= e << SHIFT x = transmute(f64)(hi) // map to (-PI/2, PI/2] if x > 0.5 { x -= 1 } return math.PI * x }