void check_expr (Checker *c, Operand *operand, AstNode *expression); void check_multi_expr (Checker *c, Operand *operand, AstNode *expression); void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression); ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint = NULL); Type * check_type (Checker *c, AstNode *expression, Type *named_type = NULL, CycleChecker *cycle_checker = NULL); void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def, CycleChecker *cycle_checker); Entity * check_selector (Checker *c, Operand *operand, AstNode *node); void check_not_tuple (Checker *c, Operand *operand); b32 check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value); void convert_to_typed (Checker *c, Operand *operand, Type *target_type, i32 level = 0); gbString expr_to_string (AstNode *expression); void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type, CycleChecker *cycle_checker = NULL); void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body); void update_expr_type (Checker *c, AstNode *e, Type *type, b32 final); b32 check_is_assignable_to_using_subtype(Type *dst, Type *src) { Type *prev_src = src; // Type *prev_dst = dst; src = base_type(type_deref(src)); // dst = base_type(type_deref(dst)); b32 src_is_ptr = src != prev_src; // b32 dst_is_ptr = dst != prev_dst; if (is_type_struct(src)) { for (isize i = 0; i < src->Record.field_count; i++) { Entity *f = src->Record.fields[i]; if (f->kind == Entity_Variable && f->Variable.anonymous) { if (are_types_identical(dst, f->type)) { return true; } if (src_is_ptr && is_type_pointer(dst)) { if (are_types_identical(type_deref(dst), f->type)) { return true; } } b32 ok = check_is_assignable_to_using_subtype(dst, f->type); if (ok) { return true; } } } } return false; } b32 check_is_assignable_to(Checker *c, Operand *operand, Type *type, b32 is_argument = false) { PROF_PROC(); if (operand->mode == Addressing_Invalid || type == t_invalid) { return true; } if (operand->mode == Addressing_Builtin) { return false; } Type *s = operand->type; if (are_types_identical(s, type)) { return true; } Type *src = base_type(s); Type *dst = base_type(type); if (is_type_untyped(src)) { switch (dst->kind) { case Type_Basic: if (operand->mode == Addressing_Constant) { return check_value_is_expressible(c, operand->value, dst, NULL); } if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) { return is_type_boolean(dst); } break; } if (type_has_nil(dst)) { return is_operand_nil(operand); } } if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) { if (is_type_enum(dst) && is_type_enum(src)) { return are_types_identical(s, type); } return true; } if (is_type_maybe(dst)) { Type *elem = base_type(dst)->Maybe.elem; return are_types_identical(elem, src); } if (is_type_untyped_nil(src)) { return type_has_nil(dst); } // ^T <- rawptr // TODO(bill): Should C-style (not C++) pointer cast be allowed? // if (is_type_pointer(dst) && is_type_rawptr(src)) { // return true; // } // rawptr <- ^T if (is_type_rawptr(dst) && is_type_pointer(src)) { return true; } if (dst->kind == Type_Array && src->kind == Type_Array) { if (are_types_identical(dst->Array.elem, src->Array.elem)) { return dst->Array.count == src->Array.count; } } if (dst->kind == Type_Slice && src->kind == Type_Slice) { if (are_types_identical(dst->Slice.elem, src->Slice.elem)) { return true; } } if (is_type_union(dst)) { for (isize i = 0; i < dst->Record.field_count; i++) { Entity *f = dst->Record.fields[i]; if (are_types_identical(f->type, s)) { return true; } } } if (dst == t_any) { // NOTE(bill): Anything can cast to `Any` add_type_info_type(c, s); return true; } if (true || is_argument) { // NOTE(bill): Polymorphism for subtyping if (check_is_assignable_to_using_subtype(type, src)) { return true; } } return false; } // NOTE(bill): `content_name` is for debugging and error messages void check_assignment(Checker *c, Operand *operand, Type *type, String context_name, b32 is_argument = false) { PROF_PROC(); check_not_tuple(c, operand); if (operand->mode == Addressing_Invalid) return; if (is_type_untyped(operand->type)) { Type *target_type = type; if (type == NULL || is_type_any(type) || is_type_untyped_nil(type)) { if (type == NULL && base_type(operand->type) == t_untyped_nil) { error(ast_node_token(operand->expr), "Use of untyped nil in %.*s", LIT(context_name)); operand->mode = Addressing_Invalid; return; } add_type_info_type(c, type); target_type = default_type(operand->type); } convert_to_typed(c, operand, target_type); if (operand->mode == Addressing_Invalid) { return; } } if (type != NULL) { if (!check_is_assignable_to(c, operand, type, is_argument)) { gbString type_string = type_to_string(type); gbString op_type_string = type_to_string(operand->type); gbString expr_str = expr_to_string(operand->expr); defer (gb_string_free(type_string)); defer (gb_string_free(op_type_string)); defer (gb_string_free(expr_str)); if (operand->mode == Addressing_Builtin) { // TODO(bill): is this a good enough error message? error(ast_node_token(operand->expr), "Cannot assign builtin procedure `%s` in %.*s", expr_str, LIT(context_name)); } else { // TODO(bill): is this a good enough error message? error(ast_node_token(operand->expr), "Cannot assign value `%s` of type `%s` to `%s` in %.*s", expr_str, op_type_string, type_string, LIT(context_name)); } operand->mode = Addressing_Invalid; return; } } } void populate_using_entity_map(Checker *c, AstNode *node, Type *t, Map *entity_map) { PROF_PROC(); t = base_type(type_deref(t)); gbString str = expr_to_string(node); defer (gb_string_free(str)); if (t->kind == Type_Record) { for (isize i = 0; i < t->Record.field_count; i++) { Entity *f = t->Record.fields[i]; GB_ASSERT(f->kind == Entity_Variable); String name = f->token.string; HashKey key = hash_string(name); Entity **found = map_get(entity_map, key); if (found != NULL) { Entity *e = *found; // TODO(bill): Better type error error(e->token, "`%.*s` is already declared in `%s`", LIT(name), str); } else { map_set(entity_map, key, f); add_entity(c, c->context.scope, NULL, f); if (f->Variable.anonymous) { populate_using_entity_map(c, node, f->type, entity_map); } } } } } void check_const_decl(Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr); void check_fields(Checker *c, AstNode *node, AstNodeArray decls, Entity **fields, isize field_count, Entity **other_fields, isize other_field_count, CycleChecker *cycle_checker, String context) { PROF_PROC(); Map entity_map = {}; map_init(&entity_map, gb_heap_allocator()); defer (map_destroy(&entity_map)); isize other_field_index = 0; Entity *using_index_expr = NULL; gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); defer (gb_temp_arena_memory_end(tmp)); struct Delay { Entity *e; AstNode *t; }; Array delayed_const; array_init(&delayed_const, c->tmp_allocator, other_field_count); Array delayed_type; array_init(&delayed_type, c->tmp_allocator, other_field_count); for_array(decl_index, decls) { AstNode *decl = decls[decl_index]; if (decl->kind == AstNode_ConstDecl) { ast_node(cd, ConstDecl, decl); isize entity_count = cd->names.count; isize entity_index = 0; Entity **entities = gb_alloc_array(c->allocator, Entity *, entity_count); for_array(i, cd->values) { AstNode *name = cd->names[i]; AstNode *value = cd->values[i]; GB_ASSERT(name->kind == AstNode_Ident); ExactValue v = {ExactValue_Invalid}; Token name_token = name->Ident; Entity *e = make_entity_constant(c->allocator, c->context.scope, name_token, NULL, v); entities[entity_index++] = e; Delay delay = {e, cd->type}; array_add(&delayed_const, delay); } isize lhs_count = cd->names.count; isize rhs_count = cd->values.count; // TODO(bill): Better error messages or is this good enough? if (rhs_count == 0 && cd->type == NULL) { error(ast_node_token(node), "Missing type or initial expression"); } else if (lhs_count < rhs_count) { error(ast_node_token(node), "Extra initial expression"); } for_array(i, cd->names) { AstNode *name = cd->names[i]; Entity *e = entities[i]; Token name_token = name->Ident; if (name_token.string == "_") { other_fields[other_field_index++] = e; } else { HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(name_token, "`%.*s` is already declared in this structure", LIT(name_token.string)); } else { map_set(&entity_map, key, e); other_fields[other_field_index++] = e; } add_entity(c, c->context.scope, name, e); } } } else if (decl->kind == AstNode_TypeDecl) { ast_node(td, TypeDecl, decl); Token name_token = td->name->Ident; Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, NULL); Delay delay = {e, td->type}; array_add(&delayed_type, delay); if (name_token.string == "_") { other_fields[other_field_index++] = e; } else { HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(name_token, "`%.*s` is already declared in this structure", LIT(name_token.string)); } else { map_set(&entity_map, key, e); other_fields[other_field_index++] = e; } add_entity(c, c->context.scope, td->name, e); add_entity_use(c, td->name, e); } } } for_array(i, delayed_type) { check_const_decl(c, delayed_type[i].e, delayed_type[i].t, NULL); } for_array(i, delayed_const) { check_type_decl(c, delayed_const[i].e, delayed_const[i].t, NULL, NULL); } if (node->kind == AstNode_UnionType) { isize field_index = 0; fields[field_index++] = make_entity_type_name(c->allocator, c->context.scope, empty_token, NULL); for_array(decl_index, decls) { AstNode *decl = decls[decl_index]; if (decl->kind != AstNode_VarDecl) { continue; } ast_node(vd, VarDecl, decl); Type *base_type = check_type(c, vd->type, NULL, cycle_checker); for_array(name_index, vd->names) { AstNode *name = vd->names[name_index]; Token name_token = name->Ident; Type *type = make_type_named(c->allocator, name_token.string, base_type, NULL); Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, type); type->Named.type_name = e; add_entity(c, c->context.scope, name, e); if (name_token.string == "_") { error(name_token, "`_` cannot be used a union subtype"); continue; } HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(name_token, "`%.*s` is already declared in this union", LIT(name_token.string)); } else { map_set(&entity_map, key, e); fields[field_index++] = e; } add_entity_use(c, name, e); } } } else { isize field_index = 0; for_array(decl_index, decls) { AstNode *decl = decls[decl_index]; if (decl->kind != AstNode_VarDecl) { continue; } ast_node(vd, VarDecl, decl); Type *type = check_type(c, vd->type, NULL, cycle_checker); if (vd->is_using) { if (vd->names.count > 1) { error(ast_node_token(vd->names[0]), "Cannot apply `using` to more than one of the same type"); } } for_array(name_index, vd->names) { AstNode *name = vd->names[name_index]; Token name_token = name->Ident; Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, vd->is_using, cast(i32)field_index); e->identifier = name; if (name_token.string == "_") { fields[field_index++] = e; } else { HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key) != NULL) { // TODO(bill): Scope checking already checks the declaration error(name_token, "`%.*s` is already declared in this type", LIT(name_token.string)); } else { map_set(&entity_map, key, e); fields[field_index++] = e; add_entity(c, c->context.scope, name, e); } add_entity_use(c, name, e); } } if (vd->is_using) { Type *t = base_type(type_deref(type)); if (!is_type_struct(t) && !is_type_raw_union(t)) { Token name_token = vd->names[0]->Ident; if (is_type_indexable(t)) { b32 ok = true; for_array(emi, entity_map.entries) { Entity *e = entity_map.entries[emi].value; if (e->kind == Entity_Variable && e->Variable.anonymous) { if (is_type_indexable(e->type)) { if (e->identifier != vd->names[0]) { ok = false; using_index_expr = e; break; } } } } if (ok) { using_index_expr = fields[field_index-1]; } else { fields[field_index-1]->Variable.anonymous = false; error(name_token, "Previous `using` for an index expression `%.*s`", LIT(name_token.string)); } } else { error(name_token, "`using` on a field `%.