package linalg import "core:math" F16_EPSILON :: 1e-3; F32_EPSILON :: 1e-7; F64_EPSILON :: 1e-15; Vector2f16 :: distinct [2]f16; Vector3f16 :: distinct [3]f16; Vector4f16 :: distinct [4]f16; Matrix1x1f16 :: distinct [1][1]f16; Matrix1x2f16 :: distinct [1][2]f16; Matrix1x3f16 :: distinct [1][3]f16; Matrix1x4f16 :: distinct [1][4]f16; Matrix2x1f16 :: distinct [2][1]f16; Matrix2x2f16 :: distinct [2][2]f16; Matrix2x3f16 :: distinct [2][3]f16; Matrix2x4f16 :: distinct [2][4]f16; Matrix3x1f16 :: distinct [3][1]f16; Matrix3x2f16 :: distinct [3][2]f16; Matrix3x3f16 :: distinct [3][3]f16; Matrix3x4f16 :: distinct [3][4]f16; Matrix4x1f16 :: distinct [4][1]f16; Matrix4x2f16 :: distinct [4][2]f16; Matrix4x3f16 :: distinct [4][3]f16; Matrix4x4f16 :: distinct [4][4]f16; Matrix1f16 :: Matrix1x1f16; Matrix2f16 :: Matrix2x2f16; Matrix3f16 :: Matrix3x3f16; Matrix4f16 :: Matrix4x4f16; Vector2f32 :: distinct [2]f32; Vector3f32 :: distinct [3]f32; Vector4f32 :: distinct [4]f32; Matrix1x1f32 :: distinct [1][1]f32; Matrix1x2f32 :: distinct [1][2]f32; Matrix1x3f32 :: distinct [1][3]f32; Matrix1x4f32 :: distinct [1][4]f32; Matrix2x1f32 :: distinct [2][1]f32; Matrix2x2f32 :: distinct [2][2]f32; Matrix2x3f32 :: distinct [2][3]f32; Matrix2x4f32 :: distinct [2][4]f32; Matrix3x1f32 :: distinct [3][1]f32; Matrix3x2f32 :: distinct [3][2]f32; Matrix3x3f32 :: distinct [3][3]f32; Matrix3x4f32 :: distinct [3][4]f32; Matrix4x1f32 :: distinct [4][1]f32; Matrix4x2f32 :: distinct [4][2]f32; Matrix4x3f32 :: distinct [4][3]f32; Matrix4x4f32 :: distinct [4][4]f32; Matrix1f32 :: Matrix1x1f32; Matrix2f32 :: Matrix2x2f32; Matrix3f32 :: Matrix3x3f32; Matrix4f32 :: Matrix4x4f32; Vector2f64 :: distinct [2]f64; Vector3f64 :: distinct [3]f64; Vector4f64 :: distinct [4]f64; Matrix1x1f64 :: distinct [1][1]f64; Matrix1x2f64 :: distinct [1][2]f64; Matrix1x3f64 :: distinct [1][3]f64; Matrix1x4f64 :: distinct [1][4]f64; Matrix2x1f64 :: distinct [2][1]f64; Matrix2x2f64 :: distinct [2][2]f64; Matrix2x3f64 :: distinct [2][3]f64; Matrix2x4f64 :: distinct [2][4]f64; Matrix3x1f64 :: distinct [3][1]f64; Matrix3x2f64 :: distinct [3][2]f64; Matrix3x3f64 :: distinct [3][3]f64; Matrix3x4f64 :: distinct [3][4]f64; Matrix4x1f64 :: distinct [4][1]f64; Matrix4x2f64 :: distinct [4][2]f64; Matrix4x3f64 :: distinct [4][3]f64; Matrix4x4f64 :: distinct [4][4]f64; Matrix1f64 :: Matrix1x1f64; Matrix2f64 :: Matrix2x2f64; Matrix3f64 :: Matrix3x3f64; Matrix4f64 :: Matrix4x4f64; Quaternionf16 :: distinct quaternion64; Quaternionf32 :: distinct quaternion128; Quaternionf64 :: distinct quaternion256; MATRIX1F16_IDENTITY :: Matrix1f16{{1}}; MATRIX2F16_IDENTITY :: Matrix2f16{{1, 0}, {0, 1}}; MATRIX3F16_IDENTITY :: Matrix3f16{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; MATRIX4F16_IDENTITY :: Matrix4f16{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; MATRIX1F32_IDENTITY :: Matrix1f32{{1}}; MATRIX2F32_IDENTITY :: Matrix2f32{{1, 0}, {0, 1}}; MATRIX3F32_IDENTITY :: Matrix3f32{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; MATRIX4F32_IDENTITY :: Matrix4f32{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; MATRIX1F64_IDENTITY :: Matrix1f64{{1}}; MATRIX2F64_IDENTITY :: Matrix2f64{{1, 0}, {0, 1}}; MATRIX3F64_IDENTITY :: Matrix3f64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; MATRIX4F64_IDENTITY :: Matrix4f64{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; QUATERNIONF16_IDENTITY :: Quaternionf16(1); QUATERNIONF32_IDENTITY :: Quaternionf32(1); QUATERNIONF64_IDENTITY :: Quaternionf64(1); VECTOR3F16_X_AXIS :: Vector3f16{1, 0, 0}; VECTOR3F16_Y_AXIS :: Vector3f16{0, 1, 0}; VECTOR3F16_Z_AXIS :: Vector3f16{0, 0, 1}; VECTOR3F32_X_AXIS :: Vector3f32{1, 0, 0}; VECTOR3F32_Y_AXIS :: Vector3f32{0, 1, 0}; VECTOR3F32_Z_AXIS :: Vector3f32{0, 0, 1}; VECTOR3F64_X_AXIS :: Vector3f64{1, 0, 0}; VECTOR3F64_Y_AXIS :: Vector3f64{0, 1, 0}; VECTOR3F64_Z_AXIS :: Vector3f64{0, 0, 1}; vector2_orthogonal :: proc(v: $V/[2]$E) -> V where !IS_ARRAY(E), IS_FLOAT(E) { return {-v.y, v.x}; } vector3_orthogonal :: proc(v: $V/[3]$E) -> V where !IS_ARRAY(E), IS_FLOAT(E) { x := abs(v.x); y := abs(v.y); z := abs(v.z); other: V; if x < y { if x < z { other = {1, 0, 0}; } else { other = {0, 0, 1}; } } else { if y < z { other = {0, 1, 0}; } else { other = {0, 0, 1}; } } return normalize(cross(v, other)); } orthogonal :: proc{vector2_orthogonal, vector3_orthogonal}; vector4_srgb_to_linear_f16 :: proc(col: Vector4f16) -> Vector4f16 { r := math.pow(col.x, 2.2); g := math.pow(col.y, 2.2); b := math.pow(col.z, 2.2); a := col.w; return {r, g, b, a}; } vector4_srgb_to_linear_f32 :: proc(col: Vector4f32) -> Vector4f32 { r := math.pow(col.x, 2.2); g := math.pow(col.y, 2.2); b := math.pow(col.z, 2.2); a := col.w; return {r, g, b, a}; } vector4_srgb_to_linear_f64 :: proc(col: Vector4f64) -> Vector4f64 { r := math.pow(col.x, 2.2); g := math.pow(col.y, 2.2); b := math.pow(col.z, 2.2); a := col.w; return {r, g, b, a}; } vector4_srgb_to_linear :: proc{ vector4_srgb_to_linear_f16, vector4_srgb_to_linear_f32, vector4_srgb_to_linear_f64, }; vector4_linear_to_srgb_f16 :: proc(col: Vector4f16) -> Vector4f16 { a :: 2.51; b :: 0.03; c :: 2.43; d :: 0.59; e :: 0.14; x := col.x; y := col.y; z := col.z; x = (x * (a * x + b)) / (x * (c * x + d) + e); y = (y * (a * y + b)) / (y * (c * y + d) + e); z = (z * (a * z + b)) / (z * (c * z + d) + e); x = math.pow(clamp(x, 0, 1), 1.0 / 2.2); y = math.pow(clamp(y, 0, 1), 1.0 / 2.2); z = math.pow(clamp(z, 0, 1), 1.0 / 2.2); return {x, y, z, col.w}; } vector4_linear_to_srgb_f32 :: proc(col: Vector4f32) -> Vector4f32 { a :: 2.51; b :: 0.03; c :: 2.43; d :: 0.59; e :: 0.14; x := col.x; y := col.y; z := col.z; x = (x * (a * x + b)) / (x * (c * x + d) + e); y = (y * (a * y + b)) / (y * (c * y + d) + e); z = (z * (a * z + b)) / (z * (c * z + d) + e); x = math.pow(clamp(x, 0, 1), 1.0 / 2.2); y = math.pow(clamp(y, 0, 1), 1.0 / 2.2); z = math.pow(clamp(z, 0, 1), 1.0 / 2.2); return {x, y, z, col.w}; } vector4_linear_to_srgb_f64 :: proc(col: Vector4f64) -> Vector4f64 { a :: 2.51; b :: 0.03; c :: 2.43; d :: 0.59; e :: 0.14; x := col.x; y := col.y; z := col.z; x = (x * (a * x + b)) / (x * (c * x + d) + e); y = (y * (a * y + b)) / (y * (c * y + d) + e); z = (z * (a * z + b)) / (z * (c * z + d) + e); x = math.pow(clamp(x, 0, 1), 1.0 / 2.2); y = math.pow(clamp(y, 0, 1), 1.0 / 2.2); z = math.pow(clamp(z, 0, 1), 1.0 / 2.2); return {x, y, z, col.w}; } vector4_linear_to_srgb :: proc{ vector4_linear_to_srgb_f16, vector4_linear_to_srgb_f32, vector4_linear_to_srgb_f64, }; vector4_hsl_to_rgb_f16 :: proc(h, s, l: f16, a: f16 = 1) -> Vector4f16 { hue_to_rgb :: proc(p, q, t: f16) -> f16 { t := t; if t < 0 { t += 1; } if t > 1 { t -= 1; } switch { case t < 1.0/6.0: return p + (q - p) * 6.0 * t; case t < 1.0/2.0: return q; case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t); } return p; } r, g, b: f16; if s == 0 { r = l; g = l; b = l; } else { q := l * (1+s) if l < 0.5 else l+s - l*s; p := 2*l - q; r = hue_to_rgb(p, q, h + 1.0/3.0); g = hue_to_rgb(p, q, h); b = hue_to_rgb(p, q, h - 1.0/3.0); } return {r, g, b, a}; } vector4_hsl_to_rgb_f32 :: proc(h, s, l: f32, a: f32 = 1) -> Vector4f32 { hue_to_rgb :: proc(p, q, t: f32) -> f32 { t := t; if t < 0 { t += 1; } if t > 1 { t -= 1; } switch { case t < 1.0/6.0: return p + (q - p) * 6.0 * t; case t < 1.0/2.0: return q; case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t); } return p; } r, g, b: f32; if s == 0 { r = l; g = l; b = l; } else { q := l * (1+s) if l < 0.5 else l+s - l*s; p := 2*l - q; r = hue_to_rgb(p, q, h + 1.0/3.0); g = hue_to_rgb(p, q, h); b = hue_to_rgb(p, q, h - 1.0/3.0); } return {r, g, b, a}; } vector4_hsl_to_rgb_f64 :: proc(h, s, l: f64, a: f64 = 1) -> Vector4f64 { hue_to_rgb :: proc(p, q, t: f64) -> f64 { t := t; if t < 0 { t += 1; } if t > 1 { t -= 1; } switch { case t < 1.0/6.0: return p + (q - p) * 6.0 * t; case t < 1.0/2.0: return q; case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t); } return p; } r, g, b: f64; if s == 0 { r = l; g = l; b = l; } else { q := l * (1+s) if l < 0.5 else l+s - l*s; p := 2*l - q; r = hue_to_rgb(p, q, h + 1.0/3.0); g = hue_to_rgb(p, q, h); b = hue_to_rgb(p, q, h - 1.0/3.0); } return {r, g, b, a}; } vector4_hsl_to_rgb :: proc{ vector4_hsl_to_rgb_f16, vector4_hsl_to_rgb_f32, vector4_hsl_to_rgb_f64, }; vector4_rgb_to_hsl_f16 :: proc(col: Vector4f16) -> Vector4f16 { r := col.x; g := col.y; b := col.z; a := col.w; v_min := min(r, g, b); v_max := max(r, g, b); h, s, l: f16; h = 0.0; s = 0.0; l = (v_min + v_max) * 0.5; if v_max != v_min { d: = v_max - v_min; s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min); switch { case v_max == r: h = (g - b) / d + (6.0 if g < b else 0.0); case v_max == g: h = (b - r) / d + 2.0; case v_max == b: h = (r - g) / d + 4.0; } h *= 1.0/6.0; } return {h, s, l, a}; } vector4_rgb_to_hsl_f32 :: proc(col: Vector4f32) -> Vector4f32 { r := col.x; g := col.y; b := col.z; a := col.w; v_min := min(r, g, b); v_max := max(r, g, b); h, s, l: f32; h = 0.0; s = 0.0; l = (v_min + v_max) * 0.5; if v_max != v_min { d: = v_max - v_min; s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min); switch { case v_max == r: h = (g - b) / d + (6.0 if g < b else 0.0); case v_max == g: h = (b - r) / d + 2.0; case v_max == b: h = (r - g) / d + 4.0; } h *= 1.0/6.0; } return {h, s, l, a}; } vector4_rgb_to_hsl_f64 :: proc(col: Vector4f64) -> Vector4f64 { r := col.x; g := col.y; b := col.z; a := col.w; v_min := min(r, g, b); v_max := max(r, g, b); h, s, l: f64; h = 0.0; s = 0.0; l = (v_min + v_max) * 0.5; if v_max != v_min { d: = v_max - v_min; s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min); switch { case v_max == r: h = (g - b) / d + (6.0 if g < b else 0.0); case v_max == g: h = (b - r) / d + 2.0; case v_max == b: h = (r - g) / d + 4.0; } h *= 1.0/6.0; } return {h, s, l, a}; } vector4_rgb_to_hsl :: proc{ vector4_rgb_to_hsl_f16, vector4_rgb_to_hsl_f32, vector4_rgb_to_hsl_f64, }; quaternion_angle_axis_f16 :: proc(angle_radians: f16, axis: Vector3f16) -> (q: Quaternionf16) { t := angle_radians*0.5; v := normalize(axis) * math.sin(t); q.x = v.x; q.y = v.y; q.z = v.z; q.w = math.cos(t); return; } quaternion_angle_axis_f32 :: proc(angle_radians: f32, axis: Vector3f32) -> (q: Quaternionf32) { t := angle_radians*0.5; v := normalize(axis) * math.sin(t); q.x = v.x; q.y = v.y; q.z = v.z; q.w = math.cos(t); return; } quaternion_angle_axis_f64 :: proc(angle_radians: f64, axis: Vector3f64) -> (q: Quaternionf64) { t := angle_radians*0.5; v := normalize(axis) * math.sin(t); q.x = v.x; q.y = v.y; q.z = v.z; q.w = math.cos(t); return; } quaternion_angle_axis :: proc{ quaternion_angle_axis_f16, quaternion_angle_axis_f32, quaternion_angle_axis_f64, }; angle_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 { if abs(q.w) > math.SQRT_THREE*0.5 { return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2; } return math.cos(q.x) * 2; } angle_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 { if abs(q.w) > math.SQRT_THREE*0.5 { return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2; } return math.cos(q.x) * 2; } angle_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 { if abs(q.w) > math.SQRT_THREE*0.5 { return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2; } return math.cos(q.x) * 2; } angle_from_quaternion :: proc{ angle_from_quaternion_f16, angle_from_quaternion_f32, angle_from_quaternion_f64, }; axis_from_quaternion_f16 :: proc(q: Quaternionf16) -> Vector3f16 { t1 := 1 - q.w*q.w; if t1 < 0 { return {0, 0, 1}; } t2 := 1.0 / math.sqrt(t1); return {q.x*t2, q.y*t2, q.z*t2}; } axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> Vector3f32 { t1 := 1 - q.w*q.w; if t1 < 0 { return {0, 0, 1}; } t2 := 1.0 / math.sqrt(t1); return {q.x*t2, q.y*t2, q.z*t2}; } axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> Vector3f64 { t1 := 1 - q.w*q.w; if t1 < 0 { return {0, 0, 1}; } t2 := 1.0 / math.sqrt(t1); return {q.x*t2, q.y*t2, q.z*t2}; } axis_from_quaternion :: proc{ axis_from_quaternion_f16, axis_from_quaternion_f32, axis_from_quaternion_f64, }; angle_axis_from_quaternion_f16 :: proc(q: Quaternionf16) -> (angle: f16, axis: Vector3f16) { angle = angle_from_quaternion(q); axis = axis_from_quaternion(q); return; } angle_axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> (angle: f32, axis: Vector3f32) { angle = angle_from_quaternion(q); axis = axis_from_quaternion(q); return; } angle_axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> (angle: f64, axis: Vector3f64) { angle = angle_from_quaternion(q); axis = axis_from_quaternion(q); return; } angle_axis_from_quaternion :: proc { angle_axis_from_quaternion_f16, angle_axis_from_quaternion_f32, angle_axis_from_quaternion_f64, }; quaternion_from_forward_and_up_f16 :: proc(forward, up: Vector3f16) -> Quaternionf16 { f := normalize(forward); s := normalize(cross(f, up)); u := cross(s, f); m := Matrix3f16{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; tr := trace(m); q: Quaternionf16; switch { case tr > 0: S := 2 * math.sqrt(1 + tr); q.w = 0.25 * S; q.x = (m[2][1] - m[1][2]) / S; q.y = (m[0][2] - m[2][0]) / S; q.z = (m[1][0] - m[0][1]) / S; case (m[0][0] > m[1][1]) && (m[0][0] > m[2][2]): S := 2 * math.sqrt(1 + m[0][0] - m[1][1] - m[2][2]); q.w = (m[2][1] - m[1][2]) / S; q.x = 0.25 * S; q.y = (m[0][1] + m[1][0]) / S; q.z = (m[0][2] + m[2][0]) / S; case m[1][1] > m[2][2]: S := 2 * math.sqrt(1 + m[1][1] - m[0][0] - m[2][2]); q.w = (m[0][2] - m[2][0]) / S; q.x = (m[0][1] + m[1][0]) / S; q.y = 0.25 * S; q.z = (m[1][2] + m[2][1]) / S; case: S := 2 * math.sqrt(1 + m[2][2] - m[0][0] - m[1][1]); q.w = (m[1][0] - m[0][1]) / S; q.x = (m[0][2] - m[2][0]) / S; q.y = (m[1][2] + m[2][1]) / S; q.z = 0.25 * S; } return normalize(q); } quaternion_from_forward_and_up_f32 :: proc(forward, up: Vector3f32) -> Quaternionf32 { f := normalize(forward); s := normalize(cross(f, up)); u := cross(s, f); m := Matrix3f32{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; tr := trace(m); q: Quaternionf32; switch { case tr > 0: S := 2 * math.sqrt(1 + tr); q.w = 0.25 * S; q.x = (m[2][1] - m[1][2]) / S; q.y = (m[0][2] - m[2][0]) / S; q.z = (m[1][0] - m[0][1]) / S; case (m[0][0] > m[1][1]) && (m[0][0] > m[2][2]): S := 2 * math.sqrt(1 + m[0][0] - m[1][1] - m[2][2]); q.w = (m[2][1] - m[1][2]) / S; q.x = 0.25 * S; q.y = (m[0][1] + m[1][0]) / S; q.z = (m[0][2] + m[2][0]) / S; case m[1][1] > m[2][2]: S := 2 * math.sqrt(1 + m[1][1] - m[0][0] - m[2][2]); q.w = (m[0][2] - m[2][0]) / S; q.x = (m[0][1] + m[1][0]) / S; q.y = 0.25 * S; q.z = (m[1][2] + m[2][1]) / S; case: S := 2 * math.sqrt(1 + m[2][2] - m[0][0] - m[1][1]); q.w = (m[1][0] - m[0][1]) / S; q.x = (m[0][2] - m[2][0]) / S; q.y = (m[1][2] + m[2][1]) / S; q.z = 0.25 * S; } return normalize(q); } quaternion_from_forward_and_up_f64 :: proc(forward, up: Vector3f64) -> Quaternionf64 { f := normalize(forward); s := normalize(cross(f, up)); u := cross(s, f); m := Matrix3f64{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; tr := trace(m); q: Quaternionf64; switch { case tr > 0: S := 2 * math.sqrt(1 + tr); q.w = 0.25 * S; q.x = (m[2][1] - m[1][2]) / S; q.y = (m[0][2] - m[2][0]) / S; q.z = (m[1][0] - m[0][1]) / S; case (m[0][0] > m[1][1]) && (m[0][0] > m[2][2]): S := 2 * math.sqrt(1 + m[0][0] - m[1][1] - m[2][2]); q.w = (m[2][1] - m[1][2]) / S; q.x = 0.25 * S; q.y = (m[0][1] + m[1][0]) / S; q.z = (m[0][2] + m[2][0]) / S; case m[1][1] > m[2][2]: S := 2 * math.sqrt(1 + m[1][1] - m[0][0] - m[2][2]); q.w = (m[0][2] - m[2][0]) / S; q.x = (m[0][1] + m[1][0]) / S; q.y = 0.25 * S; q.z = (m[1][2] + m[2][1]) / S; case: S := 