package runtime import "intrinsics" @builtin Maybe :: union($T: typeid) #maybe {T}; @thread_local global_default_temp_allocator_data: Default_Temp_Allocator; @builtin init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) { default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator); } @builtin copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int { n := max(0, min(len(dst), len(src))); if n > 0 { intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E)); } return n; } @builtin copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int { n := max(0, min(len(dst), len(src))); if n > 0 { intrinsics.mem_copy(raw_data(dst), raw_data(src), n); } return n; } @builtin copy :: proc{copy_slice, copy_from_string}; @builtin unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { bounds_check_error_loc(loc, index, len(array)); n := len(array)-1; if index != n { array[index] = array[n]; } (^Raw_Dynamic_Array)(array).len -= 1; } @builtin ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { bounds_check_error_loc(loc, index, len(array)); if index+1 < len(array) { copy(array[index:], array[index+1:]); } (^Raw_Dynamic_Array)(array).len -= 1; } @builtin remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check { slice_expr_error_lo_hi_loc(loc, lo, hi, len(array)); n := max(hi-lo, 0); if n > 0 { if hi != len(array) { copy(array[lo:], array[hi:]); } (^Raw_Dynamic_Array)(array).len -= n; } } @builtin pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { assert(len(array) > 0, "", loc); res = array[len(array)-1]; (^Raw_Dynamic_Array)(array).len -= 1; return res; } @builtin pop_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { if len(array) == 0 { return; } res, ok = array[len(array)-1], true; (^Raw_Dynamic_Array)(array).len -= 1; return; } @builtin pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { assert(len(array) > 0, "", loc); res = array[0]; if len(array) > 1 { copy(array[0:], array[1:]); } (^Raw_Dynamic_Array)(array).len -= 1; return res; } @builtin pop_front_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { if len(array) == 0 { return; } res, ok = array[0], true; if len(array) > 1 { copy(array[0:], array[1:]); } (^Raw_Dynamic_Array)(array).len -= 1; return; } @builtin clear :: proc{clear_dynamic_array, clear_map}; @builtin reserve :: proc{reserve_dynamic_array, reserve_map}; @builtin resize :: proc{resize_dynamic_array}; @builtin free :: proc{mem_free}; @builtin free_all :: proc{mem_free_all}; @builtin delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free(raw_data(str), allocator, loc); } @builtin delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free((^byte)(str), allocator, loc); } @builtin delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error { return mem_free(raw_data(array), array.allocator, loc); } @builtin delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free(raw_data(array), allocator, loc); } @builtin delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error { raw := transmute(Raw_Map)m; err := delete_slice(raw.hashes, raw.entries.allocator, loc); err1 := mem_free(raw.entries.data, raw.entries.allocator, loc); if err == nil { err = err1; } return err; } @builtin delete :: proc{ delete_string, delete_cstring, delete_dynamic_array, delete_slice, delete_map, }; // The new built-in procedure allocates memory. The first argument is a type, not a value, and the value // return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator @builtin new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_second { ptr, err := mem_alloc(size_of(T), align_of(T), allocator, loc); return (^T)(ptr), err; } @builtin new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_second { ptr, err := mem_alloc(size_of(T), align_of(T), allocator, loc); res := (^T)(ptr); if ptr != nil && err != .Out_Of_Memory { res^ = data; } return res, err; } DEFAULT_RESERVE_CAPACITY :: 16; make_aligned :: proc($T: typeid/[]$E, auto_cast len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_second { make_slice_error_loc(loc, len); data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc); if data == nil && size_of(E) != 0 { return nil, err; } s := Raw_Slice{raw_data(data), len}; return transmute(T)s, err; } @builtin make_slice :: proc($T: typeid/[]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_second { return make_aligned(T, len, align_of(E), allocator, loc); } @builtin make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_second { return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc); } @builtin make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_second { return make_dynamic_array_len_cap(T, len, len, allocator, loc); } @builtin make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, auto_cast len: int, auto_cast cap: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_second { make_dynamic_array_error_loc(loc, len, cap); data, err := mem_alloc(size_of(E)*cap, align_of(E), allocator, loc); s := Raw_Dynamic_Array{data, len, cap, allocator}; if data == nil && size_of(E) != 0 { s.len, s.cap = 0, 0; } return transmute(T)s, err; } @builtin make_map :: proc($T: typeid/map[$K]$E, auto_cast cap: int = DEFAULT_RESERVE_CAPACITY, allocator := context.allocator, loc := #caller_location) -> T { make_map_expr_error_loc(loc, cap); context.allocator = allocator; m: T; reserve_map(&m, cap); return m; } // The make built-in procedure allocates and initializes a value of type slice, dynamic array, or map (only) // Similar to new, the first argument is a type, not a value. Unlike new, make's return type is the same as the // type of its argument, not a pointer to it. // Make uses the specified allocator, default is context.allocator, default is context.allocator @builtin make :: proc{ make_slice, make_dynamic_array, make_dynamic_array_len, make_dynamic_array_len_cap, make_map, }; @builtin clear_map :: proc "contextless" (m: ^$T/map[$K]$V) { if m == nil { return; } raw_map := (^Raw_Map)(m); entries := (^Raw_Dynamic_Array)(&raw_map.entries); entries.len = 0; for _, i in raw_map.hashes { raw_map.hashes[i] = -1; } } @builtin reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int) { if m != nil { __dynamic_map_reserve(__get_map_header(m), capacity); } } // The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map. // If m is nil, or there is no such element, this procedure is a no-op @builtin delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) { if m != nil { key := key; h := __get_map_header(m); hash := __get_map_hash(&key); fr := __dynamic_map_find(h, hash); if fr.entry_index >= 0 { entry := __dynamic_map_get_entry(h, fr.entry_index); deleted_key = (^K)(uintptr(entry)+h.key_offset)^; deleted_value = (^V)(uintptr(entry)+h.value_offset)^; __dynamic_map_erase(h, fr); } } return; } @builtin append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) { if array == nil { return; } if cap(array) < len(array)+1 { cap := 2 * cap(array) + max(8, 1); _ = reserve(array, cap, loc); } if cap(array)-len(array) > 0 { a := (^Raw_Dynamic_Array)(array); when size_of(E) != 0 { data := (^E)(a.data); assert(condition=data != nil, loc=loc); intrinsics.ptr_offset(data, a.len)^ = arg; } a.len += 1; } } @builtin append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) { if array == nil { return; } arg_len := len(args); if arg_len <= 0 { return; } if cap(array) < len(array)+arg_len { cap := 2 * cap(array) + max(8, arg_len); _ = reserve(array, cap, loc); } arg_len = min(cap(array)-len(array), arg_len); if arg_len > 0 { a := (^Raw_Dynamic_Array)(array); when size_of(E) != 0 { data := (^E)(a.data); assert(condition=data != nil, loc=loc); intrinsics.mem_copy(intrinsics.ptr_offset(data, a.len), &args[0], size_of(E) * arg_len); } a.len += arg_len; } } // The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type @builtin append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) { args := transmute([]E)arg; append_elems(array=array, args=args, loc=loc); } // The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type @builtin append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) { for arg in args { append(array = array, args = transmute([]E)(arg), loc = loc); } } // The append built-in procedure appends elements to the end of a dynamic array @builtin append :: proc{append_elem, append_elems, append_elem_string}; @builtin append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) { if array == nil { return; } resize(array, len(array)+1); } @builtin insert_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool) #no_bounds_check { if array == nil { return; } n := len(array); m :: 1; resize(array, n+m, loc); if n+m <= len(array) { when size_of(E) != 0 { copy(array[index+m:], array[index:]); array[index] = arg; } ok = true; } return; } @builtin insert_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool) #no_bounds_check { if array == nil { return; } if len(args) == 0 { ok = true; return; } n := len(array); m := len(args); resize(array, n+m, loc); if n+m <= len(array) { when size_of(E) != 0 { copy(array[index+m:], array[index:]); copy(array[index:], args); } ok = true; } return; } @builtin insert_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool) #no_bounds_check { if array == nil { return; } if len(args) == 0 { ok = true; return; } n := len(array); m := len(args); resize(array, n+m, loc); if n+m <= len(array) { copy(array[index+m:], array[index:]); copy(array[index:], args); ok = true; } return; } @builtin insert_at :: proc{insert_at_elem, insert_at_elems, insert_at_elem_string}; @builtin clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) { if array != nil { (^Raw_Dynamic_Array)(array).len = 0; } } @builtin reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> bool { if array == nil { return false; } a := (^Raw_Dynamic_Array)(array); if capacity <= a.cap { return true; } if a.allocator.procedure == nil { a.allocator = context.allocator; } assert(a.allocator.procedure != nil); old_size := a.cap * size_of(E); new_size := capacity * size_of(E); allocator := a.allocator; new_data, err := allocator.procedure( allocator.data, .Resize, new_size, align_of(E), a.data, old_size, loc, ); if new_data == nil || err != nil { return false; } a.data = raw_data(new_data); a.cap = capacity; return true; } @builtin resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> bool { if array == nil { return false; } a := (^Raw_Dynamic_Array)(array); if length <= a.cap { a.len = max(length, 0); return true; } if a.allocator.procedure == nil { a.allocator = context.allocator; } assert(a.allocator.procedure != nil); old_size := a.cap * size_of(E); new_size := length * size_of(E); allocator := a.allocator; new_data, err := allocator.procedure( allocator.data, .Resize, new_size, align_of(E), a.data, old_size, loc, ); if new_data == nil || err != nil { return false; } a.data = raw_data(new_data); a.len = length; a.cap = length; return true; } @builtin incl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) { s^ |= {elem}; } @builtin incl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) { for elem in elems { s^ |= {elem}; } } @builtin incl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) { s^ |= other; } @builtin excl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) { s^ &~= {elem}; } @builtin excl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) { for elem in elems { s^ &~= {elem}; } } @builtin excl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) { s^ &~= other; } @builtin incl :: proc{incl_elem, incl_elems, incl_bit_set}; @builtin excl :: proc{excl_elem, excl_elems, excl_bit_set}; @builtin card :: proc(s: $S/bit_set[$E; $U]) -> int { when size_of(S) == 1 { return int(intrinsics.count_ones(transmute(u8)s)); } else when size_of(S) == 2 { return int(intrinsics.count_ones(transmute(u16)s)); } else when size_of(S) == 4 { return int(intrinsics.count_ones(transmute(u32)s)); } else when size_of(S) == 8 { return int(intrinsics.count_ones(transmute(u64)s)); } else when size_of(S) == 16 { return int(intrinsics.count_ones(transmute(u128)s)); } else { #panic("Unhandled card bit_set size"); } } @builtin raw_array_data :: proc "contextless" (a: $P/^($T/[$N]$E)) -> ^E { return (^E)(a); } @builtin raw_slice_data :: proc "contextless" (s: $S/[]$E) -> ^E { ptr := (transmute(Raw_Slice)s).data; return (^E)(ptr); } @builtin raw_dynamic_array_data :: proc "contextless" (s: $S/[dynamic]$E) -> ^E { ptr := (transmute(Raw_Dynamic_Array)s).data; return (^E)(ptr); } @builtin raw_string_data :: proc "contextless" (s: $S/string) -> ^u8 { return (transmute(Raw_String)s).data; } @builtin raw_data :: proc{raw_array_data, raw_slice_data, raw_dynamic_array_data, raw_string_data}; @builtin @(disabled=ODIN_DISABLE_ASSERT) assert :: proc(condition: bool, message := "", loc := #caller_location) { if !condition { proc(message: string, loc: Source_Code_Location) { p := context.assertion_failure_proc; if p == nil { p = default_assertion_failure_proc; } p("runtime assertion", message, loc); }(message, loc); } } @builtin @(disabled=ODIN_DISABLE_ASSERT) panic :: proc(message: string, loc := #caller_location) -> ! { p := context.assertion_failure_proc; if p == nil { p = default_assertion_failure_proc; } p("panic", message, loc); } @builtin @(disabled=ODIN_DISABLE_ASSERT) unimplemented :: proc(message := "", loc := #caller_location) -> ! { p := context.assertion_failure_proc; if p == nil { p = default_assertion_failure_proc; } p("not yet implemented", message, loc); } @builtin @(disabled=ODIN_DISABLE_ASSERT) unreachable :: proc(message := "", loc := #caller_location) -> ! { p := context.assertion_failure_proc; if p == nil { p = default_assertion_failure_proc; } if message != "" { p("internal error", message, loc); } else { p("internal error", "entered unreachable code", loc); } }