*s` must be a `struct` or `raw_union`", LIT(name_token.string)); continue; } } populate_using_entity_map(c, node, type, &entity_map); } } } } // TODO(bill): Cleanup struct field reordering // TODO(bill): Inline sorting procedure? gb_global BaseTypeSizes __checker_sizes = {}; gb_global gbAllocator __checker_allocator = {}; GB_COMPARE_PROC(cmp_struct_entity_size) { // Rule: // Biggest to smallest alignment // if same alignment: biggest to smallest size // if same size: order by source order Entity *x = *(Entity **)a; Entity *y = *(Entity **)b; GB_ASSERT(x != NULL); GB_ASSERT(y != NULL); GB_ASSERT(x->kind == Entity_Variable); GB_ASSERT(y->kind == Entity_Variable); i64 xa = type_align_of(__checker_sizes, __checker_allocator, x->type); i64 ya = type_align_of(__checker_sizes, __checker_allocator, y->type); i64 xs = type_size_of(__checker_sizes, __checker_allocator, x->type); i64 ys = type_size_of(__checker_sizes, __checker_allocator, y->type); if (xa == ya) { if (xs == ys) { i32 diff = x->Variable.field_index - y->Variable.field_index; return diff < 0 ? -1 : diff > 0; } return xs > ys ? -1 : xs < ys; } return xa > ya ? -1 : xa < ya; } void check_struct_type(Checker *c, Type *struct_type, AstNode *node, CycleChecker *cycle_checker) { PROF_PROC(); GB_ASSERT(is_type_struct(struct_type)); ast_node(st, StructType, node); isize field_count = 0; isize other_field_count = 0; for_array(decl_index, st->decls) { AstNode *decl = st->decls[decl_index]; switch (decl->kind) { case_ast_node(vd, VarDecl, decl); field_count += vd->names.count; case_end; case_ast_node(cd, ConstDecl, decl); other_field_count += cd->names.count; case_end; case_ast_node(td, TypeDecl, decl); other_field_count += 1; case_end; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); Entity **other_fields = gb_alloc_array(c->allocator, Entity *, other_field_count); check_fields(c, node, st->decls, fields, field_count, other_fields, other_field_count, cycle_checker, make_string("struct")); struct_type->Record.struct_is_packed = st->is_packed; struct_type->Record.struct_is_ordered = st->is_ordered; struct_type->Record.fields = fields; struct_type->Record.fields_in_src_order = fields; struct_type->Record.field_count = field_count; struct_type->Record.other_fields = other_fields; struct_type->Record.other_field_count = other_field_count; if (!st->is_packed && !st->is_ordered) { // NOTE(bill): Reorder fields for reduced size/performance Entity **reordered_fields = gb_alloc_array(c->allocator, Entity *, field_count); for (isize i = 0; i < field_count; i++) { reordered_fields[i] = struct_type->Record.fields_in_src_order[i]; } // NOTE(bill): Hacky thing // TODO(bill): Probably make an inline sorting procedure rather than use global variables __checker_sizes = c->sizes; __checker_allocator = c->allocator; // NOTE(bill): compound literal order must match source not layout gb_sort_array(reordered_fields, field_count, cmp_struct_entity_size); for (isize i = 0; i < field_count; i++) { reordered_fields[i]->Variable.field_index = i; } struct_type->Record.fields = reordered_fields; } type_set_offsets(c->sizes, c->allocator, struct_type); } void check_union_type(Checker *c, Type *union_type, AstNode *node, CycleChecker *cycle_checker) { PROF_PROC(); GB_ASSERT(is_type_union(union_type)); ast_node(ut, UnionType, node); isize field_count = 1; isize other_field_count = 0; for_array(decl_index, ut->decls) { AstNode *decl = ut->decls[decl_index]; switch (decl->kind) { case_ast_node(vd, VarDecl, decl); field_count += vd->names.count; case_end; case_ast_node(cd, ConstDecl, decl); other_field_count += cd->names.count; case_end; case_ast_node(td, TypeDecl, decl); other_field_count += 1; case_end; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); Entity **other_fields = gb_alloc_array(c->allocator, Entity *, other_field_count); check_fields(c, node, ut->decls, fields, field_count, other_fields, other_field_count, cycle_checker, make_string("union")); union_type->Record.fields = fields; union_type->Record.field_count = field_count; union_type->Record.other_fields = other_fields; union_type->Record.other_field_count = other_field_count; } void check_raw_union_type(Checker *c, Type *union_type, AstNode *node, CycleChecker *cycle_checker) { PROF_PROC(); GB_ASSERT(node->kind == AstNode_RawUnionType); GB_ASSERT(is_type_raw_union(union_type)); ast_node(ut, RawUnionType, node); isize field_count = 0; isize other_field_count = 0; for_array(decl_index, ut->decls) { AstNode *decl = ut->decls[decl_index]; switch (decl->kind) { case_ast_node(vd, VarDecl, decl); field_count += vd->names.count; case_end; case_ast_node(cd, ConstDecl, decl); other_field_count += cd->names.count; case_end; case_ast_node(td, TypeDecl, decl); other_field_count += 1; case_end; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); Entity **other_fields = gb_alloc_array(c->allocator, Entity *, other_field_count); check_fields(c, node, ut->decls, fields, field_count, other_fields, other_field_count, cycle_checker, make_string("raw union")); union_type->Record.fields = fields; union_type->Record.field_count = field_count; union_type->Record.other_fields = other_fields; union_type->Record.other_field_count = other_field_count; } GB_COMPARE_PROC(cmp_enum_order) { // Rule: // Biggest to smallest alignment // if same alignment: biggest to smallest size // if same size: order by source order Entity *x = *(Entity **)a; Entity *y = *(Entity **)b; GB_ASSERT(x != NULL); GB_ASSERT(y != NULL); GB_ASSERT(x->kind == Entity_Constant); GB_ASSERT(y->kind == Entity_Constant); GB_ASSERT(x->Constant.value.kind == ExactValue_Integer); GB_ASSERT(y->Constant.value.kind == ExactValue_Integer); i64 i = x->Constant.value.value_integer; i64 j = y->Constant.value.value_integer; return i < j ? -1 : i > j; } void check_enum_type(Checker *c, Type *enum_type, Type *named_type, AstNode *node) { PROF_PROC(); GB_ASSERT(node->kind == AstNode_EnumType); GB_ASSERT(is_type_enum(enum_type)); ast_node(et, EnumType, node); Map entity_map = {}; map_init(&entity_map, gb_heap_allocator()); defer (map_destroy(&entity_map)); Type *base_type = t_int; if (et->base_type != NULL) { base_type = check_type(c, et->base_type); } if (base_type == NULL || !is_type_integer(base_type)) { error(et->token, "Base type for enumeration must be an integer"); return; } else if (base_type == NULL) { base_type = t_int; } enum_type->Record.enum_base = base_type; Entity **fields = gb_alloc_array(c->allocator, Entity *, et->fields.count); isize field_index = 0; ExactValue iota = make_exact_value_integer(-1); i64 min_value = 0; i64 max_value = 0; Type *constant_type = enum_type; if (named_type != NULL) { constant_type = named_type; } Entity *blank_entity = make_entity_constant(c->allocator, c->context.scope, blank_token, constant_type, make_exact_value_integer(0));; for_array(i, et->fields) { AstNode *field = et->fields[i]; ast_node(f, FieldValue, field); Token name_token = f->field->Ident; if (name_token.string == "count") { error(name_token, "`count` is a reserved identifier for enumerations"); fields[field_index++] = blank_entity; continue; } else if (name_token.string == "min_value") { error(name_token, "`min_value` is a reserved identifier for enumerations"); fields[field_index++] = blank_entity; continue; } else if (name_token.string == "max_value") { error(name_token, "`max_value` is a reserved identifier for enumerations"); fields[field_index++] = blank_entity; continue; } Operand o = {}; if (f->value != NULL) { check_expr(c, &o, f->value); if (o.mode != Addressing_Constant) { error(ast_node_token(f->value), "Enumeration value must be a constant integer"); o.mode = Addressing_Invalid; } if (o.mode != Addressing_Invalid) { check_assignment(c, &o, constant_type, make_string("enumeration")); } if (o.mode != Addressing_Invalid) { iota = o.value; } else { Token add_token = {Token_Add}; iota = exact_binary_operator_value(add_token, iota, make_exact_value_integer(1)); } } else { Token add_token = {Token_Add}; iota = exact_binary_operator_value(add_token, iota, make_exact_value_integer(1)); } Entity *e = make_entity_constant(c->allocator, c->context.scope, name_token, constant_type, iota); if (min_value > iota.value_integer) { min_value = iota.value_integer; } if (max_value < iota.value_integer) { max_value = iota.value_integer; } HashKey key = hash_string(name_token.string); if (map_get(&entity_map, key)) { // TODO(bill): Scope checking already checks the declaration error(name_token, "`%.*s` is already declared in this enumeration", LIT(name_token.string)); } else { map_set(&entity_map, key, e); add_entity(c, c->context.scope, NULL, e); fields[field_index++] = e; } add_entity_use(c, f->field, e); } gb_sort_array(fields, et->fields.count, cmp_enum_order); enum_type->Record.other_fields = fields; enum_type->Record.other_field_count = et->fields.count; enum_type->Record.enum_count = make_entity_constant(c->allocator, NULL, make_token_ident(make_string("count")), t_int, make_exact_value_integer(enum_type->Record.other_field_count)); enum_type->Record.min_value = make_entity_constant(c->allocator, NULL, make_token_ident(make_string("min_value")), constant_type, make_exact_value_integer(min_value)); enum_type->Record.max_value = make_entity_constant(c->allocator, NULL, make_token_ident(make_string("max_value")), constant_type, make_exact_value_integer(max_value)); } Type *check_get_params(Checker *c, Scope *scope, AstNodeArray params, b32 *is_variadic_) { PROF_PROC(); if (params.count == 0) { return NULL; } b32 is_variadic = false; Type *tuple = make_type_tuple(c->allocator); isize variable_count = 0; for_array(i, params) { AstNode *field = params[i]; ast_node(p, Parameter, field); variable_count += p->names.count; } Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count); isize variable_index = 0; for_array(i, params) { ast_node(p, Parameter, params[i]); AstNode *type_expr = p->type; if (type_expr) { if (type_expr->kind == AstNode_Ellipsis) { type_expr = type_expr->Ellipsis.expr; if (i+1 == params.count) { is_variadic = true; } else { error(ast_node_token(params[i]), "Invalid AST: Invalid variadic parameter"); } } Type *type = check_type(c, type_expr); for_array(j, p->names) { AstNode *name = p->names[j]; if (name->kind == AstNode_Ident) { Entity *param = make_entity_param(c->allocator, scope, name->Ident, type, p->is_using); add_entity(c, scope, name, param); variables[variable_index++] = param; } else { error(ast_node_token(name), "Invalid AST: Invalid parameter"); } } } } if (is_variadic && params.count > 0) { // NOTE(bill): Change last variadic parameter to be a slice // Custom Calling convention for variadic parameters Entity *end = variables[params.count-1]; end->type = make_type_slice(c->allocator, end->type); } tuple->Tuple.variables = variables; tuple->Tuple.variable_count = variable_count; if (is_variadic_) *is_variadic_ = is_variadic; return tuple; } Type *check_get_results(Checker *c, Scope *scope, AstNodeArray results) { PROF_PROC(); if (results.count == 0) { return NULL; } Type *tuple = make_type_tuple(c->allocator); Entity **variables = gb_alloc_array(c->allocator, Entity *, results.count); isize variable_index = 0; for_array(i, results) { AstNode *item = results[i]; Type *type = check_type(c, item); Token token = ast_node_token(item); token.string = make_string(""); // NOTE(bill): results are not named // TODO(bill): Should I have named results? Entity *param = make_entity_param(c->allocator, scope, token, type, false); // NOTE(bill): No need to record variables[variable_index++] = param; } tuple->Tuple.variables = variables; tuple->Tuple.variable_count = results.count; return tuple; } void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) { PROF_PROC(); ast_node(pt, ProcType, proc_type_node); b32 variadic = false; Type *params = check_get_params(c, c->context.scope, pt->params, &variadic); Type *results = check_get_results(c, c->context.scope, pt->results); isize param_count = 0; isize result_count = 0; if (params) param_count = params ->Tuple.variable_count; if (results) result_count = results->Tuple.variable_count; type->Proc.scope = c->context.scope; type->Proc.params = params; type->Proc.param_count = param_count; type->Proc.results = results; type->Proc.result_count = result_count; type->Proc.variadic = variadic; // type->Proc.implicit_context = implicit_context; } void check_identifier(Checker *c, Operand *o, AstNode *n, Type *named_type, CycleChecker *cycle_checker) { PROF_PROC(); GB_ASSERT(n->kind == AstNode_Ident); o->mode = Addressing_Invalid; o->expr = n; Entity *e = scope_lookup_entity(c->context.scope, n->Ident.string); if (e == NULL) { if (n->Ident.string == "_") { error(n->Ident, "`_` cannot be used as a value type"); } else { error(n->Ident, "Undeclared name: %.*s", LIT(n->Ident.string)); } o->type = t_invalid; o->mode = Addressing_Invalid; if (named_type != NULL) { set_base_type(named_type, t_invalid); } return; } add_entity_use(c, n, e); // CycleChecker local_cycle_checker = {}; // if (cycle_checker == NULL) { // cycle_checker = &local_cycle_checker; // } // defer (cycle_checker_destroy(&local_cycle_checker)); check_entity_decl(c, e, NULL, named_type, cycle_checker); if (e->type == NULL) { compiler_error("Compiler error: How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(n->Ident.string)); return; } Type *type = e->type; switch (e->kind) { case Entity_Constant: if (type == t_invalid) { o->type = t_invalid; return; } o->value = e->Constant.value; GB_ASSERT(o->value.kind != ExactValue_Invalid); o->mode = Addressing_Constant; break; case Entity_Variable: e->Variable.used = true; if (type == t_invalid) { o->type = t_invalid; return; } #if 0 if (e->Variable.param) { o->mode = Addressing_Value; } else { o->mode = Addressing_Variable; } #else o->mode = Addressing_Variable; #endif break; case Entity_TypeName: { o->mode = Addressing_Type; #if 0 // TODO(bill): Fix cyclical dependancy checker if (cycle_checker != NULL) { for_array(i, cycle_checker->path) { Entity *prev = cycle_checker->path[i]; if (prev == e) { error(e->token, "Illegal declaration cycle for %.*s", LIT(e->token.string)); for (isize j = i; j < gb_array_count(cycle_checker->path); j++) { Entity *ref = cycle_checker->path[j]; error(ref->token, "\t%.*s refers to", LIT(ref->token.string)); } error(e->token, "\t%.*s", LIT(e->token.string)); type = t_invalid; break; } } } #endif } break; case Entity_Procedure: o->mode = Addressing_Value; break; case Entity_Builtin: o->builtin_id = e->Builtin.id; o->mode = Addressing_Builtin; break; case Entity_ImportName: error(ast_node_token(n), "Use of import `%.