2 * math.sqrt(1 + m[2][2] - m[0][0] - m[1][1]); q.w = (m[1][0] - m[0][1]) / S; q.x = (m[0][2] - m[2][0]) / S; q.y = (m[1][2] + m[2][1]) / S; q.z = 0.25 * S; } return normalize(q); } quaternion_from_forward_and_up :: proc{ quaternion_from_forward_and_up_f16, quaternion_from_forward_and_up_f32, quaternion_from_forward_and_up_f64, }; quaternion_look_at_f16 :: proc(eye, centre: Vector3f16, up: Vector3f16) -> Quaternionf16 { return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)); } quaternion_look_at_f32 :: proc(eye, centre: Vector3f32, up: Vector3f32) -> Quaternionf32 { return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)); } quaternion_look_at_f64 :: proc(eye, centre: Vector3f64, up: Vector3f64) -> Quaternionf64 { return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)); } quaternion_look_at :: proc{ quaternion_look_at_f16, quaternion_look_at_f32, quaternion_look_at_f64, }; quaternion_nlerp_f16 :: proc(a, b: Quaternionf16, t: f16) -> (c: Quaternionf16) { c.x = a.x + (b.x-a.x)*t; c.y = a.y + (b.y-a.y)*t; c.z = a.z + (b.z-a.z)*t; c.w = a.w + (b.w-a.w)*t; return normalize(c); } quaternion_nlerp_f32 :: proc(a, b: Quaternionf32, t: f32) -> (c: Quaternionf32) { c.x = a.x + (b.x-a.x)*t; c.y = a.y + (b.y-a.y)*t; c.z = a.z + (b.z-a.z)*t; c.w = a.w + (b.w-a.w)*t; return normalize(c); } quaternion_nlerp_f64 :: proc(a, b: Quaternionf64, t: f64) -> (c: Quaternionf64) { c.x = a.x + (b.x-a.x)*t; c.y = a.y + (b.y-a.y)*t; c.z = a.z + (b.z-a.z)*t; c.w = a.w + (b.w-a.w)*t; return normalize(c); } quaternion_nlerp :: proc{ quaternion_nlerp_f16, quaternion_nlerp_f32, quaternion_nlerp_f64, }; quaternion_slerp_f16 :: proc(x, y: Quaternionf16, t: f16) -> (q: Quaternionf16) { a, b := x, y; cos_angle := dot(a, b); if cos_angle < 0 { b = -b; cos_angle = -cos_angle; } if cos_angle > 1 - F32_EPSILON { q.x = a.x + (b.x-a.x)*t; q.y = a.y + (b.y-a.y)*t; q.z = a.z + (b.z-a.z)*t; q.w = a.w + (b.w-a.w)*t; return; } angle := math.acos(cos_angle); sin_angle := math.sin(angle); factor_a := math.sin((1-t) * angle) / sin_angle; factor_b := math.sin(t * angle) / sin_angle; q.x = factor_a * a.x + factor_b * b.x; q.y = factor_a * a.y + factor_b * b.y; q.z = factor_a * a.z + factor_b * b.z; q.w = factor_a * a.w + factor_b * b.w; return; } quaternion_slerp_f32 :: proc(x, y: Quaternionf32, t: f32) -> (q: Quaternionf32) { a, b := x, y; cos_angle := dot(a, b); if cos_angle < 0 { b = -b; cos_angle = -cos_angle; } if cos_angle > 1 - F32_EPSILON { q.x = a.x + (b.x-a.x)*t; q.y = a.y + (b.y-a.y)*t; q.z = a.z + (b.z-a.z)*t; q.w = a.w + (b.w-a.w)*t; return; } angle := math.acos(cos_angle); sin_angle := math.sin(angle); factor_a := math.sin((1-t) * angle) / sin_angle; factor_b := math.sin(t * angle) / sin_angle; q.x = factor_a * a.x + factor_b * b.x; q.y = factor_a * a.y + factor_b * b.y; q.z = factor_a * a.z + factor_b * b.z; q.w = factor_a * a.w + factor_b * b.w; return; } quaternion_slerp_f64 :: proc(x, y: Quaternionf64, t: f64) -> (q: Quaternionf64) { a, b := x, y; cos_angle := dot(a, b); if cos_angle < 0 { b = -b; cos_angle = -cos_angle; } if cos_angle > 1 - F64_EPSILON { q.x = a.x + (b.x-a.x)*t; q.y = a.y + (b.y-a.y)*t; q.z = a.z + (b.z-a.z)*t; q.w = a.w + (b.w-a.w)*t; return; } angle := math.acos(cos_angle); sin_angle := math.sin(angle); factor_a := math.sin((1-t) * angle) / sin_angle; factor_b := math.sin(t * angle) / sin_angle; q.x = factor_a * a.x + factor_b * b.x; q.y = factor_a * a.y + factor_b * b.y; q.z = factor_a * a.z + factor_b * b.z; q.w = factor_a * a.w + factor_b * b.w; return; } quaternion_slerp :: proc{ quaternion_slerp_f16, quaternion_slerp_f32, quaternion_slerp_f64, }; quaternion_squad_f16 :: proc(q1, q2, s1, s2: Quaternionf16, h: f16) -> Quaternionf16 { slerp :: quaternion_slerp; return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h); } quaternion_squad_f32 :: proc(q1, q2, s1, s2: Quaternionf32, h: f32) -> Quaternionf32 { slerp :: quaternion_slerp; return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h); } quaternion_squad_f64 :: proc(q1, q2, s1, s2: Quaternionf64, h: f64) -> Quaternionf64 { slerp :: quaternion_slerp; return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h); } quaternion_squad :: proc{ quaternion_squad_f16, quaternion_squad_f32, quaternion_squad_f64, }; quaternion_from_matrix4_f16 :: proc(m: Matrix4f16) -> (q: Quaternionf16) { m3: Matrix3f16 = ---; m3[0][0], m3[0][1], m3[0][2] = m[0][0], m[0][1], m[0][2]; m3[1][0], m3[1][1], m3[1][2] = m[1][0], m[1][1], m[1][2]; m3[2][0], m3[2][1], m3[2][2] = m[2][0], m[2][1], m[2][2]; return quaternion_from_matrix3(m3); } quaternion_from_matrix4_f32 :: proc(m: Matrix4f32) -> (q: Quaternionf32) { m3: Matrix3f32 = ---; m3[0][0], m3[0][1], m3[0][2] = m[0][0], m[0][1], m[0][2]; m3[1][0], m3[1][1], m3[1][2] = m[1][0], m[1][1], m[1][2]; m3[2][0], m3[2][1], m3[2][2] = m[2][0], m[2][1], m[2][2]; return quaternion_from_matrix3(m3); } quaternion_from_matrix4_f64 :: proc(m: Matrix4f64) -> (q: Quaternionf64) { m3: Matrix3f64 = ---; m3[0][0], m3[0][1], m3[0][2] = m[0][0], m[0][1], m[0][2]; m3[1][0], m3[1][1], m3[1][2] = m[1][0], m[1][1], m[1][2]; m3[2][0], m3[2][1], m3[2][2] = m[2][0], m[2][1], m[2][2]; return quaternion_from_matrix3(m3); } quaternion_from_matrix4 :: proc{ quaternion_from_matrix4_f16, quaternion_from_matrix4_f32, quaternion_from_matrix4_f64, }; quaternion_from_matrix3_f16 :: proc(m: Matrix3f16) -> (q: Quaternionf16) { four_x_squared_minus_1 := m[0][0] - m[1][1] - m[2][2]; four_y_squared_minus_1 := m[1][1] - m[0][0] - m[2][2]; four_z_squared_minus_1 := m[2][2] - m[0][0] - m[1][1]; four_w_squared_minus_1 := m[0][0] + m[1][1] + m[2][2]; biggest_index := 0; four_biggest_squared_minus_1 := four_w_squared_minus_1; if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1; biggest_index = 1; } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1; biggest_index = 2; } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1; biggest_index = 3; } biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5; mult := 0.25 / biggest_val; q = 1; switch biggest_index { case 0: q.w = biggest_val; q.x = (m[1][2] - m[2][1]) * mult; q.y = (m[2][0] - m[0][2]) * mult; q.z = (m[0][1] - m[1][0]) * mult; case 1: q.w = (m[1][2] - m[2][1]) * mult; q.x = biggest_val; q.y = (m[0][1] + m[1][0]) * mult; q.z = (m[2][0] + m[0][2]) * mult; case 2: q.w = (m[2][0] - m[0][2]) * mult; q.x = (m[0][1] + m[1][0]) * mult; q.y = biggest_val; q.z = (m[1][2] + m[2][1]) * mult; case 3: q.w = (m[0][1] - m[1][0]) * mult; q.x = (m[2][0] + m[0][2]) * mult; q.y = (m[1][2] + m[2][1]) * mult; q.z = biggest_val; } return; } quaternion_from_matrix3_f32 :: proc(m: Matrix3f32) -> (q: Quaternionf32) { four_x_squared_minus_1 := m[0][0] - m[1][1] - m[2][2]; four_y_squared_minus_1 := m[1][1] - m[0][0] - m[2][2]; four_z_squared_minus_1 := m[2][2] - m[0][0] - m[1][1]; four_w_squared_minus_1 := m[0][0] + m[1][1] + m[2][2]; biggest_index := 0; four_biggest_squared_minus_1 := four_w_squared_minus_1; if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1; biggest_index = 1; } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1; biggest_index = 2; } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1; biggest_index = 3; } biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5; mult := 0.25 / biggest_val; q = 1; switch biggest_index { case 0: q.w = biggest_val; q.x = (m[1][2] - m[2][1]) * mult; q.y = (m[2][0] - m[0][2]) * mult; q.z = (m[0][1] - m[1][0]) * mult; case 1: q.w = (m[1][2] - m[2][1]) * mult; q.x = biggest_val; q.y = (m[0][1] + m[1][0]) * mult; q.z = (m[2][0] + m[0][2]) * mult; case 2: q.w = (m[2][0] - m[0][2]) * mult; q.x = (m[0][1] + m[1][0]) * mult; q.y = biggest_val; q.z = (m[1][2] + m[2][1]) * mult; case 3: q.w = (m[0][1] - m[1][0]) * mult; q.x = (m[2][0] + m[0][2]) * mult; q.y = (m[1][2] + m[2][1]) * mult; q.z = biggest_val; } return; } quaternion_from_matrix3_f64 :: proc(m: Matrix3f64) -> (q: Quaternionf64) { four_x_squared_minus_1 := m[0][0] - m[1][1] - m[2][2]; four_y_squared_minus_1 := m[1][1] - m[0][0] - m[2][2]; four_z_squared_minus_1 := m[2][2] - m[0][0] - m[1][1]; four_w_squared_minus_1 := m[0][0] + m[1][1] + m[2][2]; biggest_index := 0; four_biggest_squared_minus_1 := four_w_squared_minus_1; if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1; biggest_index = 1; } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1; biggest_index = 2; } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1; biggest_index = 3; } biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5; mult := 0.25 / biggest_val; q = 1; switch biggest_index { case 0: q.w = biggest_val; q.x = (m[1][2] - m[2][1]) * mult; q.y = (m[2][0] - m[0][2]) * mult; q.z = (m[0][1] - m[1][0]) * mult; case 1: q.w = (m[1][2] - m[2][1]) * mult; q.x = biggest_val; q.y = (m[0][1] + m[1][0]) * mult; q.z = (m[2][0] + m[0][2]) * mult; case 2: q.w = (m[2][0] - m[0][2]) * mult; q.x = (m[0][1] + m[1][0]) * mult; q.y = biggest_val; q.z = (m[1][2] + m[2][1]) * mult; case 3: q.w = (m[0][1] - m[1][0]) * mult; q.x = (m[2][0] + m[0][2]) * mult; q.y = (m[1][2] + m[2][1]) * mult; q.z = biggest_val; } return; } quaternion_from_matrix3 :: proc{ quaternion_from_matrix3_f16, quaternion_from_matrix3_f32, quaternion_from_matrix3_f64, }; quaternion_between_two_vector3_f16 :: proc(from, to: Vector3f16) -> (q: Quaternionf16) { x := normalize(from); y := normalize(to); cos_theta := dot(x, y); if abs(cos_theta + 1) < 2*F32_EPSILON { v := vector3_orthogonal(x); q.x = v.x; q.y = v.y; q.z = v.z; q.w = 0; return; } v := cross(x, y); w := cos_theta + 1; q.w = w; q.x = v.x; q.y = v.y; q.z = v.z; return normalize(q); } quaternion_between_two_vector3_f32 :: proc(from, to: Vector3f32) -> (q: Quaternionf32) { x := normalize(from); y := normalize(to); cos_theta := dot(x, y); if abs(cos_theta + 1) < 2*F32_EPSILON { v := vector3_orthogonal(x); q.x = v.x; q.y = v.y; q.z = v.z; q.w = 0; return; } v := cross(x, y); w := cos_theta + 1; q.w = w; q.x = v.x; q.y = v.y; q.z = v.z; return normalize(q); } quaternion_between_two_vector3_f64 :: proc(from, to: Vector3f64) -> (q: Quaternionf64) { x := normalize(from); y := normalize(to); cos_theta := dot(x, y); if abs(cos_theta + 1) < 2*F64_EPSILON { v := vector3_orthogonal(x); q.x = v.x; q.y = v.y; q.z = v.z; q.w = 0; return; } v := cross(x, y); w := cos_theta + 1; q.w = w; q.x = v.x; q.y = v.y; q.z = v.z; return normalize(q); } quaternion_between_two_vector3 :: proc{ quaternion_between_two_vector3_f16, quaternion_between_two_vector3_f32, quaternion_between_two_vector3_f64, }; matrix2_inverse_transpose_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[0][1] = -m[0][1] * id; c[1][0] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_inverse_transpose_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[0][1] = -m[0][1] * id; c[1][0] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_inverse_transpose_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[0][1] = -m[0][1] * id; c[1][0] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_inverse_transpose :: proc{ matrix2_inverse_transpose_f16, matrix2_inverse_transpose_f32, matrix2_inverse_transpose_f64, }; matrix2_determinant_f16 :: proc(m: Matrix2f16) -> f16 { return m[0][0]*m[1][1] - m[1][0]*m[0][1]; } matrix2_determinant_f32 :: proc(m: Matrix2f32) -> f32 { return m[0][0]*m[1][1] - m[1][0]*m[0][1]; } matrix2_determinant_f64 :: proc(m: Matrix2f64) -> f64 { return m[0][0]*m[1][1] - m[1][0]*m[0][1]; } matrix2_determinant :: proc{ matrix2_determinant_f16, matrix2_determinant_f32, matrix2_determinant_f64, }; matrix2_inverse_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[1][0] = -m[0][1] * id; c[0][1] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_inverse_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[1][0] = -m[0][1] * id; c[0][1] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_inverse_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; c[1][0] = -m[0][1] * id; c[0][1] = -m[1][0] * id; c[1][1] = +m[0][0] * id; return c; } matrix2_inverse :: proc{ matrix2_inverse_f16, matrix2_inverse_f32, matrix2_inverse_f64, }; matrix2_adjoint_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) { c[0][0] = +m[1][1]; c[0][1] = -m[1][0]; c[1][0] = -m[0][1]; c[1][1] = +m[0][0]; return c; } matrix2_adjoint_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { c[0][0] = +m[1][1]; c[0][1] = -m[1][0]; c[1][0] = -m[0][1]; c[1][1] = +m[0][0]; return c; } matrix2_adjoint_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { c[0][0] = +m[1][1]; c[0][1] = -m[1][0]; c[1][0] = -m[0][1]; c[1][1] = +m[0][0]; return c; } matrix2_adjoint :: proc{ matrix2_adjoint_f16, matrix2_adjoint_f32, matrix2_adjoint_f64, }; matrix3_from_quaternion_f16 :: proc(q: Quaternionf16) -> (m: Matrix3f16) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; qxz := q.x * q.z; qxy := q.x * q.y; qyz := q.y * q.z; qwx := q.w * q.x; qwy := q.w * q.y; qwz := q.w * q.z; m[0][0] = 1 - 2 * (qyy + qzz); m[0][1] = 2 * (qxy + qwz); m[0][2] = 2 * (qxz - qwy); m[1][0] = 2 * (qxy - qwz); m[1][1] = 1 - 2 * (qxx + qzz); m[1][2] = 2 * (qyz + qwx); m[2][0] = 2 * (qxz + qwy); m[2][1] = 2 * (qyz - qwx); m[2][2] = 1 - 2 * (qxx + qyy); return m; } matrix3_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix3f32) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; qxz := q.x * q.z; qxy := q.x * q.y; qyz := q.y * q.z; qwx := q.w * q.x; qwy := q.w * q.y; qwz := q.w * q.z; m[0][0] = 1 - 2 * (qyy + qzz); m[0][1] = 2 * (qxy + qwz); m[0][2] = 2 * (qxz - qwy); m[1][0] = 2 * (qxy - qwz); m[1][1] = 1 - 2 * (qxx + qzz); m[1][2] = 2 * (qyz + qwx); m[2][0] = 2 * (qxz + qwy); m[2][1] = 2 * (qyz - qwx); m[2][2] = 1 - 2 * (qxx + qyy); return m; } matrix3_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix3f64) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; qxz := q.x * q.z; qxy := q.x * q.y; qyz := q.y * q.z; qwx := q.w * q.x; qwy := q.w * q.y; qwz := q.w * q.z; m[0][0] = 1 - 2 * (qyy + qzz); m[0][1] = 2 * (qxy + qwz); m[0][2] = 2 * (qxz - qwy); m[1][0] = 2 * (qxy - qwz); m[1][1] = 1 - 2 * (qxx + qzz); m[1][2] = 2 * (qyz + qwx); m[2][0] = 2 * (qxz + qwy); m[2][1] = 2 * (qyz - qwx); m[2][2] = 1 - 2 * (qxx + qyy); return m; } matrix3_from_quaternion :: proc{ matrix3_from_quaternion_f16, matrix3_from_quaternion_f32, matrix3_from_quaternion_f64, }; matrix3_inverse_f16 :: proc(m: Matrix3f16) -> Matrix3f16 { return auto_cast transpose(matrix3_inverse_transpose(m)); } matrix3_inverse_f32 :: proc(m: Matrix3f32) -> Matrix3f32 { return auto_cast transpose(matrix3_inverse_transpose(m)); } matrix3_inverse_f64 :: proc(m: Matrix3f64) -> Matrix3f64 { return auto_cast transpose(matrix3_inverse_transpose(m)); } matrix3_inverse :: proc{ matrix3_inverse_f16, matrix3_inverse_f32, matrix3_inverse_f64, }; matrix3_determinant_f16 :: proc(m: Matrix3f16) -> f16 { a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]); b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]); c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); return a + b + c; } matrix3_determinant_f32 :: proc(m: Matrix3f32) -> f32 { a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]); b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]); c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); return a + b + c; } matrix3_determinant_f64 :: proc(m: Matrix3f64) -> f64 { a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]); b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]); c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); return a + b + c; } matrix3_determinant :: proc{ matrix3_determinant_f16, matrix3_determinant_f32, matrix3_determinant_f64, }; matrix3_adjoint_f16 :: proc(m: Matrix3f16) -> (adjoint: Matrix3f16) { adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]); adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]); adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]); adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]); adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]); adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]); return adjoint; } matrix3_adjoint_f32 :: proc(m: Matrix3f32) -> (adjoint: Matrix3f32) { adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]); adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]); adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]); adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]); adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]); adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]); return adjoint; } matrix3_adjoint_f64 :: proc(m: Matrix3f64) -> (adjoint: Matrix3f64) { adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]); adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]); adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]); adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]); adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]); adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]); return adjoint; } matrix3_adjoint :: proc{ matrix3_adjoint_f16, matrix3_adjoint_f32, matrix3_adjoint_f64, }; matrix3_inverse_transpose_f16 :: proc(m: Matrix3f16) -> (inverse_transpose: Matrix3f16) { adjoint := matrix3_adjoint(m); determinant := matrix3_determinant(m); inv_determinant := 1.0 / determinant; for i in 0..<3 { for j in 0..<3 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return; } matrix3_inverse_transpose_f32 :: proc(m: Matrix3f32) -> (inverse_transpose: Matrix3f32) { adjoint := matrix3_adjoint(m); determinant := matrix3_determinant(m); inv_determinant := 1.0 / determinant; for i in 0..<3 { for j in 0..<3 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return; } matrix3_inverse_transpose_f64 :: proc(m: Matrix3f64) -> (inverse_transpose: Matrix3f64) { adjoint := matrix3_adjoint(m); determinant := matrix3_determinant(m); inv_determinant := 1.0 / determinant; for i in 0..<3 { for j in 0..<3 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return; } matrix3_inverse_transpose :: proc{ matrix3_inverse_transpose_f16, matrix3_inverse_transpose_f32, matrix3_inverse_transpose_f64, }; matrix3_scale_f16 :: proc(s: Vector3f16) -> (m: Matrix3f16) { m[0][0] = s[0]; m[1][1] = s[1]; m[2][2] = s[2]; return m; } matrix3_scale_f32 :: proc(s: Vector3f32) -> (m: Matrix3f32) { m[0][0] = s[0]; m[1][1] = s[1]; m[2][2] = s[2]; return m; } matrix3_scale_f64 :: proc(s: Vector3f64) -> (m: Matrix3f64) { m[0][0] = s[0]; m[1][1] = s[1]; m[2][2] = s[2]; return m; } matrix3_scale :: proc{ matrix3_scale_f16, matrix3_scale_f32, matrix3_scale_f64, }; matrix3_rotate_f16 :: proc(angle_radians: f16, v: Vector3f16) -> (rot: Matrix3f16) { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; return rot; } matrix3_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> (rot: Matrix3f32) { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; return rot; } matrix3_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> (rot: Matrix3f64) { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; return rot; } matrix3_rotate :: proc{ matrix3_rotate_f16, matrix3_rotate_f32, matrix3_rotate_f64, }; matrix3_look_at_f16 :: proc(eye, centre, up: Vector3f16) -> Matrix3f16 { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); return Matrix3f16{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; } matrix3_look_at_f32 :: proc(eye, centre, up: Vector3f32) -> Matrix3f32 { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); return Matrix3f32{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; } matrix3_look_at_f64 :: proc(eye, centre, up: Vector3f64) -> Matrix3f64 { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); return Matrix3f64{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; } matrix3_look_at :: proc{ matrix3_look_at_f16, matrix3_look_at_f32, matrix3_look_at_f64, }; matrix4_from_quaternion_f16 :: proc(q: Quaternionf16) -> (m: Matrix4f16) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; qxz := q.x * q.z; qxy := q.x * q.y; qyz := q.y * q.z; qwx := q.w * q.x; qwy := q.w * q.y; qwz := q.w * q.z; m[0][0] = 1 - 2 * (qyy + qzz); m[0][1] = 2 * (qxy + qwz); m[0][2] = 2 * (qxz - qwy); m[1][0] = 2 * (qxy - qwz); m[1][1] = 1 - 2 * (qxx + qzz); m[1][2] = 2 * (qyz + qwx); m[2][0] = 2 * (qxz + qwy); m[2][1] = 2 * (qyz - qwx); m[2][2] = 1 - 2 * (qxx + qyy); m[3][3] = 1; return m; } matrix4_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix4f32) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; qxz := q.x * q.z; qxy := q.x * q.y; qyz := q.y * q.z; qwx := q.w * q.x; qwy := q.w * q.y; qwz := q.w * q.z; m[0][0] = 1 - 2 * (qyy + qzz); m[0][1] = 2 * (qxy + qwz); m[0][2] = 2 * (qxz - qwy); m[1][0] = 2 * (qxy - qwz); m[1][1] = 1 - 2 * (qxx + qzz); m[1][2] = 2 * (qyz + qwx); m[2][0] = 2 * (qxz + qwy); m[2][1] = 2 * (qyz - qwx); m[2][2] = 1 - 2 * (qxx + qyy); m[3][3] = 1; return m; } matrix4_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix4f64) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; qxz := q.x * q.z; qxy := q.x * q.y; qyz := q.y * q.z; qwx := q.w * q.x; qwy := q.w * q.y; qwz := q.w * q.z; m[0][0] = 1 - 2 * (qyy + qzz); m[0][1] = 2 * (qxy + qwz); m[0][2] = 2 * (qxz - qwy); m[1][0] = 2 * (qxy - qwz); m[1][1] = 1 - 2 * (qxx + qzz); m[1][2] = 2 * (qyz + qwx); m[2][0] = 2 * (qxz + qwy); m[2][1] = 2 * (qyz - qwx); m[2][2] = 1 - 2 * (qxx + qyy); m[3][3] = 1; return m; } matrix4_from_quaternion :: proc{ matrix4_from_quaternion_f16, matrix4_from_quaternion_f32, matrix4_from_quaternion_f64, }; matrix4_from_trs_f16 :: proc(t: Vector3f16, r: Quaternionf16, s: Vector3f16) -> Matrix4f16 { translation := matrix4_translate(t); rotation := matrix4_from_quaternion(r); scale := matrix4_scale(s); return mul(translation, mul(rotation, scale)); } matrix4_from_trs_f32 :: proc(t: Vector3f32, r: Quaternionf32, s: Vector3f32) -> Matrix4f32 { translation := matrix4_translate(t); rotation := matrix4_from_quaternion(r); scale := matrix4_scale(s); return mul(translation, mul(rotation, scale)); } matrix4_from_trs_f64 :: proc(t: Vector3f64, r: Quaternionf64, s: Vector3f64) -> Matrix4f64 { translation := matrix4_translate(t); rotation := matrix4_from_quaternion(r); scale := matrix4_scale(s); return mul(translation, mul(rotation, scale)); } matrix4_from_trs :: proc{ matrix4_from_trs_f16, matrix4_from_trs_f32, matrix4_from_trs_f64, }; matrix4_inverse_f16 :: proc(m: Matrix4f16) -> Matrix4f16 { return auto_cast transpose(matrix4_inverse_transpose(m)); } matrix4_inverse_f32 :: proc(m: Matrix4f32) -> Matrix4f32 { return auto_cast transpose(matrix4_inverse_transpose(m)); } matrix4_inverse_f64 :: proc(m: Matrix4f64) -> Matrix4f64 { return auto_cast transpose(matrix4_inverse_transpose(m)); } matrix4_inverse :: proc{ matrix4_inverse_f16, matrix4_inverse_f32, matrix4_inverse_f64, }; matrix4_minor_f16 :: proc(m: Matrix4f16, c, r: int) -> f16 { cut_down: Matrix3f16; for i in 0..<3 { col := i if i < c else i+1; for j in 0..<3 { row := j if j < r else j+1; cut_down[i][j] = m[col][row]; } } return matrix3_determinant(cut_down); } matrix4_minor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 { cut_down: Matrix3f32; for i in 0..<3 { col := i if i < c else i+1; for j in 0..<3 { row := j if j < r else j+1; cut_down[i][j] = m[col][row]; } } return matrix3_determinant(cut_down); } matrix4_minor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 { cut_down: Matrix3f64; for i in 0..<3 { col := i if i < c else i+1; for j in 0..