package math // The original C code, the long comment, and the constants // below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c // and came with this notice. The go code is a simplified // version of the original C. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // // double log1p(double x) // // Method : // 1. Argument Reduction: find k and f such that // 1+x = 2**k * (1+f), // where sqrt(2)/2 < 1+f < sqrt(2) . // // Note. If k=0, then f=x is exact. However, if k!=0, then f // may not be representable exactly. In that case, a correction // term is need. Let u=1+x rounded. Let c = (1+x)-u, then // log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), // and add back the correction term c/u. // (Note: when x > 2**53, one can simply return log(x)) // // 2. Approximation of log1p(f). // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) // = 2s + 2/3 s**3 + 2/5 s**5 + ....., // = 2s + s*R // We use a special Reme algorithm on [0,0.1716] to generate // a polynomial of degree 14 to approximate R The maximum error // of this polynomial approximation is bounded by 2**-58.45. In // other words, // 2 4 6 8 10 12 14 // R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s // (the values of Lp1 to Lp7 are listed in the program) // and // | 2 14 | -58.45 // | Lp1*s +...+Lp7*s - R(z) | <= 2 // | | // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. // In order to guarantee error in log below 1ulp, we compute log // by // log1p(f) = f - (hfsq - s*(hfsq+R)). // // 3. Finally, log1p(x) = k*ln2 + log1p(f). // = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) // Here ln2 is split into two floating point number: // ln2_hi + ln2_lo, // where n*ln2_hi is always exact for |n| < 2000. // // Special cases: // log1p(x) is NaN with signal if x < -1 (including -INF) ; // log1p(+INF) is +INF; log1p(-1) is -INF with signal; // log1p(NaN) is that NaN with no signal. // // Accuracy: // according to an error analysis, the error is always less than // 1 ulp (unit in the last place). // // Constants: // The hexadecimal values are the intended ones for the following // constants. The decimal values may be used, provided that the // compiler will convert from decimal to binary accurately enough // to produce the hexadecimal values shown. // // Note: Assuming log() return accurate answer, the following // algorithm can be used to compute log1p(x) to within a few ULP: // // u = 1+x; // if(u==1.0) return x ; else // return log(u)*(x/(u-1.0)); // // See HP-15C Advanced Functions Handbook, p.193. log1p :: proc { log1p_f16, log1p_f32, log1p_f64, log1p_f16le, log1p_f16be, log1p_f32le, log1p_f32be, log1p_f64le, log1p_f64be, } log1p_f16 :: proc "contextless" (x: f16) -> f16 { return f16(log1p_f64(f64(x))) } log1p_f32 :: proc "contextless" (x: f32) -> f32 { return f32(log1p_f64(f64(x))) } log1p_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(log1p_f64(f64(x))) } log1p_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(log1p_f64(f64(x))) } log1p_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(log1p_f64(f64(x))) } log1p_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(log1p_f64(f64(x))) } log1p_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(log1p_f64(f64(x))) } log1p_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(log1p_f64(f64(x))) } log1p_f64 :: proc "contextless" (x: f64) -> f64 { SQRT2_M1 :: 0h3fda827999fcef34 // sqrt(2)-1 SQRT2_HALF_M1 :: 0hbfd2bec333018866 // sqrt(2)/2-1 SMALL :: 0h3e20000000000000 // 2**-29 TINY :: 0h3c90000000000000 // 2**-54 TWO53 :: 0h4340000000000000 // 2**53 LN2HI :: 0h3fe62e42fee00000 LN2LO :: 0h3dea39ef35793c76 LP1 :: 0h3FE5555555555593 LP2 :: 0h3FD999999997FA04 LP3 :: 0h3FD2492494229359 LP4 :: 0h3FCC71C51D8E78AF LP5 :: 0h3FC7466496CB03DE LP6 :: 0h3FC39A09D078C69F LP7 :: 0h3FC2F112DF3E5244 switch { case x < -1 || is_nan(x): return nan_f64() case x == -1: return inf_f64(-1) case is_inf(x, 1): return inf_f64(+1) } absx := abs(x) f: f64 iu: u64 k := 1 if absx < SQRT2_M1 { // |x| < sqrt(2)-1 if absx < SMALL { // |x| < 2**-29 if absx < TINY { // |x| < 2**-54 return x } return x - x*x*0.5 } if x > SQRT2_HALF_M1 { // sqrt(2)/2-1 < x // (sqrt(2)/2-1) < x < (sqrt(2)-1) k = 0 f = x iu = 1 } } c: f64 if k != 0 { u: f64 if absx < TWO53 { // 1<<53 u = 1.0 + x iu = transmute(u64)u k = int((iu >> 52) - 1023) // correction term if k > 0 { c = 1.0 - (u - x) } else { c = x - (u - 1.0) } c /= u } else { u = x iu = transmute(u64)u k = int((iu >> 52) - 1023) c = 0 } iu &= 0x000fffffffffffff if iu < 0x0006a09e667f3bcd { // mantissa of sqrt(2) u = transmute(f64)(iu | 0x3ff0000000000000) // normalize u } else { k += 1 u = transmute(f64)(iu | 0x3fe0000000000000) // normalize u/2 iu = (0x0010000000000000 - iu) >> 2 } f = u - 1.0 // sqrt(2)/2 < u < sqrt(2) } hfsq := 0.5 * f * f s, R, z: f64 if iu == 0 { // |f| < 2**-20 if f == 0 { if k == 0 { return 0 } c += f64(k) * LN2LO return f64(k)*LN2HI + c } R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division if k == 0 { return f - R } return f64(k)*LN2HI - ((R - (f64(k)*LN2LO + c)) - f) } s = f / (2.0 + f) z = s * s R = z * (LP1 + z*(LP2+z*(LP3+z*(LP4+z*(LP5+z*(LP6+z*LP7)))))) if k == 0 { return f - (hfsq - s*(hfsq+R)) } return f64(k)*LN2HI - ((hfsq - (s*(hfsq+R) + (f64(k)*LN2LO + c))) - f) }