*s` not in selector", LIT(e->ImportName.name)); return; case Entity_Nil: o->mode = Addressing_Value; break; case Entity_ImplicitValue: o->mode = Addressing_Value; break; default: compiler_error("Compiler error: Unknown EntityKind"); break; } o->type = type; } i64 check_array_count(Checker *c, AstNode *e) { PROF_PROC(); if (e == NULL) { return 0; } Operand o = {}; check_expr(c, &o, e); if (o.mode != Addressing_Constant) { if (o.mode != Addressing_Invalid) { error(ast_node_token(e), "Array count must be a constant"); } return 0; } if (is_type_untyped(o.type) || is_type_integer(o.type)) { if (o.value.kind == ExactValue_Integer) { i64 count = o.value.value_integer; if (count >= 0) { return count; } error(ast_node_token(e), "Invalid array count"); return 0; } } error(ast_node_token(e), "Array count must be an integer"); return 0; } Type *check_type(Checker *c, AstNode *e, Type *named_type, CycleChecker *cycle_checker) { PROF_PROC(); ExactValue null_value = {ExactValue_Invalid}; Type *type = NULL; gbString err_str = NULL; defer (gb_string_free(err_str)); switch (e->kind) { case_ast_node(i, Ident, e); Operand o = {}; check_identifier(c, &o, e, named_type, cycle_checker); switch (o.mode) { case Addressing_Invalid: break; case Addressing_Type: { type = o.type; goto end; } break; case Addressing_NoValue: err_str = expr_to_string(e); error(ast_node_token(e), "`%s` used as a type", err_str); break; default: err_str = expr_to_string(e); error(ast_node_token(e), "`%s` used as a type when not a type", err_str); break; } case_end; case_ast_node(se, SelectorExpr, e); Operand o = {}; check_selector(c, &o, e); switch (o.mode) { case Addressing_Invalid: break; case Addressing_Type: GB_ASSERT(o.type != NULL); type = o.type; goto end; case Addressing_NoValue: err_str = expr_to_string(e); error(ast_node_token(e), "`%s` used as a type", err_str); break; default: err_str = expr_to_string(e); error(ast_node_token(e), "`%s` is not a type", err_str); break; } case_end; case_ast_node(pe, ParenExpr, e); type = check_type(c, pe->expr, named_type, cycle_checker); goto end; case_end; case_ast_node(ue, UnaryExpr, e); if (ue->op.kind == Token_Pointer) { type = make_type_pointer(c->allocator, check_type(c, ue->expr)); goto end; } else if (ue->op.kind == Token_Maybe) { type = make_type_maybe(c->allocator, check_type(c, ue->expr)); goto end; } case_end; case_ast_node(pt, PointerType, e); Type *elem = check_type(c, pt->type); type = make_type_pointer(c->allocator, elem); goto end; case_end; case_ast_node(mt, MaybeType, e); Type *elem = check_type(c, mt->type); type = make_type_maybe(c->allocator, elem); goto end; case_end; case_ast_node(at, ArrayType, e); if (at->count != NULL) { Type *elem = check_type(c, at->elem, NULL, cycle_checker); type = make_type_array(c->allocator, elem, check_array_count(c, at->count)); } else { Type *elem = check_type(c, at->elem); type = make_type_slice(c->allocator, elem); } goto end; case_end; case_ast_node(vt, VectorType, e); Type *elem = check_type(c, vt->elem); Type *be = base_type(elem); i64 count = check_array_count(c, vt->count); if (!is_type_boolean(be) && !is_type_numeric(be)) { err_str = type_to_string(elem); error(ast_node_token(vt->elem), "Vector element type must be numerical or a boolean. Got `%s`", err_str); } type = make_type_vector(c->allocator, elem, count); goto end; case_end; case_ast_node(st, StructType, e); type = make_type_struct(c->allocator); set_base_type(named_type, type); check_open_scope(c, e); check_struct_type(c, type, e, cycle_checker); check_close_scope(c); type->Record.node = e; goto end; case_end; case_ast_node(ut, UnionType, e); type = make_type_union(c->allocator); set_base_type(named_type, type); check_open_scope(c, e); check_union_type(c, type, e, cycle_checker); check_close_scope(c); type->Record.node = e; goto end; case_end; case_ast_node(rut, RawUnionType, e); type = make_type_raw_union(c->allocator); set_base_type(named_type, type); check_open_scope(c, e); check_raw_union_type(c, type, e, cycle_checker); check_close_scope(c); type->Record.node = e; goto end; case_end; case_ast_node(et, EnumType, e); type = make_type_enum(c->allocator); set_base_type(named_type, type); check_open_scope(c, e); check_enum_type(c, type, named_type, e); check_close_scope(c); type->Record.node = e; goto end; case_end; case_ast_node(pt, ProcType, e); type = alloc_type(c->allocator, Type_Proc); set_base_type(named_type, type); check_open_scope(c, e); check_procedure_type(c, type, e); check_close_scope(c); goto end; case_end; case_ast_node(ce, CallExpr, e); Operand o = {}; check_expr_or_type(c, &o, e); if (o.mode == Addressing_Type) { type = o.type; goto end; } case_end; } err_str = expr_to_string(e); error(ast_node_token(e), "`%s` is not a type", err_str); type = t_invalid; end: if (type == NULL) { type = t_invalid; } set_base_type(named_type, type); GB_ASSERT(is_type_typed(type)); add_type_and_value(&c->info, e, Addressing_Type, type, null_value); return type; } b32 check_unary_op(Checker *c, Operand *o, Token op) { // TODO(bill): Handle errors correctly Type *type = base_type(base_vector_type(o->type)); gbString str = NULL; defer (gb_string_free(str)); switch (op.kind) { case Token_Add: case Token_Sub: if (!is_type_numeric(type)) { str = expr_to_string(o->expr); error(op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str); } break; case Token_Xor: if (!is_type_integer(type)) { error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); } break; case Token_Not: if (!is_type_boolean(type)) { str = expr_to_string(o->expr); error(op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string)); } break; default: error(op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } b32 check_binary_op(Checker *c, Operand *o, Token op) { // TODO(bill): Handle errors correctly Type *type = base_type(base_vector_type(o->type)); switch (op.kind) { case Token_Sub: case Token_SubEq: if (!is_type_numeric(type) && !is_type_pointer(type)) { error(op, "Operator `%.*s` is only allowed with numeric or pointer expressions", LIT(op.string)); return false; } if (is_type_pointer(type)) { o->type = t_int; } if (base_type(type) == t_rawptr) { gbString str = type_to_string(type); defer (gb_string_free(str)); error(ast_node_token(o->expr), "Invalid pointer type for pointer arithmetic: `%s`", str); return false; } break; case Token_Add: case Token_Mul: case Token_Quo: case Token_AddEq: case Token_MulEq: case Token_QuoEq: if (!is_type_numeric(type)) { error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string)); return false; } break; case Token_And: case Token_Or: case Token_AndEq: case Token_OrEq: if (!is_type_integer(type) && !is_type_boolean(type)) { error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string)); return false; } break; case Token_Mod: case Token_Xor: case Token_AndNot: case Token_ModEq: case Token_XorEq: case Token_AndNotEq: if (!is_type_integer(type)) { error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); return false; } break; case Token_CmpAnd: case Token_CmpOr: case Token_CmpAndEq: case Token_CmpOrEq: if (!is_type_boolean(type)) { error(op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string)); return false; } break; default: error(op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } b32 check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) { PROF_PROC(); if (in_value.kind == ExactValue_Invalid) { // NOTE(bill): There's already been an error return true; } if (is_type_boolean(type)) { return in_value.kind == ExactValue_Bool; } else if (is_type_string(type)) { return in_value.kind == ExactValue_String; } else if (is_type_integer(type)) { ExactValue v = exact_value_to_integer(in_value); if (v.kind != ExactValue_Integer) { return false; } if (out_value) *out_value = v; i64 i = v.value_integer; u64 u = *cast(u64 *)&i; i64 s = 8*type_size_of(c->sizes, c->allocator, type); u64 umax = ~0ull; if (s < 64) { umax = (1ull << s) - 1ull; } i64 imax = (1ll << (s-1ll)); switch (type->Basic.kind) { case Basic_i8: case Basic_i16: case Basic_i32: case Basic_i64: case Basic_int: return gb_is_between(i, -imax, imax-1); case Basic_u8: case Basic_u16: case Basic_u32: case Basic_u64: case Basic_uint: return !(u < 0 || u > umax); case Basic_UntypedInteger: return true; default: GB_PANIC("Compiler error: Unknown integer type!"); break; } } else if (is_type_float(type)) { ExactValue v = exact_value_to_float(in_value); if (v.kind != ExactValue_Float) { return false; } switch (type->Basic.kind) { case Basic_f32: if (out_value) *out_value = v; return true; case Basic_f64: if (out_value) *out_value = v; return true; case Basic_UntypedFloat: return true; } } else if (is_type_pointer(type)) { if (in_value.kind == ExactValue_Pointer) return true; if (in_value.kind == ExactValue_Integer) return true; if (out_value) *out_value = in_value; } return false; } void check_is_expressible(Checker *c, Operand *o, Type *type) { PROF_PROC(); GB_ASSERT(type->kind == Type_Basic); GB_ASSERT(o->mode == Addressing_Constant); if (!check_value_is_expressible(c, o->value, type, &o->value)) { gbString a = expr_to_string(o->expr); gbString b = type_to_string(type); defer (gb_string_free(a)); defer (gb_string_free(b)); if (is_type_numeric(o->type) && is_type_numeric(type)) { if (!is_type_integer(o->type) && is_type_integer(type)) { error(ast_node_token(o->expr), "`%s` truncated to `%s`", a, b); } else { error(ast_node_token(o->expr), "`%s = %lld` overflows `%s`", a, o->value.value_integer, b); } } else { error(ast_node_token(o->expr), "Cannot convert `%s` to `%s`", a, b); } o->mode = Addressing_Invalid; } } b32 check_is_expr_vector_index(Checker *c, AstNode *expr) { // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode expr = unparen_expr(expr); if (expr->kind == AstNode_IndexExpr) { ast_node(ie, IndexExpr, expr); Type *t = type_of_expr(&c->info, ie->expr); if (t != NULL) { return is_type_vector(base_type(t)); } } return false; } void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) { PROF_PROC(); switch (op.kind) { case Token_Pointer: { // Pointer address if (o->mode != Addressing_Variable || check_is_expr_vector_index(c, o->expr)) { ast_node(ue, UnaryExpr, node); gbString str = expr_to_string(ue->expr); defer (gb_string_free(str)); error(op, "Cannot take the pointer address of `%s`", str); o->mode = Addressing_Invalid; return; } o->mode = Addressing_Value; o->type = make_type_pointer(c->allocator, o->type); return; } case Token_Maybe: { // Make maybe Type *t = default_type(o->type); b32 is_value = o->mode == Addressing_Variable || o->mode == Addressing_Value || o->mode == Addressing_Constant; if (!is_value || is_type_untyped(t)) { ast_node(ue, UnaryExpr, node); gbString str = expr_to_string(ue->expr); defer (gb_string_free(str)); error(op, "Cannot convert `%s` to a maybe", str); o->mode = Addressing_Invalid; return; } o->mode = Addressing_Value; o->type = make_type_maybe(c->allocator, t); return; } } if (!check_unary_op(c, o, op)) { o->mode = Addressing_Invalid; return; } if (o->mode == Addressing_Constant) { Type *type = base_type(o->type); if (type->kind != Type_Basic) { gbString xt = type_to_string(o->type); gbString err_str = expr_to_string(node); defer (gb_string_free(xt)); defer (gb_string_free(err_str)); error(op, "Invalid type, `%s`, for constant unary expression `%s`", xt, err_str); o->mode = Addressing_Invalid; return; } i32 precision = 0; if (is_type_unsigned(type)) { precision = cast(i32)(8 * type_size_of(c->sizes, c->allocator, type)); } o->value = exact_unary_operator_value(op, o->value, precision); if (is_type_typed(type)) { if (node != NULL) o->expr = node; check_is_expressible(c, o, type); } return; } o->mode = Addressing_Value; } void check_comparison(Checker *c, Operand *x, Operand *y, Token op) { PROF_PROC(); gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); defer (gb_temp_arena_memory_end(tmp)); gbString err_str = NULL; defer ({ if (err_str != NULL) gb_string_free(err_str); }); if (check_is_assignable_to(c, x, y->type) || check_is_assignable_to(c, y, x->type)) { b32 defined = false; switch (op.kind) { case Token_CmpEq: case Token_NotEq: defined = is_type_comparable(base_type(x->type)); break; case Token_Lt: case Token_Gt: case Token_LtEq: case Token_GtEq: { defined = is_type_ordered(base_type(x->type)); } break; } if (!defined) { gbString type_string = type_to_string(x->type); defer (gb_string_free(type_string)); err_str = gb_string_make(c->tmp_allocator, gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(op.string), type_string)); } } else { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); defer(gb_string_free(xt)); defer(gb_string_free(yt)); err_str = gb_string_make(c->tmp_allocator, gb_bprintf("mismatched types `%s` and `%s`", xt, yt)); } if (err_str != NULL) { error(op, "Cannot compare expression, %s", err_str); x->type = t_untyped_bool; return; } if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { x->value = make_exact_value_bool(compare_exact_values(op, x->value, y->value)); } else { x->mode = Addressing_Value; update_expr_type(c, x->expr, default_type(x->type), true); update_expr_type(c, y->expr, default_type(y->type), true); } if (is_type_vector(base_type(y->type))) { x->type = make_type_vector(c->allocator, t_bool, base_type(y->type)->Vector.count); } else { x->type = t_untyped_bool; } } void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) { PROF_PROC(); GB_ASSERT(node->kind == AstNode_BinaryExpr); ast_node(be, BinaryExpr, node); ExactValue