<3 { row := j if j < r else j+1; cut_down[i][j] = m[col][row]; } } return matrix3_determinant(cut_down); } matrix4_minor :: proc{ matrix4_minor_f16, matrix4_minor_f32, matrix4_minor_f64, }; matrix4_cofactor_f16 :: proc(m: Matrix4f16, c, r: int) -> f16 { sign, minor: f16; sign = 1 if (c + r) % 2 == 0 else -1; minor = matrix4_minor(m, c, r); return sign * minor; } matrix4_cofactor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 { sign, minor: f32; sign = 1 if (c + r) % 2 == 0 else -1; minor = matrix4_minor(m, c, r); return sign * minor; } matrix4_cofactor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 { sign, minor: f64; sign = 1 if (c + r) % 2 == 0 else -1; minor = matrix4_minor(m, c, r); return sign * minor; } matrix4_cofactor :: proc{ matrix4_cofactor_f16, matrix4_cofactor_f32, matrix4_cofactor_f64, }; matrix4_adjoint_f16 :: proc(m: Matrix4f16) -> (adjoint: Matrix4f16) { for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j); } } return; } matrix4_adjoint_f32 :: proc(m: Matrix4f32) -> (adjoint: Matrix4f32) { for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j); } } return; } matrix4_adjoint_f64 :: proc(m: Matrix4f64) -> (adjoint: Matrix4f64) { for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j); } } return; } matrix4_adjoint :: proc{ matrix4_adjoint_f16, matrix4_adjoint_f32, matrix4_adjoint_f64, }; matrix4_determinant_f16 :: proc(m: Matrix4f16) -> (determinant: f16) { adjoint := matrix4_adjoint(m); for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } return; } matrix4_determinant_f32 :: proc(m: Matrix4f32) -> (determinant: f32) { adjoint := matrix4_adjoint(m); for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } return; } matrix4_determinant_f64 :: proc(m: Matrix4f64) -> (determinant: f64) { adjoint := matrix4_adjoint(m); for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } return; } matrix4_determinant :: proc{ matrix4_determinant_f16, matrix4_determinant_f32, matrix4_determinant_f64, }; matrix4_inverse_transpose_f16 :: proc(m: Matrix4f16) -> (inverse_transpose: Matrix4f16) { adjoint := matrix4_adjoint(m); determinant: f16 = 0; for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } inv_determinant := 1.0 / determinant; for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return; } matrix4_inverse_transpose_f32 :: proc(m: Matrix4f32) -> (inverse_transpose: Matrix4f32) { adjoint := matrix4_adjoint(m); determinant: f32 = 0; for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } inv_determinant := 1.0 / determinant; for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return; } matrix4_inverse_transpose_f64 :: proc(m: Matrix4f64) -> (inverse_transpose: Matrix4f64) { adjoint := matrix4_adjoint(m); determinant: f64 = 0; for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } inv_determinant := 1.0 / determinant; for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } return; } matrix4_inverse_transpose :: proc{ matrix4_inverse_transpose_f16, matrix4_inverse_transpose_f32, matrix4_inverse_transpose_f64, }; matrix4_translate_f16 :: proc(v: Vector3f16) -> Matrix4f16 { m := MATRIX4F16_IDENTITY; m[3][0] = v[0]; m[3][1] = v[1]; m[3][2] = v[2]; return m; } matrix4_translate_f32 :: proc(v: Vector3f32) -> Matrix4f32 { m := MATRIX4F32_IDENTITY; m[3][0] = v[0]; m[3][1] = v[1]; m[3][2] = v[2]; return m; } matrix4_translate_f64 :: proc(v: Vector3f64) -> Matrix4f64 { m := MATRIX4F64_IDENTITY; m[3][0] = v[0]; m[3][1] = v[1]; m[3][2] = v[2]; return m; } matrix4_translate :: proc{ matrix4_translate_f16, matrix4_translate_f32, matrix4_translate_f64, }; matrix4_rotate_f16 :: proc(angle_radians: f16, v: Vector3f16) -> Matrix4f16 { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot := MATRIX4F16_IDENTITY; rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[0][3] = 0; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[1][3] = 0; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; rot[2][3] = 0; return rot; } matrix4_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> Matrix4f32 { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot := MATRIX4F32_IDENTITY; rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[0][3] = 0; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[1][3] = 0; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; rot[2][3] = 0; return rot; } matrix4_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> Matrix4f64 { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); rot := MATRIX4F64_IDENTITY; rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; rot[0][2] = 0 + t[0]*a[2] - s*a[1]; rot[0][3] = 0; rot[1][0] = 0 + t[1]*a[0] - s*a[2]; rot[1][1] = c + t[1]*a[1]; rot[1][2] = 0 + t[1]*a[2] + s*a[0]; rot[1][3] = 0; rot[2][0] = 0 + t[2]*a[0] + s*a[1]; rot[2][1] = 0 + t[2]*a[1] - s*a[0]; rot[2][2] = c + t[2]*a[2]; rot[2][3] = 0; return rot; } matrix4_rotate :: proc{ matrix4_rotate_f16, matrix4_rotate_f32, matrix4_rotate_f64, }; matrix4_scale_f16 :: proc(v: Vector3f16) -> (m: Matrix4f16) { m[0][0] = v[0]; m[1][1] = v[1]; m[2][2] = v[2]; m[3][3] = 1; return; } matrix4_scale_f32 :: proc(v: Vector3f32) -> (m: Matrix4f32) { m[0][0] = v[0]; m[1][1] = v[1]; m[2][2] = v[2]; m[3][3] = 1; return; } matrix4_scale_f64 :: proc(v: Vector3f64) -> (m: Matrix4f64) { m[0][0] = v[0]; m[1][1] = v[1]; m[2][2] = v[2]; m[3][3] = 1; return; } matrix4_scale :: proc{ matrix4_scale_f16, matrix4_scale_f32, matrix4_scale_f64, }; matrix4_look_at_f16 :: proc(eye, centre, up: Vector3f16, flip_z_axis := true) -> (m: Matrix4f16) { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); fe := dot(f, eye); return { {+s.x, +u.x, -f.x, 0}, {+s.y, +u.y, -f.y, 0}, {+s.z, +u.z, -f.z, 0}, {-dot(s, eye), -dot(u, eye), +fe if flip_z_axis else -fe, 1}, }; } matrix4_look_at_f32 :: proc(eye, centre, up: Vector3f32, flip_z_axis := true) -> (m: Matrix4f32) { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); fe := dot(f, eye); return { {+s.x, +u.x, -f.x, 0}, {+s.y, +u.y, -f.y, 0}, {+s.z, +u.z, -f.z, 0}, {-dot(s, eye), -dot(u, eye), +fe if flip_z_axis else -fe, 1}, }; } matrix4_look_at_f64 :: proc(eye, centre, up: Vector3f64, flip_z_axis := true) -> (m: Matrix4f64) { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); fe := dot(f, eye); return { {+s.x, +u.x, -f.x, 0}, {+s.y, +u.y, -f.y, 0}, {+s.z, +u.z, -f.z, 0}, {-dot(s, eye), -dot(u, eye), +fe if flip_z_axis else -fe, 1}, }; } matrix4_look_at :: proc{ matrix4_look_at_f16, matrix4_look_at_f32, matrix4_look_at_f64, }; matrix4_perspective_f16 :: proc(fovy, aspect, near, far: f16, flip_z_axis := true) -> (m: Matrix4f16) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +(far + near) / (far - near); m[2][3] = +1; m[3][2] = -2*far*near / (far - near); if flip_z_axis { m[2] = -m[2]; } return; } matrix4_perspective_f32 :: proc(fovy, aspect, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +(far + near) / (far - near); m[2][3] = +1; m[3][2] = -2*far*near / (far - near); if flip_z_axis { m[2] = -m[2]; } return; } matrix4_perspective_f64 :: proc(fovy, aspect, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +(far + near) / (far - near); m[2][3] = +1; m[3][2] = -2*far*near / (far - near); if flip_z_axis { m[2] = -m[2]; } return; } matrix4_perspective :: proc{ matrix4_perspective_f16, matrix4_perspective_f32, matrix4_perspective_f64, }; matrix_ortho3d_f16 :: proc(left, right, bottom, top, near, far: f16, flip_z_axis := true) -> (m: Matrix4f16) { m[0][0] = +2 / (right - left); m[1][1] = +2 / (top - bottom); m[2][2] = +2 / (far - near); m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -(far + near) / (far- near); m[3][3] = 1; if flip_z_axis { m[2] = -m[2]; } return; } matrix_ortho3d_f32 :: proc(left, right, bottom, top, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) { m[0][0] = +2 / (right - left); m[1][1] = +2 / (top - bottom); m[2][2] = +2 / (far - near); m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -(far + near) / (far- near); m[3][3] = 1; if flip_z_axis { m[2] = -m[2]; } return; } matrix_ortho3d_f64 :: proc(left, right, bottom, top, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) { m[0][0] = +2 / (right - left); m[1][1] = +2 / (top - bottom); m[2][2] = +2 / (far - near); m[3][0] = -(right + left) / (right - left); m[3][1] = -(top + bottom) / (top - bottom); m[3][2] = -(far + near) / (far- near); m[3][3] = 1; if flip_z_axis { m[2] = -m[2]; } return; } matrix_ortho3d :: proc{ matrix_ortho3d_f16, matrix_ortho3d_f32, matrix_ortho3d_f64, }; matrix4_infinite_perspective_f16 :: proc(fovy, aspect, near: f16, flip_z_axis := true) -> (m: Matrix4f16) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +1; m[2][3] = +1; m[3][2] = -2*near; if flip_z_axis { m[2] = -m[2]; } return; } matrix4_infinite_perspective_f32 :: proc(fovy, aspect, near: f32, flip_z_axis := true) -> (m: Matrix4f32) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +1; m[2][3] = +1; m[3][2] = -2*near; if flip_z_axis { m[2] = -m[2]; } return; } matrix4_infinite_perspective_f64 :: proc(fovy, aspect, near: f64, flip_z_axis := true) -> (m: Matrix4f64) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); m[2][2] = +1; m[2][3] = +1; m[3][2] = -2*near; if flip_z_axis { m[2] = -m[2]; } return; } matrix4_infinite_perspective :: proc{ matrix4_infinite_perspective_f16, matrix4_infinite_perspective_f32, matrix4_infinite_perspective_f64, }; matrix2_from_scalar_f16 :: proc(f: f16) -> (m: Matrix2f16) { m[0][0], m[0][1] = f, 0; m[1][0], m[1][1] = 0, f; return; } matrix2_from_scalar_f32 :: proc(f: f32) -> (m: Matrix2f32) { m[0][0], m[0][1] = f, 0; m[1][0], m[1][1] = 0, f; return; } matrix2_from_scalar_f64 :: proc(f: f64) -> (m: Matrix2f64) { m[0][0], m[0][1] = f, 0; m[1][0], m[1][1] = 0, f; return; } matrix2_from_scalar :: proc{ matrix2_from_scalar_f16, matrix2_from_scalar_f32, matrix2_from_scalar_f64, }; matrix3_from_scalar_f16 :: proc(f: f16) -> (m: Matrix3f16) { m[0][0], m[0][1], m[0][2] = f, 0, 0; m[1][0], m[1][1], m[1][2] = 0, f, 0; m[2][0], m[2][1], m[2][2] = 0, 0, f; return; } matrix3_from_scalar_f32 :: proc(f: f32) -> (m: Matrix3f32) { m[0][0], m[0][1], m[0][2] = f, 0, 0; m[1][0], m[1][1], m[1][2] = 0, f, 0; m[2][0], m[2][1], m[2][2] = 0, 0, f; return; } matrix3_from_scalar_f64 :: proc(f: f64) -> (m: Matrix3f64) { m[0][0], m[0][1], m[0][2] = f, 0, 0; m[1][0], m[1][1], m[1][2] = 0, f, 0; m[2][0], m[2][1], m[2][2] = 0, 0, f; return; } matrix3_from_scalar :: proc{ matrix3_from_scalar_f16, matrix3_from_scalar_f32, matrix3_from_scalar_f64, }; matrix4_from_scalar_f16 :: proc(f: f16) -> (m: Matrix4f16) { m[0][0], m[0][1], m[0][2], m[0][3] = f, 0, 0, 0; m[1][0], m[1][1], m[1][2], m[1][3] = 0, f, 0, 0; m[2][0], m[2][1], m[2][2], m[2][3] = 0, 0, f, 0; m[3][0], m[3][1], m[3][2], m[3][3] = 0, 0, 0, f; return; } matrix4_from_scalar_f32 :: proc(f: f32) -> (m: Matrix4f32) { m[0][0], m[0][1], m[0][2], m[0][3] = f, 0, 0, 0; m[1][0], m[1][1], m[1][2], m[1][3] = 0, f, 0, 0; m[2][0], m[2][1], m[2][2], m[2][3] = 0, 0, f, 0; m[3][0], m[3][1], m[3][2], m[3][3] = 0, 0, 0, f; return; } matrix4_from_scalar_f64 :: proc(f: f64) -> (m: Matrix4f64) { m[0][0], m[0][1], m[0][2], m[0][3] = f, 0, 0, 0; m[1][0], m[1][1], m[1][2], m[1][3] = 0, f, 0, 0; m[2][0], m[2][1], m[2][2], m[2][3] = 0, 0, f, 0; m[3][0], m[3][1], m[3][2], m[3][3] = 0, 0, 0, f; return; } matrix4_from_scalar :: proc{ matrix4_from_scalar_f16, matrix4_from_scalar_f32, matrix4_from_scalar_f64, }; matrix2_from_matrix3_f16 :: proc(m: Matrix3f16) -> (r: Matrix2f16) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } matrix2_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix2f32) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } matrix2_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix2f64) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } matrix2_from_matrix3 :: proc{ matrix2_from_matrix3_f16, matrix2_from_matrix3_f32, matrix2_from_matrix3_f64, }; matrix2_from_matrix4_f16 :: proc(m: Matrix4f16) -> (r: Matrix2f16) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } matrix2_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix2f32) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } matrix2_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix2f64) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } matrix2_from_matrix4 :: proc{ matrix2_from_matrix4_f16, matrix2_from_matrix4_f32, matrix2_from_matrix4_f64, }; matrix3_from_matrix2_f16 :: proc(m: Matrix2f16) -> (r: Matrix3f16) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], 0; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], 0; r[2][0], r[2][1], r[2][2] = 0, 0, 1; return; } matrix3_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix3f32) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], 0; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], 0; r[2][0], r[2][1], r[2][2] = 0, 0, 1; return; } matrix3_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix3f64) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], 0; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], 0; r[2][0], r[2][1], r[2][2] = 0, 0, 1; return; } matrix3_from_matrix2 :: proc{ matrix3_from_matrix2_f16, matrix3_from_matrix2_f32, matrix3_from_matrix2_f64, }; matrix3_from_matrix4_f16 :: proc(m: Matrix4f16) -> (r: Matrix3f16) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], m[0][2]; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], m[1][2]; r[2][0], r[2][1], r[2][2] = m[2][0], m[2][1], m[2][2]; return; } matrix3_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix3f32) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], m[0][2]; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], m[1][2]; r[2][0], r[2][1], r[2][2] = m[2][0], m[2][1], m[2][2]; return; } matrix3_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix3f64) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], m[0][2]; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], m[1][2]; r[2][0], r[2][1], r[2][2] = m[2][0], m[2][1], m[2][2]; return; } matrix3_from_matrix4 :: proc{ matrix3_from_matrix4_f16, matrix3_from_matrix4_f32, matrix3_from_matrix4_f64, }; matrix4_from_matrix2_f16 :: proc(m: Matrix2f16) -> (r: Matrix4f16) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], 0, 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], 0, 0; r[2][0], r[2][1], r[2][2], r[2][3] = 0, 0, 1, 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } matrix4_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix4f32) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], 0, 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], 0, 0; r[2][0], r[2][1], r[2][2], r[2][3] = 0, 0, 1, 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } matrix4_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix4f64) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], 0, 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], 0, 0; r[2][0], r[2][1], r[2][2], r[2][3] = 0, 0, 1, 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } matrix4_from_matrix2 :: proc{ matrix4_from_matrix2_f16, matrix4_from_matrix2_f32, matrix4_from_matrix2_f64, }; matrix4_from_matrix3_f16 :: proc(m: Matrix3f16) -> (r: Matrix4f16) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], m[0][2], 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], m[1][2], 0; r[2][0], r[2][1], r[2][2], r[2][3] = m[2][0], m[2][1], m[2][2], 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } matrix4_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix4f32) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], m[0][2], 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], m[1][2], 0; r[2][0], r[2][1], r[2][2], r[2][3] = m[2][0], m[2][1], m[2][2], 