x_val = {}; if (x->mode == Addressing_Constant) { x_val = exact_value_to_integer(x->value); } b32 x_is_untyped = is_type_untyped(x->type); if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) { gbString err_str = expr_to_string(x->expr); defer (gb_string_free(err_str)); error(ast_node_token(node), "Shifted operand `%s` must be an integer", err_str); x->mode = Addressing_Invalid; return; } if (is_type_unsigned(y->type)) { } else if (is_type_untyped(y->type)) { convert_to_typed(c, y, t_untyped_integer); if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; return; } } else { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(ast_node_token(node), "Shift amount `%s` must be an unsigned integer", err_str); x->mode = Addressing_Invalid; return; } if (x->mode == Addressing_Constant) { if (y->mode == Addressing_Constant) { ExactValue y_val = exact_value_to_integer(y->value); if (y_val.kind != ExactValue_Integer) { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(ast_node_token(node), "Shift amount `%s` must be an unsigned integer", err_str); x->mode = Addressing_Invalid; return; } u64 amount = cast(u64)y_val.value_integer; if (amount > 1074) { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(ast_node_token(node), "Shift amount too large: `%s`", err_str); x->mode = Addressing_Invalid; return; } if (!is_type_integer(x->type)) { // NOTE(bill): It could be an untyped float but still representable // as an integer x->type = t_untyped_integer; } x->value = exact_value_shift(be->op, x_val, make_exact_value_integer(amount)); if (is_type_typed(x->type)) { check_is_expressible(c, x, base_type(x->type)); } return; } if (x_is_untyped) { ExpressionInfo *info = map_get(&c->info.untyped, hash_pointer(x->expr)); if (info != NULL) { info->is_lhs = true; } x->mode = Addressing_Value; return; } } if (y->mode == Addressing_Constant && y->value.value_integer < 0) { gbString err_str = expr_to_string(y->expr); defer (gb_string_free(err_str)); error(ast_node_token(node), "Shift amount cannot be negative: `%s`", err_str); } x->mode = Addressing_Value; } b32 check_is_castable_to(Checker *c, Operand *operand, Type *y) { PROF_PROC(); if (check_is_assignable_to(c, operand, y)) { return true; } Type *x = operand->type; Type *xb = base_type(x); Type *yb = base_type(y); if (are_types_identical(xb, yb)) { return true; } xb = get_enum_base_type(x); yb = get_enum_base_type(y); // Cast between booleans and integers if (is_type_boolean(xb) || is_type_integer(xb)) { if (is_type_boolean(yb) || is_type_integer(yb)) return true; } // Cast between numbers if (is_type_integer(xb) || is_type_float(xb)) { if (is_type_integer(yb) || is_type_float(yb)) return true; } // Cast between pointers if (is_type_pointer(xb) && is_type_pointer(yb)) { return true; } // (u)int <-> pointer if (is_type_int_or_uint(xb) && is_type_rawptr(yb)) { return true; } if (is_type_rawptr(xb) && is_type_int_or_uint(yb)) { return true; } // []byte/[]u8 <-> string if (is_type_u8_slice(xb) && is_type_string(yb)) { return true; } if (is_type_string(xb) && is_type_u8_slice(yb)) { if (is_type_typed(xb)) { return true; } } // proc <-> proc if (is_type_proc(xb) && is_type_proc(yb)) { return true; } // proc -> rawptr if (is_type_proc(xb) && is_type_rawptr(yb)) { return true; } return false; } String check_down_cast_name(Type *dst_, Type *src_) { String result = {}; Type *dst = type_deref(dst_); Type *src = type_deref(src_); Type *dst_s = base_type(dst); GB_ASSERT(is_type_struct(dst_s) || is_type_raw_union(dst_s)); for (isize i = 0; i < dst_s->Record.field_count; i++) { Entity *f = dst_s->Record.fields[i]; GB_ASSERT(f->kind == Entity_Variable && f->Variable.field); if (f->Variable.anonymous) { if (are_types_identical(f->type, src_)) { return f->token.string; } if (are_types_identical(type_deref(f->type), src_)) { return f->token.string; } if (!is_type_pointer(f->type)) { result = check_down_cast_name(f->type, src_); if (result.len > 0) return result; } } } return result; } Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) { GB_ASSERT(node->kind == AstNode_BinaryExpr); ast_node(be, BinaryExpr, node); GB_ASSERT(is_type_pointer(ptr->type)); GB_ASSERT(is_type_integer(offset->type)); GB_ASSERT(op == Token_Add || op == Token_Sub); Operand operand = {}; operand.mode = Addressing_Value; operand.type = ptr->type; operand.expr = node; if (base_type(ptr->type) == t_rawptr) { gbString str = type_to_string(ptr->type); defer (gb_string_free(str)); error(ast_node_token(node), "Invalid pointer type for pointer arithmetic: `%s`", str); operand.mode = Addressing_Invalid; return operand; } if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) { i64 elem_size = type_size_of(c->sizes, c->allocator, ptr->type); i64 ptr_val = ptr->value.value_pointer; i64 offset_val = exact_value_to_integer(offset->value).value_integer; i64 new_ptr_val = ptr_val; if (op == Token_Add) { new_ptr_val += elem_size*offset_val; } else { new_ptr_val -= elem_size*offset_val; } operand.mode = Addressing_Constant; operand.value = make_exact_value_pointer(new_ptr_val); } return operand; } void check_binary_expr(Checker *c, Operand *x, AstNode *node) { PROF_PROC(); GB_ASSERT(node->kind == AstNode_BinaryExpr); Operand y_ = {}, *y = &y_; gbString err_str = NULL; defer (gb_string_free(err_str)); ast_node(be, BinaryExpr, node); if (be->op.kind == Token_as) { check_expr(c, x, be->left); Type *type = check_type(c, be->right); if (x->mode == Addressing_Invalid) return; b32 is_const_expr = x->mode == Addressing_Constant; b32 can_convert = false; Type *bt = base_type(type); if (is_const_expr && is_type_constant_type(bt)) { if (bt->kind == Type_Basic) { if (check_value_is_expressible(c, x->value, bt, &x->value)) { can_convert = true; } } } else if (check_is_castable_to(c, x, type)) { if (x->mode != Addressing_Constant) { x->mode = Addressing_Value; } can_convert = true; } if (!can_convert) { gbString expr_str = expr_to_string(x->expr); gbString to_type = type_to_string(type); gbString from_type = type_to_string(x->type); defer (gb_string_free(expr_str)); defer (gb_string_free(to_type)); defer (gb_string_free(from_type)); error(ast_node_token(x->expr), "Cannot cast `%s` as `%s` from `%s`", expr_str, to_type, from_type); x->mode = Addressing_Invalid; return; } if (is_type_untyped(x->type)) { Type *final_type = type; if (is_const_expr && !is_type_constant_type(type)) { final_type = default_type(x->type); } update_expr_type(c, x->expr, final_type, true); } x->type = type; return; } else if (be->op.kind == Token_transmute) { check_expr(c, x, be->left); Type *type = check_type(c, be->right); if (x->mode == Addressing_Invalid) return; if (x->mode == Addressing_Constant) { gbString expr_str = expr_to_string(x->expr); defer (gb_string_free(expr_str)); error(ast_node_token(x->expr), "Cannot transmute constant expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } if (is_type_untyped(x->type)) { gbString expr_str = expr_to_string(x->expr); defer (gb_string_free(expr_str)); error(ast_node_token(x->expr), "Cannot transmute untyped expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } i64 srcz = type_size_of(c->sizes, c->allocator, x->type); i64 dstz = type_size_of(c->sizes, c->allocator, type); if (srcz != dstz) { gbString expr_str = expr_to_string(x->expr); gbString type_str = type_to_string(type); defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); error(ast_node_token(x->expr), "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz); x->mode = Addressing_Invalid; return; } x->type = type; return; } else if (be->op.kind == Token_down_cast) { check_expr(c, x, be->left); Type *type = check_type(c, be->right); if (x->mode == Addressing_Invalid) { return; } if (x->mode == Addressing_Constant) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Cannot `down_cast` a constant expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } if (is_type_untyped(x->type)) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Cannot `down_cast` an untyped expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } if (!(is_type_pointer(x->type) && is_type_pointer(type))) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Can only `down_cast` pointers: `%s`", expr_str); x->mode = Addressing_Invalid; return; } Type *src = type_deref(x->type); Type *dst = type_deref(type); Type *bsrc = base_type(src); Type *bdst = base_type(dst); if (!(is_type_struct(bsrc) || is_type_raw_union(bsrc))) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Can only `down_cast` pointer from structs or unions: `%s`", expr_str); x->mode = Addressing_Invalid; return; } if (!(is_type_struct(bdst) || is_type_raw_union(bdst))) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Can only `down_cast` pointer to structs or unions: `%s`", expr_str); x->mode = Addressing_Invalid; return; } String param_name = check_down_cast_name(dst, src); if (param_name.len == 0) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Illegal `down_cast`: `%s`", expr_str); x->mode = Addressing_Invalid; return; } x->mode = Addressing_Value; x->type = type; return; } else if (be->op.kind == Token_union_cast) { check_expr(c, x, be->left); Type *type = check_type(c, be->right); if (x->mode == Addressing_Invalid) { return; } if (x->mode == Addressing_Constant) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Cannot `union_cast` a constant expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } if (is_type_untyped(x->type)) { gbString expr_str = expr_to_string(node); defer (gb_string_free(expr_str)); error(ast_node_token(node), "Cannot `union_cast` an untyped expression: `%s`", expr_str); x->mode = Addressing_Invalid; return; } b32 src_is_ptr = is_type_pointer(x->type); b32 dst_is_ptr = is_type_pointer(type); Type *src = type_deref(x->type); Type *dst = type_deref(type); Type *bsrc = base_type(src); Type *bdst = base_type(dst); if (src_is_ptr != dst_is_ptr) { gbString src_type_str = type_to_string(x->type); gbString dst_type_str = type_to_string(type); defer (gb_string_free(src_type_str)); defer (gb_string_free(dst_type_str)); error(ast_node_token(node), "Invalid `union_cast` types: `%s` and `%s`", src_type_str, dst_type_str); x->mode = Addressing_Invalid; return; } if (!is_type_union(src)) { error(ast_node_token(node), "`union_cast` can only operate on unions"); x->mode = Addressing_Invalid; return; } b32 ok = false; for (isize i = 1; i < bsrc->Record.field_count; i++) { Entity *f = bsrc->Record.fields[i]; if (are_types_identical(f->type, dst)) { ok = true; break; } } if (!ok) { gbString expr_str = expr_to_string(node); gbString dst_type_str = type_to_string(type); defer (gb_string_free(expr_str)); defer (gb_string_free(dst_type_str)); error(ast_node_token(node), "Cannot `union_cast` `%s` to `%s`", expr_str, dst_type_str); x->mode = Addressing_Invalid; return; } Entity **variables = gb_alloc_array(c->allocator, Entity *, 2); Token tok = make_token_ident(make_string("")); variables[0] = make_entity_param(c->allocator, NULL, tok, type, false); variables[1] = make_entity_param(c->allocator, NULL, tok, t_bool, false); Type *tuple = make_type_tuple(c->allocator); tuple->Tuple.variables = variables; tuple->Tuple.variable_count = 2; x->type = tuple; x->mode = Addressing_Value; return; } check_expr(c, x, be->left); check_expr(c, y, be->right); if (x->mode == Addressing_Invalid) { return; } if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; x->expr = y->expr; return; } Token op = be->op; if (token_is_shift(op)) { check_shift(c, x, y, node); return; } if (op.kind == Token_Add || op.kind == Token_Sub) { if (is_type_pointer(x->type) && is_type_integer(y->type)) { *x = check_ptr_addition(c, op.kind, x, y, node); return; } else if (is_type_integer(x->type) && is_type_pointer(y->type)) { if (op.kind == Token_Sub) { gbString lhs = expr_to_string(x->expr); gbString rhs = expr_to_string(y->expr); defer (gb_string_free(lhs)); defer (gb_string_free(rhs)); error(ast_node_token(node), "Invalid pointer arithmetic, did you mean `%s %.*s %s`?", rhs, LIT(op.string), lhs); x->mode = Addressing_Invalid; return; } *x = check_ptr_addition(c, op.kind, y, x, node); return; } } convert_to_typed(c, x, y->type); if (x->mode == Addressing_Invalid) { return; } convert_to_typed(c, y, x->type); if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; return; } if (token_is_comparison(op)) { check_comparison(c, x, y, op); return; } if (!are_types_identical(x->type, y->type)) { if (x->type != t_invalid && y->type != t_invalid) { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); defer (gb_string_free(xt)); defer (gb_string_free(yt)); err_str = expr_to_string(x->expr); error(op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", err_str, xt, yt); } x->mode = Addressing_Invalid; return; } if (!check_binary_op(c, x, op)) { x->mode = Addressing_Invalid; return; } switch (op.kind) { case Token_Quo: case Token_Mod: case Token_QuoEq: case Token_ModEq: if ((x->mode == Addressing_Constant || is_type_integer(x->type)) && y->mode == Addressing_Constant) { b32 fail = false; switch (y->value.kind) { case ExactValue_Integer: if (y->value.value_integer == 0) { fail = true; } break; case ExactValue_Float: if (y->value.value_float == 0.0) { fail = true; } break; } if (fail) { error(ast_node_token(y->expr), "Division by zero not allowed"); x->mode = Addressing_Invalid; return; } } } if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { ExactValue a = x->value; ExactValue b = y->value; Type *type = base_type(x->type); if (is_type_pointer(type)) { GB_ASSERT(op.kind == Token_Sub); i64 bytes = a.value_pointer - b.value_pointer; i64 diff = bytes/type_size_of(c->sizes, c->allocator, type); x->value = make_exact_value_pointer(diff); return; } if (type->kind != Type_Basic) { gbString xt = type_to_string(x->type); defer (gb_string_free(xt)); err_str = expr_to_string(node); error(op, "Invalid type, `%s`, for constant binary expression `%s`", xt, err_str); x->mode = Addressing_Invalid; return; } if (op.kind == Token_Quo && is_type_integer(type)) { op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers } x->value = exact_binary_operator_value(op, a, b); if (is_type_typed(type)) { if (node != NULL) x->expr = node; check_is_expressible(c, x, type); } return; } x->mode = Addressing_Value; } void update_expr_type(Checker *c, AstNode *e, Type *type, b32 final) { PROF_PROC(); HashKey key = hash_pointer(e); ExpressionInfo *found = map_get(&c->info.untyped, key); if (found == NULL) return; switch (e->kind) { case_ast_node(ue, UnaryExpr, e); if (found->value.kind != ExactValue_Invalid) break; update_expr_type(c, ue->expr, type, final); case_end; case_ast_node(be, BinaryExpr, e); if (found->value.kind != ExactValue_Invalid) break; if (!token_is_comparison(be->op)) { if (token_is_shift(be->op)) { update_expr_type(c, be->left, type, final); } else { update_expr_type(c, be->left, type, final); update_expr_type(c, be->right, type, final); } } case_end; } if (!final && is_type_untyped(type)) { found->type = base_type(type); map_set(&c->info.untyped, key, *found); } else { ExpressionInfo old = *found; map_remove(&c->info.untyped, key); if (old.is_lhs && !is_type_integer(type)) { gbString expr_str = expr_to_string(e); gbString type_str = type_to_string(type); defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); error(ast_node_token(e), "Shifted operand %s must be an integer, got %s", expr_str, type_str); return; } add_type_and_value(&c->info, e, found->mode, type, found->value); } } void update_expr_value(Checker *c, AstNode *e, ExactValue value) { ExpressionInfo *found = map_get(&c->info.untyped, hash_pointer(e)); if (found) found->value = value; } void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) { gbString expr_str = expr_to_string(operand->expr); gbString type_str = type_to_string(target_type); char *extra_text = ""; defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); if (operand->mode == Addressing_Constant) { if (operand->value.value_integer == 0) { if (make_string(expr_str) != "nil") { // HACK NOTE(bill): Just in case // NOTE(bill): Doesn't matter what the type is as it's still zero in the union extra_text = " - Did you want `nil`?"; } } } error(ast_node_token(operand->expr), "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text); operand->mode = Addressing_Invalid; } void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level) { PROF_PROC(); GB_ASSERT_NOT_NULL(target_type); if (operand->mode == Addressing_Invalid || is_type_typed(operand->type) || target_type == t_invalid) { return; } if (is_type_untyped(target_type)) { Type *x = operand->type; Type *y = target_type; if (is_type_numeric(x) && is_type_numeric(y)) { if (x < y) { operand->type = target_type; update_expr_type(c, operand->expr, target_type, false); } } else if (x != y) { convert_untyped_error(c, operand, target_type); } return; } Type *t = get_enum_base_type(base_type(target_type)); switch (t->kind) { case Type_Basic: if (operand->mode == Addressing_Constant) { check_is_expressible(c, operand, t); if (operand->mode == Addressing_Invalid) { return; } update_expr_value(c, operand->expr, operand->value); } else { switch (operand->type->Basic.kind) { case Basic_UntypedBool: if (!is_type_boolean(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; case Basic_UntypedInteger: case Basic_UntypedFloat: case Basic_UntypedRune: if (!is_type_numeric(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; case Basic_UntypedNil: if (!type_has_nil(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; } } break; case Type_Maybe: if (is_type_untyped_nil(operand->type)) { // Okay } else if (level == 0) { convert_to_typed(c, operand, t->Maybe.elem, level+1); return; } default: if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; } operand->type = target_type; } b32 check_index_value(Checker *c, AstNode *index_value, i64 max_count, i64 *value) { PROF_PROC(); Operand operand = {Addressing_Invalid}; check_expr(c, &operand, index_value); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } convert_to_typed(c, &operand, t_int); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } if (!is_type_integer(get_enum_base_type(operand.type))) { gbString expr_str = expr_to_string(operand.expr); error(ast_node_token(operand.expr), "Index `%s` must be an integer", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (operand.mode == Addressing_Constant && (c->context.stmt_state_flags & StmtStateFlag_bounds_check) != 0) { i64 i = exact_value_to_integer(operand.value).value_integer; if (i < 0) { gbString expr_str = expr_to_string(operand.expr); error(ast_node_token(operand.expr), "Index `%s` cannot be a negative value", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (max_count >= 0) { // NOTE(bill): Do array bound checking if (value) *value = i; if (i >= max_count) { gbString expr_str = expr_to_string(operand.expr); error(ast_node_token(operand.expr), "Index `%s` is out of bounds range 0..<%lld", expr_str, max_count); gb_string_free(expr_str); return false; } return true; } } // NOTE(bill): It's alright :D if (value) *value = -1; return true; } Entity *check_selector(Checker *c, Operand *operand, AstNode *node) { PROF_PROC(); ast_node(se, SelectorExpr, node); b32 check_op_expr = true; Entity *entity = NULL; Selection sel = {}; // NOTE(bill): Not used if it's an import name AstNode *op_expr = se->expr; AstNode *selector = unparen_expr(se->selector); if (selector == NULL) { goto error; } GB_ASSERT(selector->kind == AstNode_Ident); if (op_expr->kind == AstNode_Ident) { String name = op_expr->Ident.string; Entity *e = scope_lookup_entity(c->context.scope, name); add_entity_use(c, op_expr, e); if (e != NULL && e->kind == Entity_ImportName) { String sel_name = selector->Ident.string; check_op_expr = false; entity = scope_lookup_entity(e->ImportName.scope, sel_name); if (entity == NULL) { error(ast_node_token(op_expr), "`%.*s` is not declared by `%.*s`", LIT(sel_name), LIT(name)); goto error; } if (entity->type == NULL) { // Not setup yet check_entity_decl(c, entity, NULL, NULL); } GB_ASSERT(entity->type != NULL); b32 is_not_exported = !is_entity_exported(entity); if (is_not_exported) { auto found = map_get(&e->ImportName.scope->implicit, hash_string(sel_name)); if (!found && e->ImportName.scope != entity->scope) { is_not_exported = false; } } if (is_not_exported) { gbString sel_str = expr_to_string(selector); defer (gb_string_free(sel_str)); error(ast_node_token(op_expr), "`%s` is not exported by `%.*s`", sel_str, LIT(name)); // NOTE(bill): Not really an error so don't goto error } add_entity_use(c, selector, entity); } } if (check_op_expr) { check_expr_base(c, operand, op_expr); if (operand->mode == Addressing_Invalid) { goto error; } } if (entity == NULL) { sel = lookup_field(c->allocator, operand->type, selector->Ident.string, operand->mode == Addressing_Type); entity = sel.entity; } if (entity == NULL) { gbString op_str = expr_to_string(op_expr); gbString type_str = type_to_string(operand->type); gbString sel_str = expr_to_string(selector); defer (gb_string_free(op_str)); defer (gb_string_free(type_str)); defer (gb_string_free(sel_str)); error(ast_node_token(op_expr), "`%s` (`%s`) has no field `%s`", op_str, type_str, sel_str); goto error; } add_entity_use(c, selector, entity); switch (entity->kind) { case Entity_Constant: operand->mode = Addressing_Constant; operand->value = entity->Constant.value; break; case Entity_Variable: // TODO(bill): This is the rule I need? if (sel.indirect || operand->mode != Addressing_Value) { operand->mode = Addressing_Variable; } break; case Entity_TypeName: operand->mode = Addressing_Type; break; case Entity_Procedure: operand->mode = Addressing_Value; break; case Entity_Builtin: operand->mode = Addressing_Builtin; operand->builtin_id = entity->Builtin.id; break; // NOTE(bill): These cases should never be hit but are here for sanity reasons case Entity_Nil: operand->mode = Addressing_Value; break; case Entity_ImplicitValue: operand->mode = Addressing_Value; break; } operand->type = entity->type; operand->expr = node; return entity; error: operand->mode = Addressing_Invalid; operand->expr = node; return NULL; } b32 check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) { PROF_PROC(); GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); BuiltinProc *bp = &builtin_procs[id]; { char *err = NULL; if (ce->args.count < bp->arg_count) { err = "Too few"; } else if (ce->args.count > bp->arg_count && !bp->variadic) { err = "Too many"; } if (err) { ast_node(proc, Ident, ce->proc); error(ce->close, "`%s` arguments for `%.*s`, expected %td, got %td", err, LIT(proc->string), bp->arg_count, ce->args.count); return false; } } switch (id) { case BuiltinProc_new: case BuiltinProc_new_slice: case BuiltinProc_size_of: case BuiltinProc_align_of: case BuiltinProc_offset_of: case BuiltinProc_type_info: // NOTE(bill): The first arg may be a Type, this will be checked case by case break; default: check_multi_expr(c, operand, ce->args[0]); } switch (id) { case BuiltinProc_new: { // new :: proc(Type) -> ^Type Operand op = {}; check_expr_or_type(c, &op, ce->args[0]); Type *type = op.type; if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { error(ast_node_token(ce->args[0]), "Expected a type for `new`"); return false; } operand->mode = Addressing_Value; operand->type = make_type_pointer(c->allocator, type); } break; case BuiltinProc_new_slice: { // new_slice :: proc(Type, len: int[, cap: int]) -> []Type Operand op = {}; check_expr_or_type(c, &op, ce->args[0]); Type *type = op.type; if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { error(ast_node_token(ce->args[0]), "Expected a type for `new_slice`"); return false; } AstNode *len = ce->args[1]; AstNode *cap = NULL; if (ce->args.count > 2) { cap = ce->args[2]; } check_expr(c, &op, len); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Length for `new_slice` must be an integer, got `%s`", type_str); return false; } if (cap != NULL) { check_expr(c, &op, cap); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Capacity for `new_slice` must be an integer, got `%s`", type_str); return false; } if (ce->args.count > 3) { error(ast_node_token(call), "Too many arguments to `new_slice`, expected either 2 or 3"); return false; } } operand->mode = Addressing_Value; operand->type = make_type_slice(c->allocator, type); } break; case BuiltinProc_size_of: { // size_of :: proc(Type) -> int Type *type = check_type(c, ce->args[0]); if (type == NULL || type == t_invalid) { error(ast_node_token(ce->args[0]), "Expected a type for `size_of`"); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, type)); operand->type = t_int; } break; case BuiltinProc_size_of_val: // size_of_val :: proc(val: Type) -> int check_assignment(c, operand, NULL, make_string("argument of `size_of_val`")); if (operand->mode == Addressing_Invalid) { return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, operand->type)); operand->type = t_int; break; case BuiltinProc_align_of: { // align_of :: proc(Type) -> int Type *type = check_type(c, ce->args[0]); if (type == NULL || type == t_invalid) { error(ast_node_token(ce->args[0]), "Expected a type for `align_of`"); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, type)); operand->type = t_int; } break; case BuiltinProc_align_of_val: // align_of_val :: proc(val: Type) -> int check_assignment(c, operand, NULL, make_string("argument of `align_of_val`")); if (operand->mode == Addressing_Invalid) { return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, operand->type)); operand->type = t_int; break; case BuiltinProc_offset_of: { // offset_of :: proc(Type, field) -> int Operand op = {}; Type *bt = check_type(c, ce->args[0]); Type *type = base_type(bt); if (type == NULL || type == t_invalid) { error(ast_node_token(ce->args[0]), "Expected a type for `offset_of`"); return false; } AstNode *field_arg = unparen_expr(ce->args[1]); if (field_arg == NULL || field_arg->kind != AstNode_Ident) { error(ast_node_token(field_arg), "Expected an identifier for field argument"); return false; } if (is_type_array(type) || is_type_vector(type)) { error(ast_node_token(field_arg), "Invalid type for `offset_of`"); return false; } ast_node(arg, Ident, field_arg); Selection sel = lookup_field(c->allocator, type, arg->string, operand->mode == Addressing_Type); if (sel.entity == NULL) { gbString type_str = type_to_string(bt); defer (gb_string_free(type_str)); error(ast_node_token(ce->args[0]), "`%s` has no field named `%.*s`", type_str, LIT(arg->string)); return false; } if (sel.indirect) { gbString type_str = type_to_string(bt); defer (gb_string_free(type_str)); error(ast_node_token(ce->args[0]), "Field `%.