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } matrix4_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix4f64) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], m[0][2], 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], m[1][2], 0; r[2][0], r[2][1], r[2][2], r[2][3] = m[2][0], m[2][1], m[2][2], 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } matrix4_from_matrix3 :: proc{ matrix4_from_matrix3_f16, matrix4_from_matrix3_f32, matrix4_from_matrix3_f64, }; quaternion_from_scalar_f16 :: proc(f: f16) -> (q: Quaternionf16) { q.w = f; return; } quaternion_from_scalar_f32 :: proc(f: f32) -> (q: Quaternionf32) { q.w = f; return; } quaternion_from_scalar_f64 :: proc(f: f64) -> (q: Quaternionf64) { q.w = f; return; } quaternion_from_scalar :: proc{ quaternion_from_scalar_f16, quaternion_from_scalar_f32, quaternion_from_scalar_f64, }; to_matrix2f16 :: proc{matrix2_from_scalar_f16, matrix2_from_matrix3_f16, matrix2_from_matrix4_f16}; to_matrix3f16 :: proc{matrix3_from_scalar_f16, matrix3_from_matrix2_f16, matrix3_from_matrix4_f16, matrix3_from_quaternion_f16}; to_matrix4f16 :: proc{matrix4_from_scalar_f16, matrix4_from_matrix2_f16, matrix4_from_matrix3_f16, matrix4_from_quaternion_f16}; to_quaternionf16 :: proc{quaternion_from_scalar_f16, quaternion_from_matrix3_f16, quaternion_from_matrix4_f16}; to_matrix2f32 :: proc{matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32}; to_matrix3f32 :: proc{matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32}; to_matrix4f32 :: proc{matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32}; to_quaternionf32 :: proc{quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32}; to_matrix2f64 :: proc{matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64}; to_matrix3f64 :: proc{matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64}; to_matrix4f64 :: proc{matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64}; to_quaternionf64 :: proc{quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64}; to_matrix2f :: proc{ matrix2_from_scalar_f16, matrix2_from_matrix3_f16, matrix2_from_matrix4_f16, matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32, matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64, }; to_matrix3 :: proc{ matrix3_from_scalar_f16, matrix3_from_matrix2_f16, matrix3_from_matrix4_f16, matrix3_from_quaternion_f16, matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32, matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64, }; to_matrix4 :: proc{ matrix4_from_scalar_f16, matrix4_from_matrix2_f16, matrix4_from_matrix3_f16, matrix4_from_quaternion_f16, matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32, matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64, }; to_quaternion :: proc{ quaternion_from_scalar_f16, quaternion_from_matrix3_f16, quaternion_from_matrix4_f16, quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32, quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64, }; matrix2_orthonormalize_f16 :: proc(m: Matrix2f16) -> (r: Matrix2f16) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); r[1] -= r[0] * d0; r[1] = normalize(r[1]); return; } matrix2_orthonormalize_f32 :: proc(m: Matrix2f32) -> (r: Matrix2f32) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); r[1] -= r[0] * d0; r[1] = normalize(r[1]); return; } matrix2_orthonormalize_f64 :: proc(m: Matrix2f64) -> (r: Matrix2f64) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); r[1] -= r[0] * d0; r[1] = normalize(r[1]); return; } matrix2_orthonormalize :: proc{ matrix2_orthonormalize_f16, matrix2_orthonormalize_f32, matrix2_orthonormalize_f64, }; matrix3_orthonormalize_f16 :: proc(m: Matrix3f16) -> (r: Matrix3f16) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); r[1] -= r[0] * d0; r[1] = normalize(r[1]); d1 := dot(r[1], r[2]); d0 = dot(r[0], r[2]); r[2] -= r[0]*d0 + r[1]*d1; r[2] = normalize(r[2]); return; } matrix3_orthonormalize_f32 :: proc(m: Matrix3f32) -> (r: Matrix3f32) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); r[1] -= r[0] * d0; r[1] = normalize(r[1]); d1 := dot(r[1], r[2]); d0 = dot(r[0], r[2]); r[2] -= r[0]*d0 + r[1]*d1; r[2] = normalize(r[2]); return; } matrix3_orthonormalize_f64 :: proc(m: Matrix3f64) -> (r: Matrix3f64) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); r[1] -= r[0] * d0; r[1] = normalize(r[1]); d1 := dot(r[1], r[2]); d0 = dot(r[0], r[2]); r[2] -= r[0]*d0 + r[1]*d1; r[2] = normalize(r[2]); return; } matrix3_orthonormalize :: proc{ matrix3_orthonormalize_f16, matrix3_orthonormalize_f32, matrix3_orthonormalize_f64, }; vector3_orthonormalize_f16 :: proc(x, y: Vector3f16) -> (z: Vector3f16) { return normalize(x - y * dot(y, x)); } vector3_orthonormalize_f32 :: proc(x, y: Vector3f32) -> (z: Vector3f32) { return normalize(x - y * dot(y, x)); } vector3_orthonormalize_f64 :: proc(x, y: Vector3f64) -> (z: Vector3f64) { return normalize(x - y * dot(y, x)); } vector3_orthonormalize :: proc{ vector3_orthonormalize_f16, vector3_orthonormalize_f32, vector3_orthonormalize_f64, }; orthonormalize :: proc{ matrix2_orthonormalize_f16, matrix3_orthonormalize_f16, vector3_orthonormalize_f16, matrix2_orthonormalize_f32, matrix3_orthonormalize_f32, vector3_orthonormalize_f32, matrix2_orthonormalize_f64, matrix3_orthonormalize_f64, vector3_orthonormalize_f64, }; matrix4_orientation_f16 :: proc(normal, up: Vector3f16) -> Matrix4f16 { if all(equal(normal, up)) { return MATRIX4F16_IDENTITY; } rotation_axis := cross(up, normal); angle := math.acos(dot(normal, up)); return matrix4_rotate(angle, rotation_axis); } matrix4_orientation_f32 :: proc(normal, up: Vector3f32) -> Matrix4f32 { if all(equal(normal, up)) { return MATRIX4F32_IDENTITY; } rotation_axis := cross(up, normal); angle := math.acos(dot(normal, up)); return matrix4_rotate(angle, rotation_axis); } matrix4_orientation_f64 :: proc(normal, up: Vector3f64) -> Matrix4f64 { if all(equal(normal, up)) { return MATRIX4F64_IDENTITY; } rotation_axis := cross(up, normal); angle := math.acos(dot(normal, up)); return matrix4_rotate(angle, rotation_axis); } matrix4_orientation :: proc{ matrix4_orientation_f16, matrix4_orientation_f32, matrix4_orientation_f64, }; euclidean_from_polar_f16 :: proc(polar: Vector2f16) -> Vector3f16 { latitude, longitude := polar.x, polar.y; cx, sx := math.cos(latitude), math.sin(latitude); cy, sy := math.cos(longitude), math.sin(longitude); return { cx*sy, sx, cx*cy, }; } euclidean_from_polar_f32 :: proc(polar: Vector2f32) -> Vector3f32 { latitude, longitude := polar.x, polar.y; cx, sx := math.cos(latitude), math.sin(latitude); cy, sy := math.cos(longitude), math.sin(longitude); return { cx*sy, sx, cx*cy, }; } euclidean_from_polar_f64 :: proc(polar: Vector2f64) -> Vector3f64 { latitude, longitude := polar.x, polar.y; cx, sx := math.cos(latitude), math.sin(latitude); cy, sy := math.cos(longitude), math.sin(longitude); return { cx*sy, sx, cx*cy, }; } euclidean_from_polar :: proc{ euclidean_from_polar_f16, euclidean_from_polar_f32, euclidean_from_polar_f64, }; polar_from_euclidean_f16 :: proc(euclidean: Vector3f16) -> Vector3f16 { n := length(euclidean); tmp := euclidean / n; xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z); return { math.asin(tmp.y), math.atan2(tmp.x, tmp.z), xz_dist, }; } polar_from_euclidean_f32 :: proc(euclidean: Vector3f32) -> Vector3f32 { n := length(euclidean); tmp := euclidean / n; xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z); return { math.asin(tmp.y), math.atan2(tmp.x, tmp.z), xz_dist, }; } polar_from_euclidean_f64 :: proc(euclidean: Vector3f64) -> Vector3f64 { n := length(euclidean); tmp := euclidean / n; xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z); return { math.asin(tmp.y), math.atan2(tmp.x, tmp.z), xz_dist, }; } polar_from_euclidean :: proc{ polar_from_euclidean_f16, polar_from_euclidean_f32, polar_from_euclidean_f64, };