*s` is embedded via a pointer in `%s`", LIT(arg->string), type_str); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_offset_of_from_selection(c->sizes, c->allocator, type, sel)); operand->type = t_int; } break; case BuiltinProc_offset_of_val: { // offset_of_val :: proc(val: expression) -> int AstNode *arg = unparen_expr(ce->args[0]); if (arg->kind != AstNode_SelectorExpr) { gbString str = expr_to_string(arg); error(ast_node_token(arg), "`%s` is not a selector expression", str); return false; } ast_node(s, SelectorExpr, arg); check_expr(c, operand, s->expr); if (operand->mode == Addressing_Invalid) return false; Type *type = operand->type; if (base_type(type)->kind == Type_Pointer) { Type *p = base_type(type); if (is_type_struct(p)) { type = p->Pointer.elem; } } if (is_type_array(type) || is_type_vector(type)) { error(ast_node_token(arg), "Invalid type for `offset_of_val`"); return false; } ast_node(i, Ident, s->selector); Selection sel = lookup_field(c->allocator, type, i->string, operand->mode == Addressing_Type); if (sel.entity == NULL) { gbString type_str = type_to_string(type); error(ast_node_token(arg), "`%s` has no field named `%.*s`", type_str, LIT(i->string)); return false; } if (sel.indirect) { gbString type_str = type_to_string(type); defer (gb_string_free(type_str)); error(ast_node_token(ce->args[0]), "Field `%.*s` is embedded via a pointer in `%s`", LIT(i->string), type_str); return false; } operand->mode = Addressing_Constant; // IMPORTANT TODO(bill): Fix for anonymous fields operand->value = make_exact_value_integer(type_offset_of_from_selection(c->sizes, c->allocator, type, sel)); operand->type = t_int; } break; case BuiltinProc_type_of_val: // type_of_val :: proc(val: Type) -> type(Type) check_assignment(c, operand, NULL, make_string("argument of `type_of_val`")); if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) return false; operand->mode = Addressing_Type; break; case BuiltinProc_type_info: { // type_info :: proc(Type) -> ^Type_Info AstNode *expr = ce->args[0]; Type *type = check_type(c, expr); if (type == NULL || type == t_invalid) { error(ast_node_token(expr), "Invalid argument to `type_info`"); return false; } add_type_info_type(c, type); operand->mode = Addressing_Value; operand->type = t_type_info_ptr; } break; case BuiltinProc_type_info_of_val: { // type_info_of_val :: proc(val: Type) -> ^Type_Info AstNode *expr = ce->args[0]; check_assignment(c, operand, NULL, make_string("argument of `type_info_of_val`")); if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) return false; add_type_info_type(c, operand->type); operand->mode = Addressing_Value; operand->type = t_type_info_ptr; } break; case BuiltinProc_compile_assert: // compile_assert :: proc(cond: bool) if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) { gbString str = expr_to_string(ce->args[0]); defer (gb_string_free(str)); error(ast_node_token(call), "`%s` is not a constant boolean", str); return false; } if (!operand->value.value_bool) { gbString str = expr_to_string(ce->args[0]); defer (gb_string_free(str)); error(ast_node_token(call), "Compile time assertion: `%s`", str); } break; case BuiltinProc_assert: // assert :: proc(cond: bool) if (!is_type_boolean(operand->type)) { gbString str = expr_to_string(ce->args[0]); defer (gb_string_free(str)); error(ast_node_token(call), "`%s` is not a boolean", str); return false; } operand->mode = Addressing_NoValue; break; case BuiltinProc_panic: // panic :: proc(msg: string) if (!is_type_string(operand->type)) { gbString str = expr_to_string(ce->args[0]); defer (gb_string_free(str)); error(ast_node_token(call), "`%s` is not a string", str); return false; } operand->mode = Addressing_NoValue; break; case BuiltinProc_copy: { // copy :: proc(x, y: []Type) -> int Type *dest_type = NULL, *src_type = NULL; Type *d = base_type(operand->type); if (d->kind == Type_Slice) dest_type = d->Slice.elem; Operand op = {}; check_expr(c, &op, ce->args[1]); if (op.mode == Addressing_Invalid) return false; Type *s = base_type(op.type); if (s->kind == Type_Slice) src_type = s->Slice.elem; if (dest_type == NULL || src_type == NULL) { error(ast_node_token(call), "`copy` only expects slices as arguments"); return false; } if (!are_types_identical(dest_type, src_type)) { gbString d_arg = expr_to_string(ce->args[0]); gbString s_arg = expr_to_string(ce->args[1]); gbString d_str = type_to_string(dest_type); gbString s_str = type_to_string(src_type); defer (gb_string_free(d_arg)); defer (gb_string_free(s_arg)); defer (gb_string_free(d_str)); defer (gb_string_free(s_str)); error(ast_node_token(call), "Arguments to `copy`, %s, %s, have different elem types: %s vs %s", d_arg, s_arg, d_str, s_str); return false; } operand->type = t_int; // Returns number of elems copied operand->mode = Addressing_Value; } break; case BuiltinProc_append: { // append :: proc(x : ^[]Type, y : Type) -> bool Type *x_type = NULL, *y_type = NULL; x_type = base_type(operand->type); Operand op = {}; check_expr(c, &op, ce->args[1]); if (op.mode == Addressing_Invalid) return false; y_type = base_type(op.type); if (!(is_type_pointer(x_type) && is_type_slice(x_type->Pointer.elem))) { error(ast_node_token(call), "First argument to `append` must be a pointer to a slice"); return false; } Type *elem_type = x_type->Pointer.elem->Slice.elem; if (!check_is_assignable_to(c, &op, elem_type)) { gbString d_arg = expr_to_string(ce->args[0]); gbString s_arg = expr_to_string(ce->args[1]); gbString d_str = type_to_string(elem_type); gbString s_str = type_to_string(y_type); defer (gb_string_free(d_arg)); defer (gb_string_free(s_arg)); defer (gb_string_free(d_str)); defer (gb_string_free(s_str)); error(ast_node_token(call), "Arguments to `append`, %s, %s, have different element types: %s vs %s", d_arg, s_arg, d_str, s_str); return false; } operand->type = t_bool; // Returns if it was successful operand->mode = Addressing_Value; } break; case BuiltinProc_swizzle: { // swizzle :: proc(v: {N}T, T...) -> {M}T Type *vector_type = base_type(operand->type); if (!is_type_vector(vector_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "You can only `swizzle` a vector, got `%s`", type_str); return false; } isize max_count = vector_type->Vector.count; isize arg_count = 0; for_array(i, ce->args) { if (i == 0) continue; AstNode *arg = ce->args[i]; Operand op = {}; check_expr(c, &op, arg); if (op.mode == Addressing_Invalid) return false; Type *arg_type = base_type(op.type); if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) { error(ast_node_token(op.expr), "Indices to `swizzle` must be constant integers"); return false; } if (op.value.value_integer < 0) { error(ast_node_token(op.expr), "Negative `swizzle` index"); return false; } if (max_count <= op.value.value_integer) { error(ast_node_token(op.expr), "`swizzle` index exceeds vector length"); return false; } arg_count++; } if (arg_count > max_count) { error(ast_node_token(call), "Too many `swizzle` indices, %td > %td", arg_count, max_count); return false; } Type *elem_type = vector_type->Vector.elem; operand->type = make_type_vector(c->allocator, elem_type, arg_count); operand->mode = Addressing_Value; } break; #if 0 case BuiltinProc_ptr_offset: { // ptr_offset :: proc(ptr: ^T, offset: int) -> ^T // ^T cannot be rawptr Type *ptr_type = base_type(operand->type); if (!is_type_pointer(ptr_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a pointer to `ptr_offset`, got `%s`", type_str); return false; } if (ptr_type == t_rawptr) { error(ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } AstNode *offset = ce->args[1]; Operand op = {}; check_expr(c, &op, offset); if (op.mode == Addressing_Invalid) return false; Type *offset_type = base_type(op.type); if (!is_type_integer(offset_type)) { error(ast_node_token(op.expr), "Pointer offsets for `ptr_offset` must be an integer"); return false; } if (operand->mode == Addressing_Constant && op.mode == Addressing_Constant) { i64 ptr = operand->value.value_pointer; i64 elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem); ptr += elem_size * op.value.value_integer; operand->value.value_pointer = ptr; } else { operand->mode = Addressing_Value; } } break; case BuiltinProc_ptr_sub: { // ptr_sub :: proc(a, b: ^T) -> int // ^T cannot be rawptr Type *ptr_type = base_type(operand->type); if (!is_type_pointer(ptr_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a pointer to `ptr_add`, got `%s`", type_str); return false; } if (ptr_type == t_rawptr) { error(ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } AstNode *offset = ce->args[1]; Operand op = {}; check_expr(c, &op, offset); if (op.mode == Addressing_Invalid) return false; if (!is_type_pointer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a pointer to `ptr_add`, got `%s`", type_str); return false; } if (base_type(op.type) == t_rawptr) { error(ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } if (!are_types_identical(operand->type, op.type)) { gbString a = type_to_string(operand->type); gbString b = type_to_string(op.type); defer (gb_string_free(a)); defer (gb_string_free(b)); error(ast_node_token(op.expr), "`ptr_sub` requires to pointer of the same type. Got `%s` and `%s`.", a, b); return false; } operand->type = t_int; if (operand->mode == Addressing_Constant && op.mode == Addressing_Constant) { u8 *ptr_a = cast(u8 *)operand->value.value_pointer; u8 *ptr_b = cast(u8 *)op.value.value_pointer; isize elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem); operand->value = make_exact_value_integer((ptr_a - ptr_b) / elem_size); } else { operand->mode = Addressing_Value; } } break; #endif case BuiltinProc_slice_ptr: { // slice_ptr :: proc(a: ^T, len: int[, cap: int]) -> []T // ^T cannot be rawptr Type *ptr_type = base_type(operand->type); if (!is_type_pointer(ptr_type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a pointer to `slice_ptr`, got `%s`", type_str); return false; } if (ptr_type == t_rawptr) { error(ast_node_token(call), "`rawptr` cannot have pointer arithmetic"); return false; } AstNode *len = ce->args[1]; AstNode *cap = NULL; if (ce->args.count > 2) { cap = ce->args[2]; } Operand op = {}; check_expr(c, &op, len); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Length for `slice_ptr` must be an integer, got `%s`", type_str); return false; } if (cap != NULL) { check_expr(c, &op, cap); if (op.mode == Addressing_Invalid) return false; if (!is_type_integer(op.type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Capacity for `slice_ptr` must be an integer, got `%s`", type_str); return false; } if (ce->args.count > 3) { error(ast_node_token(call), "Too many arguments to `slice_ptr`, expected either 2 or 3"); return false; } } operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem); operand->mode = Addressing_Value; } break; case BuiltinProc_min: { // min :: proc(a, b: comparable) -> comparable Type *type = base_type(operand->type); if (!is_type_comparable(type) || !is_type_numeric(type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a comparable numeric type to `min`, got `%s`", type_str); return false; } AstNode *other_arg = ce->args[1]; Operand a = *operand; Operand b = {}; check_expr(c, &b, other_arg); if (b.mode == Addressing_Invalid) return false; if (!is_type_comparable(b.type) || !is_type_numeric(type)) { gbString type_str = type_to_string(b.type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a comparable numeric type to `min`, got `%s`", type_str); return false; } if (a.mode == Addressing_Constant && b.mode == Addressing_Constant) { ExactValue x = a.value; ExactValue y = b.value; Token lt = {Token_Lt}; operand->mode = Addressing_Constant; if (compare_exact_values(lt, x, y)) { operand->value = x; operand->type = a.type; } else { operand->value = y; operand->type = b.type; } } else { operand->mode = Addressing_Value; operand->type = type; if (!are_types_identical(operand->type, b.type)) { gbString type_a = type_to_string(a.type); gbString type_b = type_to_string(b.type); defer (gb_string_free(type_a)); defer (gb_string_free(type_b)); error(ast_node_token(call), "Mismatched types to `min`, `%s` vs `%s`", type_a, type_b); return false; } } } break; case BuiltinProc_max: { // min :: proc(a, b: comparable) -> comparable Type *type = base_type(operand->type); if (!is_type_comparable(type) || !is_type_numeric(type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a comparable numeric type to `max`, got `%s`", type_str); return false; } AstNode *other_arg = ce->args[1]; Operand a = *operand; Operand b = {}; check_expr(c, &b, other_arg); if (b.mode == Addressing_Invalid) return false; if (!is_type_comparable(b.type) || !is_type_numeric(type)) { gbString type_str = type_to_string(b.type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a comparable numeric type to `max`, got `%s`", type_str); return false; } if (a.mode == Addressing_Constant && b.mode == Addressing_Constant) { ExactValue x = a.value; ExactValue y = b.value; Token gt = {Token_Gt}; operand->mode = Addressing_Constant; if (compare_exact_values(gt, x, y)) { operand->value = x; operand->type = a.type; } else { operand->value = y; operand->type = b.type; } } else { operand->mode = Addressing_Value; operand->type = type; if (!are_types_identical(operand->type, b.type)) { gbString type_a = type_to_string(a.type); gbString type_b = type_to_string(b.type); defer (gb_string_free(type_a)); defer (gb_string_free(type_b)); error(ast_node_token(call), "Mismatched types to `max`, `%s` vs `%s`", type_a, type_b); return false; } } } break; case BuiltinProc_abs: { // abs :: proc(n: numeric) -> numeric Type *type = base_type(operand->type); if (!is_type_numeric(type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected a numeric type to `abs`, got `%s`", type_str); return false; } if (operand->mode == Addressing_Constant) { switch (operand->value.kind) { case ExactValue_Integer: operand->value.value_integer = gb_abs(operand->value.value_integer); break; case ExactValue_Float: operand->value.value_float = gb_abs(operand->value.value_float); break; default: GB_PANIC("Invalid numeric constant"); break; } } else { operand->mode = Addressing_Value; } operand->type = type; } break; case BuiltinProc_enum_to_string: { Type *type = base_type(operand->type); if (!is_type_enum(type)) { gbString type_str = type_to_string(operand->type); defer (gb_string_free(type_str)); error(ast_node_token(call), "Expected an enum to `enum_to_string`, got `%s`", type_str); return false; } if (operand->mode == Addressing_Constant) { ExactValue value = make_exact_value_string(make_string("")); if (operand->value.kind == ExactValue_Integer) { i64 index = operand->value.value_integer; for (isize i = 0; i < type->Record.other_field_count; i++) { Entity *f = type->Record.other_fields[i]; if (f->kind == Entity_Constant && f->Constant.value.kind == ExactValue_Integer) { i64 fv = f->Constant.value.value_integer; if (index == fv) { value = make_exact_value_string(f->token.string); break; } } } } operand->value = value; operand->type = t_string; return true; } add_type_info_type(c, operand->type); operand->mode = Addressing_Value; operand->type = t_string; } break; } return true; } void check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) { PROF_PROC(); GB_ASSERT(call->kind == AstNode_CallExpr); GB_ASSERT(proc_type->kind == Type_Proc); ast_node(ce, CallExpr, call); isize param_count = 0; b32 variadic = proc_type->Proc.variadic; b32 vari_expand = (ce->ellipsis.pos.line != 0); if (proc_type->Proc.params != NULL) { param_count = proc_type->Proc.params->Tuple.variable_count; if (variadic) { param_count--; } } if (vari_expand && !variadic) { error(ce->ellipsis, "Cannot use `..` in call to a non-variadic procedure: `%.*s`", LIT(ce->proc->Ident.string)); return; } if (ce->args.count == 0 && param_count == 0) { return; } gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); defer (gb_temp_arena_memory_end(tmp)); Array operands; array_init(&operands, c->tmp_allocator, 2*param_count); for_array(i, ce->args) { Operand o = {}; check_multi_expr(c, &o, ce->args[i]); if (o.type->kind != Type_Tuple) { array_add(&operands, o); } else { auto *tuple = &o.type->Tuple; if (variadic && i >= param_count) { error(ast_node_token(ce->args[i]), "`..` in a variadic procedure cannot be applied to a %td-valued expression", tuple->variable_count); operand->mode = Addressing_Invalid; return; } for (isize j = 0; j < tuple->variable_count; j++) { o.type = tuple->variables[j]->type; array_add(&operands, o); } } } i32 error_code = 0; if (operands.count < param_count) { error_code = -1; } else if (!variadic && operands.count > param_count) { error_code = +1; } if (error_code != 0) { char *err_fmt = "Too many arguments for `%s`, expected %td arguments"; if (error_code < 0) { err_fmt = "Too few arguments for `%s`, expected %td arguments"; } gbString proc_str = expr_to_string(ce->proc); defer (gb_string_free(proc_str)); error(ast_node_token(call), err_fmt, proc_str, param_count); operand->mode = Addressing_Invalid; } GB_ASSERT(proc_type->Proc.params != NULL); Entity **sig_params = proc_type->Proc.params->Tuple.variables; isize operand_index = 0; for (; operand_index < param_count; operand_index++) { Type *arg_type = sig_params[operand_index]->type; Operand o = operands[operand_index]; if (variadic) { o = operands[operand_index]; } check_assignment(c, &o, arg_type, make_string("argument"), true); } if (variadic) { b32 variadic_expand = false; Type *slice = sig_params[param_count]->type; Type *elem = base_type(slice)->Slice.elem; Type *t = elem; for (; operand_index < operands.count; operand_index++) { Operand o = operands[operand_index]; if (vari_expand) { variadic_expand = true; t = slice; if (operand_index != param_count) { error(ast_node_token(o.expr), "`..` in a variadic procedure can only have one variadic argument at the end"); break; } } check_assignment(c, &o, t, make_string("argument"), true); } } } Entity *find_using_index_expr(Type *t) { t = base_type(t); if (t->kind != Type_Record) { return NULL; } for (isize i = 0; i < t->Record.field_count; i++) { Entity *f = t->Record.fields[i]; if (f->kind == Entity_Variable && f->Variable.field && f->Variable.anonymous) { if (is_type_indexable(f->type)) { return f; } Entity *res = find_using_index_expr(f->type); if (res != NULL) { return res; } } } return NULL; } ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) { PROF_PROC(); GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); check_expr_or_type(c, operand, ce->proc); if (operand->mode == Addressing_Invalid) { for_array(i, ce->args) { check_expr_base(c, operand, ce->args[i]); } operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } if (operand->mode == Addressing_Builtin) { i32 id = operand->builtin_id; if (!check_builtin_procedure(c, operand, call, id)) { operand->mode = Addressing_Invalid; } operand->expr = call; return builtin_procs[id].kind; } Type *proc_type = base_type(operand->type); if (proc_type == NULL || proc_type->kind != Type_Proc) { AstNode *e = operand->expr; gbString str = expr_to_string(e); defer (gb_string_free(str)); error(ast_node_token(e), "Cannot call a non-procedure: `%s`", str); operand->mode = Addressing_Invalid; operand->expr = call; return Expr_Stmt; } check_call_arguments(c, operand, proc_type, call); switch (proc_type->Proc.result_count) { case 0: operand->mode = Addressing_NoValue; break; case 1: operand->mode = Addressing_Value; operand->type = proc_type->Proc.results->Tuple.variables[0]->type; break; default: operand->mode = Addressing_Value; operand->type = proc_type->Proc.results; break; } operand->expr = call; return Expr_Stmt; } void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) { check_expr_base(c, o, e, t); check_not_tuple(c, o); char *err_str = NULL; switch (o->mode) { case Addressing_NoValue: err_str = "used as a value"; break; case Addressing_Type: err_str = "is not an expression"; break; case Addressing_Builtin: err_str = "must be called"; break; } if (err_str != NULL) { gbString str = expr_to_string(e); defer (gb_string_free(str)); error(ast_node_token(e), "`%s` %s", str, err_str); o->mode = Addressing_Invalid; } } ExprKind check__expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExprKind kind = Expr_Stmt; o->mode = Addressing_Invalid; o->type = t_invalid; switch (node->kind) { default: goto error; break; case_ast_node(be, BadExpr, node) goto error; case_end; case_ast_node(i, Ident, node); check_identifier(c, o, node, type_hint, NULL); case_end; case_ast_node(bl, BasicLit, node); Type *t = t_invalid; switch (bl->kind) { case Token_Integer: t = t_untyped_integer; break; case Token_Float: t = t_untyped_float; break; case Token_String: t = t_untyped_string; break; case Token_Rune: t = t_untyped_rune; break; default: GB_PANIC("Unknown literal"); break; } o->mode = Addressing_Constant; o->type = t; o->value = make_exact_value_from_basic_literal(*bl); case_end; case_ast_node(pl, ProcLit, node); check_open_scope(c, pl->type); defer (check_close_scope(c)); c->context.decl = make_declaration_info(c->allocator, c->context.scope); Type *proc_type = check_type(c, pl->type); if (proc_type != NULL) { check_proc_body(c, empty_token, c->context.decl, proc_type, pl->body); o->mode = Addressing_Value; o->type = proc_type; } else { gbString str = expr_to_string(node); error(ast_node_token(node), "Invalid procedure literal `%s`", str); gb_string_free(str); goto error; } case_end; case_ast_node(cl, CompoundLit, node); PROF_SCOPED("check__expr_base - CompoundLit"); Type *type = type_hint; b32 ellipsis_array = false; b32 is_constant = true; if (cl->type != NULL) { type = NULL; // [..]Type if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) { if (cl->type->ArrayType.count->kind == AstNode_Ellipsis) { type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1); ellipsis_array = true; } } if (type == NULL) { type = check_type(c, cl->type); } } if (type == NULL) { error(ast_node_token(node), "Missing type in compound literal"); goto error; } Type *t = base_type(type); switch (t->kind) { case Type_Record: { if (!is_type_struct(t)) { break; } if (cl->elems.count == 0) { break; // NOTE(bill): No need to init } { // Checker values isize field_count = t->Record.field_count; if (cl->elems[0]->kind == AstNode_FieldValue) { b32 *fields_visited = gb_alloc_array(c->allocator, b32, field_count); for_array(i, cl->elems) { AstNode *elem = cl->elems[i]; if (elem->kind != AstNode_FieldValue) { error(ast_node_token(elem), "Mixture of `field = value` and value elements in a structure literal is not allowed"); continue; } ast_node(fv, FieldValue, elem); if (fv->field->kind != AstNode_Ident) { gbString expr_str = expr_to_string(fv->field); defer (gb_string_free(expr_str)); error(ast_node_token(elem), "Invalid field name `%s` in structure literal", expr_str); continue; } String name = fv->field->Ident.string; Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type); if (sel.entity == NULL) { error(ast_node_token(elem), "Unknown field `%.*s` in structure literal", LIT(name)); continue; } if (sel.index.count > 1) { error(ast_node_token(elem), "Cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name)); continue; } Entity *field = t->Record.fields[sel.index[0]]; add_entity_use(c, fv->field, field); if (fields_visited[sel.index[0]]) { error(ast_node_token(elem), "Duplicate field `%.*s` in structure literal", LIT(name)); continue; } fields_visited[sel.index[0]] = true; check_expr(c, o, fv->value); if (base_type(field->type) == t_any) { is_constant = false; } if (is_constant) { is_constant = o->mode == Addressing_Constant; } check_assignment(c, o, field->type, make_string("structure literal")); } } else { for_array(index, cl->elems) { AstNode *elem = cl->elems[index]; if (elem->kind == AstNode_FieldValue) { error(ast_node_token(elem), "Mixture of `field = value` and value elements in a structure literal is not allowed"); continue; } Entity *field = t->Record.fields_in_src_order[index]; check_expr(c, o, elem); if (index >= field_count) { error(ast_node_token(o->expr), "Too many values in structure literal, expected %td", field_count); break; } if (base_type(field->type) == t_any) { is_constant = false; } if (is_constant) { is_constant = o->mode == Addressing_Constant; } check_assignment(c, o, field->type, make_string("structure literal")); } if (cl->elems.count < field_count) { error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count); } } } } break; case Type_Slice: case Type_Array: case Type_Vector: { Type *elem_type = NULL; String context_name = {}; if (t->kind == Type_Slice) { elem_type = t->Slice.elem; context_name = make_string("slice literal"); } else if (t->kind == Type_Vector) { elem_type = t->Vector.elem; context_name = make_string("vector literal"); } else { elem_type = t->Array.elem; context_name = make_string("array literal"); } i64 max = 0; isize index = 0; isize elem_count = cl->elems.count; if (base_type(elem_type) == t_any) { is_constant = false; } for (; index < elem_count; index++) { AstNode *e = cl->elems[index]; if (e->kind == AstNode_FieldValue) { error(ast_node_token(e), "`field = value` is only allowed in struct literals"); continue; } if (t->kind == Type_Array && t->Array.count >= 0 && index >= t->Array.count) { error(ast_node_token(e), "Index %lld is out of bounds (>= %lld) for array literal", index, t->Array.count); } if (t->kind == Type_Vector && t->Vector.count >= 0 && index >= t->Vector.count) { error(ast_node_token(e), "Index %lld is out of bounds (>= %lld) for vector literal", index, t->Vector.count); } Operand operand = {}; check_expr_with_type_hint(c, &operand, e, elem_type); check_assignment(c, &operand, elem_type, context_name); if (is_constant) { is_constant = operand.mode == Addressing_Constant; } } if (max < index) { max = index; } if (t->kind == Type_Vector) { if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) { error(ast_node_token(cl->elems[0]), "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index); } } if (t->kind == Type_Array && ellipsis_array) { t->Array.count = max; } } break; default: { gbString str = type_to_string(type); error(ast_node_token(node), "Invalid compound literal type `%s`", str); gb_string_free(str); goto error; } break; } if (is_constant) { o->mode = Addressing_Constant; o->value = make_exact_value_compound(node); } else { o->mode = Addressing_Value; } o->type = type; case_end; case_ast_node(pe, ParenExpr, node); kind = check_expr_base(c, o, pe->expr, type_hint); o->expr = node; case_end; case_ast_node(te, TagExpr, node); // TODO(bill): Tag expressions error(ast_node_token(node), "Tag expressions are not supported yet"); kind = check_expr_base(c, o, te->expr, type_hint); o->expr = node; case_end; case_ast_node(re, RunExpr, node); // TODO(bill): Tag expressions kind = check_expr_base(c, o, re->expr, type_hint); o->expr = node; case_end; case_ast_node(ue, UnaryExpr, node); check_expr(c, o, ue->expr); if (o->mode == Addressing_Invalid) { goto error; } check_unary_expr(c, o, ue->op, node); if (o->mode == Addressing_Invalid) { goto error; } case_end; case_ast_node(be, BinaryExpr, node); check_binary_expr(c, o, node); if (o->mode == Addressing_Invalid) { goto error; } case_end; case_ast_node(se, SelectorExpr, node); check_selector(c, o, node); case_end; case_ast_node(ie, IndexExpr, node); PROF_SCOPED("check__expr_base - IndexExpr"); check_expr(c, o, ie->expr); if (o->mode == Addressing_Invalid) { goto error; } Type *t = base_type(type_deref(o->type)); auto set_index_data = [](Operand *o, Type *t, i64 *max_count) -> b32 { t = base_type(type_deref(t)); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { if (o->mode == Addressing_Constant) { *max_count = o->value.value_string.len; } if (o->mode != Addressing_Variable) { o->mode = Addressing_Value; } o->type = t_u8; return true; } break; case Type_Array: *max_count = t->Array.count; if (o->mode != Addressing_Variable) { o->mode = Addressing_Value; } o->type = t->Array.elem; return true; case Type_Vector: *max_count = t->Vector.count; if (o->mode != Addressing_Variable) { o->mode = Addressing_Value; } o->type = t->Vector.elem; return true; case Type_Slice: o->type = t->Slice.elem; o->mode = Addressing_Variable; return true; } return false; }; i64 max_count = -1; b32 valid = set_index_data(o, t, &max_count); if (!valid && (is_type_struct(t) || is_type_raw_union(t))) { Entity *found = find_using_index_expr(t); if (found != NULL) { valid = set_index_data(o, found->type, &max_count); } } if (!valid) { gbString str = expr_to_string(o->expr); error(ast_node_token(o->expr), "Cannot index `%s`", str); gb_string_free(str); goto error; } if (ie->index == NULL) { gbString str = expr_to_string(o->expr); error(ast_node_token(o->expr), "Missing index for `%s`", str); gb_string_free(str); goto error; } i64 index = 0; b32 ok = check_index_value(c, ie->index, max_count, &index); case_end; case_ast_node(se, SliceExpr, node); PROF_SCOPED("check__expr_base - SliceExpr"); check_expr(c, o, se->expr); if (o->mode == Addressing_Invalid) { goto error; } b32 valid = false; i64 max_count = -1; Type *t = base_type(type_deref(o->type)); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { valid = true; if (o->mode == Addressing_Constant) { max_count = o->value.value_string.len; } if (se->max != NULL) { error(ast_node_token(se->max), "Max (3rd) index not needed in substring expression"); } o->type = t_string; } break; case Type_Array: valid = true; max_count = t->Array.count; if (o->mode != Addressing_Variable) { gbString str = expr_to_string(node); error(ast_node_token(node), "Cannot slice array `%s`, value is not addressable", str); gb_string_free(str); goto error; } o->type = make_type_slice(c->allocator, t->Array.elem); break; case Type_Slice: valid = true; break; } if (!valid) { gbString str = expr_to_string(o->expr); error(ast_node_token(o->expr), "Cannot slice `%s`", str); gb_string_free(str); goto error; } o->mode = Addressing_Value; i64 indices[3] = {}; AstNode *nodes[3] = {se->low, se->high, se->max}; for (isize i = 0; i < gb_count_of(nodes); i++) { i64 index = max_count; if (nodes[i] != NULL) { i64 capacity = -1; if (max_count >= 0) capacity = max_count; i64 j = 0; if (check_index_value(c, nodes[i], capacity, &j)) { index = j; } } else if (i == 0) { index = 0; } indices[i] = index; } for (isize i = 0; i < gb_count_of(indices); i++) { i64 a = indices[i]; for (isize j = i+1; j < gb_count_of(indices); j++) { i64 b = indices[j]; if (a > b && b >= 0) { error(se->close, "Invalid slice indices: [%td > %td]", a, b); } } } case_end; case_ast_node(ce, CallExpr, node); return check_call_expr(c, o, node); case_end; case_ast_node(de, DerefExpr, node); check_expr_or_type(c, o, de->expr); if (o->mode == Addressing_Invalid) { goto error; } else { Type *t = base_type(o->type); if (t->kind == Type_Pointer) { o->mode = Addressing_Variable; o->type = t->Pointer.elem; } else { gbString str = expr_to_string(o->expr); error(ast_node_token(o->expr), "Cannot dereference `%s`", str); gb_string_free(str); goto error; } } case_end; case_ast_node(de, DemaybeExpr, node); check_expr_or_type(c, o, de->expr); if (o->mode == Addressing_Invalid) { goto error; } else { Type *t = base_type(o->type); if (t->kind == Type_Maybe) { Entity **variables = gb_alloc_array(c->allocator, Entity *, 2); Type *elem = t->Maybe.elem; Token tok = make_token_ident(make_string("")); variables[0] = make_entity_param(c->allocator, NULL, tok, elem, false); variables[1] = make_entity_param(c->allocator, NULL, tok, t_bool, false); Type *tuple = make_type_tuple(c->allocator); tuple->Tuple.variables = variables; tuple->Tuple.variable_count = 2; o->type = tuple; o->mode = Addressing_Variable; } else { gbString str = expr_to_string(o->expr); error(ast_node_token(o->expr), "Cannot demaybe `%s`", str); gb_string_free(str); goto error; } } case_end; case AstNode_ProcType: case AstNode_PointerType: case AstNode_MaybeType: case AstNode_ArrayType: case AstNode_VectorType: case AstNode_StructType: case AstNode_RawUnionType: o->mode = Addressing_Type; o->type = check_type(c, node); break; } kind = Expr_Expr; o->expr = node; return kind; error: o->mode = Addressing_Invalid; o->expr = node; return kind; } ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExprKind kind = check__expr_base(c, o, node, type_hint); Type *type = NULL; ExactValue value = {ExactValue_Invalid}; switch (o->mode) { case Addressing_Invalid: type = t_invalid; break; case Addressing_NoValue: type = NULL; break; case Addressing_Constant: type = o->type; value = o->value; break; default: type = o->type; break; } if (type != NULL && is_type_untyped(type)) { add_untyped(&c->info, node, false, o->mode, type, value); } else { add_type_and_value(&c->info, node, o->mode, type, value); } return kind; } void check_multi_expr(Checker *c, Operand *o, AstNode *e) { gbString err_str = NULL; defer (gb_string_free(err_str)); check_expr_base(c, o, e); switch (o->mode) { default: return; // NOTE(bill): Valid case Addressing_NoValue: err_str = expr_to_string(e); error(ast_node_token(e), "`%s` used as value", err_str); break; case Addressing_Type: err_str = expr_to_string(e); error(ast_node_token(e), "`%s` is not an expression", err_str); break; } o->mode = Addressing_Invalid; } void check_not_tuple(Checker *c, Operand *o) { if (o->mode == Addressing_Value) { // NOTE(bill): Tuples are not first class thus never named if (o->type->kind == Type_Tuple) { isize count = o->type->Tuple.variable_count; GB_ASSERT(count != 1); error(ast_node_token(o->expr), "%td-valued tuple found where single value expected", count); o->mode = Addressing_Invalid; } } } void check_expr(Checker *c, Operand *o, AstNode *e) { check_multi_expr(c, o, e); check_not_tuple(c, o); } void check_expr_or_type(Checker *c, Operand *o, AstNode *e) { check_expr_base(c, o, e); check_not_tuple(c, o); if (o->mode == Addressing_NoValue) { gbString str = expr_to_string(o->expr); defer (gb_string_free(str)); error(ast_node_token(o->expr), "`%s` used as value or type", str); o->mode = Addressing_Invalid; } } gbString write_expr_to_string(gbString str, AstNode *node); gbString write_params_to_string(gbString str, AstNodeArray params, char *sep) { for_array(i, params) { ast_node(p, Parameter, params[i]); if (i > 0) { str = gb_string_appendc(str, sep); } str = write_expr_to_string(str, params[i]); } return str; } gbString string_append_token(gbString str, Token token) { if (token.string.len > 0) { return gb_string_append_length(str, token.string.text, token.string.len); } return str; } gbString write_expr_to_string(gbString str, AstNode *node) { if (node == NULL) return str; if (is_ast_node_stmt(node)) { GB_ASSERT("stmt passed to write_expr_to_string"); } switch (node->kind) { default: str = gb_string_appendc(str, "(BadExpr)"); break; case_ast_node(i, Ident, node); str = string_append_token(str, *i); case_end; case_ast_node(bl, BasicLit, node); str = string_append_token(str, *bl); case_end; case_ast_node(pl, ProcLit, node); str = write_expr_to_string(str, pl->type); case_end; case_ast_node(cl, CompoundLit, node); str = write_expr_to_string(str, cl->type); str = gb_string_appendc(str, "{"); for_array(i, cl->elems) { if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, cl->elems[i]); } str = gb_string_appendc(str, "}"); case_end; case_ast_node(te, TagExpr, node); str = gb_string_appendc(str, "#"); str = string_append_token(str, te->name); str = write_expr_to_string(str, te->expr); case_end; case_ast_node(ue, UnaryExpr, node); str = string_append_token(str, ue->op); str = write_expr_to_string(str, ue->expr); case_end; case_ast_node(de, DerefExpr, node); str = write_expr_to_string(str, de->expr); str = gb_string_appendc(str, "^"); case_end; case_ast_node(de, DemaybeExpr, node); str = write_expr_to_string(str, de->expr); str = gb_string_appendc(str, "?"); case_end; case_ast_node(be, BinaryExpr, node); str = write_expr_to_string(str, be->left); str = gb_string_appendc(str, " "); str = string_append_token(str, be->op); str = gb_string_appendc(str, " "); str = write_expr_to_string(str, be->right); case_end; case_ast_node(pe, ParenExpr, node); str = gb_string_appendc(str, "("); str = write_expr_to_string(str, pe->expr); str = gb_string_appendc(str, ")"); case_end; case_ast_node(se, SelectorExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "."); str = write_expr_to_string(str, se->selector); case_end; case_ast_node(ie, IndexExpr, node); str = write_expr_to_string(str, ie->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, ie->index); str = gb_string_appendc(str, "]"); case_end; case_ast_node(se, SliceExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, se->low); str = gb_string_appendc(str, ":"); str = write_expr_to_string(str, se->high); if (se->triple_indexed) { str = gb_string_appendc(str, ":"); str = write_expr_to_string(str, se->max); } str = gb_string_appendc(str, "]"); case_end; case_ast_node(e, Ellipsis, node); str = gb_string_appendc(str, ".."); case_end; case_ast_node(fv, FieldValue, node); str = write_expr_to_string(str, fv->field); str = gb_string_appendc(str, " = "); str = write_expr_to_string(str, fv->value); case_end; case_ast_node(pt, PointerType, node); str = gb_string_appendc(str, "^"); str = write_expr_to_string(str, pt->type); case_end; case_ast_node(mt, MaybeType, node); str = gb_string_appendc(str, "?"); str = write_expr_to_string(str, mt->type); case_end; case_ast_node(at, ArrayType, node); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, at->count); str = gb_string_appendc(str, "]"); str = write_expr_to_string(str, at->elem); case_end; case_ast_node(vt, VectorType, node); str = gb_string_appendc(str, "{"); str = write_expr_to_string(str, vt->count); str = gb_string_appendc(str, "}"); str = write_expr_to_string(str, vt->elem); case_end; case_ast_node(p, Parameter, node); if (p->is_using) { str = gb_string_appendc(str, "using "); } for_array(i, p->names) { AstNode *name = p->names[i]; if (i > 0) str = gb_string_appendc(str, ", "); str = write_expr_to_string(str, name); } str = gb_string_appendc(str, ": "); str = write_expr_to_string(str, p->type); case_end; case_ast_node(ce, CallExpr, node); str = write_expr_to_string(str, ce->proc); str = gb_string_appendc(str, "("); for_array(i, ce->args) { AstNode *arg = ce->args[i]; if (i > 0) { str = gb_string_appendc(str, ", "); } str = write_expr_to_string(str, arg); } str = gb_string_appendc(str, ")"); case_end; case_ast_node(pt, ProcType, node); str = gb_string_appendc(str, "proc("); str = write_params_to_string(str, pt->params, ", "); str = gb_string_appendc(str, ")"); case_end; case_ast_node(st, StructType, node); str = gb_string_appendc(str, "struct "); if (st->is_packed) str = gb_string_appendc(str, "#packed "); if (st->is_ordered) str = gb_string_appendc(str, "#ordered "); for_array(i, st->decls) { if (i > 0) { str = gb_string_appendc(str, "; "); } str = write_expr_to_string(str, st->decls[i]); } // str = write_params_to_string(str, st->decl_list, ", "); str = gb_string_appendc(str, "}"); case_end; case_ast_node(st, RawUnionType, node); str = gb_string_appendc(str, "raw_union {"); for_array(i, st->decls) { if (i > 0) { str = gb_string_appendc(str, "; "); } str = write_expr_to_string(str, st->decls[i]); } // str = write_params_to_string(str, st->decl_list, ", "); str = gb_string_appendc(str, "}"); case_end; case_ast_node(st, UnionType, node); str = gb_string_appendc(str, "union {"); for_array(i, st->decls) { if (i > 0) { str = gb_string_appendc(str, "; "); } str = write_expr_to_string(str, st->decls[i]); } // str = write_params_to_string(str, st->decl_list, ", "); str = gb_string_appendc(str, "}"); case_end; case_ast_node(et, EnumType, node); str = gb_string_appendc(str, "enum "); if (et->base_type != NULL) { str = write_expr_to_string(str, et->base_type); str = gb_string_appendc(str, " "); } str = gb_string_appendc(str, "{"); str = gb_string_appendc(str, "}"); case_end; } return str; } gbString expr_to_string(AstNode *expression) { return write_expr_to_string(gb_string_make(gb_heap_allocator(), ""), expression); }