package runtime import "intrinsics" bswap_16 :: proc "none" (x: u16) -> u16 { return x>>8 | x<<8; } bswap_32 :: proc "none" (x: u32) -> u32 { return x>>24 | (x>>8)&0xff00 | (x<<8)&0xff0000 | x<<24; } bswap_64 :: proc "none" (x: u64) -> u64 { z := x; z = (z & 0x00000000ffffffff) << 32 | (z & 0xffffffff00000000) >> 32; z = (z & 0x0000ffff0000ffff) << 16 | (z & 0xffff0000ffff0000) >> 16; z = (z & 0x00ff00ff00ff00ff) << 8 | (z & 0xff00ff00ff00ff00) >> 8; return z; } bswap_128 :: proc "none" (x: u128) -> u128 { z := transmute([4]u32)x; z[0] = bswap_32(z[3]); z[1] = bswap_32(z[2]); z[2] = bswap_32(z[1]); z[3] = bswap_32(z[0]); return transmute(u128)z; } bswap_f16 :: proc "none" (f: f16) -> f16 { x := transmute(u16)f; z := bswap_16(x); return transmute(f16)z; } bswap_f32 :: proc "none" (f: f32) -> f32 { x := transmute(u32)f; z := bswap_32(x); return transmute(f32)z; } bswap_f64 :: proc "none" (f: f64) -> f64 { x := transmute(u64)f; z := bswap_64(x); return transmute(f64)z; } ptr_offset :: #force_inline proc "contextless" (ptr: $P/^$T, n: int) -> P { new := int(uintptr(ptr)) + size_of(T)*n; return P(uintptr(new)); } is_power_of_two_int :: #force_inline proc(x: int) -> bool { if x <= 0 { return false; } return (x & (x-1)) == 0; } align_forward_int :: #force_inline proc(ptr, align: int) -> int { assert(is_power_of_two_int(align)); p := ptr; modulo := p & (align-1); if modulo != 0 { p += align - modulo; } return p; } is_power_of_two_uintptr :: #force_inline proc(x: uintptr) -> bool { if x <= 0 { return false; } return (x & (x-1)) == 0; } align_forward_uintptr :: #force_inline proc(ptr, align: uintptr) -> uintptr { assert(is_power_of_two_uintptr(align)); p := ptr; modulo := p & (align-1); if modulo != 0 { p += align - modulo; } return p; } mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr { if data == nil { return nil; } if len < 0 { return data; } intrinsics.mem_zero(data, len); return data; } mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr { if src == nil { return dst; } // NOTE(bill): This _must_ be implemented like C's memmove intrinsics.mem_copy(dst, src, len); return dst; } mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr { if src == nil { return dst; } // NOTE(bill): This _must_ be implemented like C's memcpy intrinsics.mem_copy_non_overlapping(dst, src, len); return dst; } DEFAULT_ALIGNMENT :: 2*align_of(rawptr); mem_alloc_bytes :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) { if size == 0 { return nil, nil; } if allocator.procedure == nil { return nil, nil; } return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc); } mem_alloc :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (rawptr, Allocator_Error) { if size == 0 { return nil, nil; } if allocator.procedure == nil { return nil, nil; } data, err := allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc); return raw_data(data), err; } mem_free :: #force_inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { if ptr == nil { return .None; } if allocator.procedure == nil { return .None; } _, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc); return err; } mem_free_all :: #force_inline proc(allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) { if allocator.procedure != nil { _, err = allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, loc); } return; } mem_resize :: #force_inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (new_ptr: rawptr, err: Allocator_Error) { new_data: []byte; switch { case allocator.procedure == nil: return; case new_size == 0: new_data, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc); case ptr == nil: new_data, err = allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc); case: new_data, err = allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, loc); } new_ptr = raw_data(new_data); return; } memory_equal :: proc "contextless" (a, b: rawptr, n: int) -> bool { return memory_compare(a, b, n) == 0; } memory_compare :: proc "contextless" (a, b: rawptr, n: int) -> int #no_bounds_check { switch { case a == b: return 0; case a == nil: return -1; case b == nil: return +1; } x := uintptr(a); y := uintptr(b); n := uintptr(n); SU :: size_of(uintptr); fast := n/SU + 1; offset := (fast-1)*SU; curr_block := uintptr(0); if n < SU { fast = 0; } for /**/; curr_block < fast; curr_block += 1 { va := (^uintptr)(x + curr_block * size_of(uintptr))^; vb := (^uintptr)(y + curr_block * size_of(uintptr))^; if va ~ vb != 0 { for pos := curr_block*SU; pos < n; pos += 1 { a := (^byte)(x+pos)^; b := (^byte)(y+pos)^; if a ~ b != 0 { return -1 if (int(a) - int(b)) < 0 else +1; } } } } for /**/; offset < n; offset += 1 { a := (^byte)(x+offset)^; b := (^byte)(y+offset)^; if a ~ b != 0 { return -1 if (int(a) - int(b)) < 0 else +1; } } return 0; } memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check { x := uintptr(a); n := uintptr(n); SU :: size_of(uintptr); fast := n/SU + 1; offset := (fast-1)*SU; curr_block := uintptr(0); if n < SU { fast = 0; } for /**/; curr_block < fast; curr_block += 1 { va := (^uintptr)(x + curr_block * size_of(uintptr))^; if va ~ 0 != 0 { for pos := curr_block*SU; pos < n; pos += 1 { a := (^byte)(x+pos)^; if a ~ 0 != 0 { return -1 if int(a) < 0 else +1; } } } } for /**/; offset < n; offset += 1 { a := (^byte)(x+offset)^; if a ~ 0 != 0 { return -1 if int(a) < 0 else +1; } } return 0; } string_eq :: proc "contextless" (a, b: string) -> bool { x := transmute(Raw_String)a; y := transmute(Raw_String)b; switch { case x.len != y.len: return false; case x.len == 0: return true; case x.data == y.data: return true; } return string_cmp(a, b) == 0; } string_cmp :: proc "contextless" (a, b: string) -> int { x := transmute(Raw_String)a; y := transmute(Raw_String)b; return memory_compare(x.data, y.data, min(x.len, y.len)); } string_ne :: #force_inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); } string_lt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; } string_gt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; } string_le :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; } string_ge :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; } cstring_len :: proc "contextless" (s: cstring) -> int { p0 := uintptr((^byte)(s)); p := p0; for p != 0 && (^byte)(p)^ != 0 { p += 1; } return int(p - p0); } cstring_to_string :: proc "contextless" (s: cstring) -> string { if s == nil { return ""; } ptr := (^byte)(s); n := cstring_len(s); return transmute(string)Raw_String{ptr, n}; } complex32_eq :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) == real(b) && imag(a) == imag(b); } complex32_ne :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) != real(b) || imag(a) != imag(b); } complex64_eq :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); } complex64_ne :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); } complex128_eq :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); } complex128_ne :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); } quaternion64_eq :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); } quaternion64_ne :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); } quaternion128_eq :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); } quaternion128_ne :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); } quaternion256_eq :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); } quaternion256_ne :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); } string_decode_rune :: #force_inline proc "contextless" (s: string) -> (rune, int) { // NOTE(bill): Duplicated here to remove dependency on package unicode/utf8 @static accept_sizes := [256]u8{ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf 0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf 0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef 0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff }; Accept_Range :: struct {lo, hi: u8}; @static accept_ranges := [5]Accept_Range{ {0x80, 0xbf}, {0xa0, 0xbf}, {0x80, 0x9f}, {0x90, 0xbf}, {0x80, 0x8f}, }; MASKX :: 0b0011_1111; MASK2 :: 0b0001_1111; MASK3 :: 0b0000_1111; MASK4 :: 0b0000_0111; LOCB :: 0b1000_0000; HICB :: 0b1011_1111; RUNE_ERROR :: '\ufffd'; n := len(s); if n < 1 { return RUNE_ERROR, 0; } s0 := s[0]; x := accept_sizes[s0]; if x >= 0xF0 { mask := rune(x) << 31 >> 31; // NOTE(bill): Create 0x0000 or 0xffff. return rune(s[0])&~mask | RUNE_ERROR&mask, 1; } sz := x & 7; accept := accept_ranges[x>>4]; if n < int(sz) { return RUNE_ERROR, 1; } b1 := s[1]; if b1 < accept.lo || accept.hi < b1 { return RUNE_ERROR, 1; } if sz == 2 { return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2; } b2 := s[2]; if b2 < LOCB || HICB < b2 { return RUNE_ERROR, 1; } if sz == 3 { return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3; } b3 := s[3]; if b3 < LOCB || HICB < b3 { return RUNE_ERROR, 1; } return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4; } abs_f16 :: #force_inline proc "contextless" (x: f16) -> f16 { return -x if x < 0 else x; } abs_f32 :: #force_inline proc "contextless" (x: f32) -> f32 { return -x if x < 0 else x; } abs_f64 :: #force_inline proc "contextless" (x: f64) -> f64 { return -x if x < 0 else x; } min_f16 :: #force_inline proc "contextless" (a, b: f16) -> f16 { return a if a < b else b; } min_f32 :: #force_inline proc "contextless" (a, b: f32) -> f32 { return a if a < b else b; } min_f64 :: #force_inline proc "contextless" (a, b: f64) -> f64 { return a if a < b else b; } max_f16 :: #force_inline proc "contextless" (a, b: f16) -> f16 { return a if a > b else b; } max_f32 :: #force_inline proc "contextless" (a, b: f32) -> f32 { return a if a > b else b; } max_f64 :: #force_inline proc "contextless" (a, b: f64) -> f64 { return a if a > b else b; } abs_complex32 :: #force_inline proc "contextless" (x: complex32) -> f16 { r, i := real(x), imag(x); return f16(intrinsics.sqrt(f32(r*r + i*i))); } abs_complex64 :: #force_inline proc "contextless" (x: complex64) -> f32 { r, i := real(x), imag(x); return intrinsics.sqrt(r*r + i*i); } abs_complex128 :: #force_inline proc "contextless" (x: complex128) -> f64 { r, i := real(x), imag(x); return intrinsics.sqrt(r*r + i*i); } abs_quaternion64 :: #force_inline proc "contextless" (x: quaternion64) -> f16 { r, i, j, k := real(x), imag(x), jmag(x), kmag(x); return f16(intrinsics.sqrt(f32(r*r + i*i + j*j + k*k))); } abs_quaternion128 :: #force_inline proc "contextless" (x: quaternion128) -> f32 { r, i, j, k := real(x), imag(x), jmag(x), kmag(x); return intrinsics.sqrt(r*r + i*i + j*j + k*k); } abs_quaternion256 :: #force_inline proc "contextless" (x: quaternion256) -> f64 { r, i, j, k := real(x), imag(x), jmag(x), kmag(x); return intrinsics.sqrt(r*r + i*i + j*j + k*k); } quo_complex32 :: proc "contextless" (n, m: complex32) -> complex32 { e, f: f16; if abs(real(m)) >= abs(imag(m)) { ratio := imag(m) / real(m); denom := real(m) + ratio*imag(m); e = (real(n) + imag(n)*ratio) / denom; f = (imag(n) - real(n)*ratio) / denom; } else { ratio := real(m) / imag(m); denom := imag(m) + ratio*real(m); e = (real(n)*ratio + imag(n)) / denom; f = (imag(n)*ratio - real(n)) / denom; } return complex(e, f); } quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 { e, f: f32; if abs(real(m)) >= abs(imag(m)) { ratio := imag(m) / real(m); denom := real(m) + ratio*imag(m); e = (real(n) + imag(n)*ratio) / denom; f = (imag(n) - real(n)*ratio) / denom; } else { ratio := real(m) / imag(m); denom := imag(m) + ratio*real(m); e = (real(n)*ratio + imag(n)) / denom; f = (imag(n)*ratio - real(n)) / denom; } return complex(e, f); } quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 { e, f: f64; if abs(real(m)) >= abs(imag(m)) { ratio := imag(m) / real(m); denom := real(m) + ratio*imag(m); e = (real(n) + imag(n)*ratio) / denom; f = (imag(n) - real(n)*ratio) / denom; } else { ratio := real(m) / imag(m); denom := imag(m) + ratio*real(m); e = (real(n)*ratio + imag(n)) / denom; f = (imag(n)*ratio - real(n)) / denom; } return complex(e, f); } mul_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3; t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2; t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1; t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0; return quaternion(t0, t1, t2, t3); } mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3; t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2; t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1; t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0; return quaternion(t0, t1, t2, t3); } mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3; t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2; t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1; t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0; return quaternion(t0, t1, t2, t3); } quo_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3); t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2; t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2; t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2; t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2; return quaternion(t0, t1, t2, t3); } quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3); t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2; t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2; t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2; t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2; return quaternion(t0, t1, t2, t3); } quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 { q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q); r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r); invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3); t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2; t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2; t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2; t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2; return quaternion(t0, t1, t2, t3); } @(link_name="__truncsfhf2") truncsfhf2 :: proc "c" (value: f32) -> u16 { v: struct #raw_union { i: u32, f: f32 }; i, s, e, m: i32; v.f = value; i = i32(v.i); s = (i >> 16) & 0x00008000; e = ((i >> 23) & 0x000000ff) - (127 - 15); m = i & 0x007fffff; if e <= 0 { if e < -10 { return u16(s); } m = (m | 0x00800000) >> u32(1 - e); if m & 0x00001000 != 0 { m += 0x00002000; } return u16(s | (m >> 13)); } else if e == 0xff - (127 - 15) { if m == 0 { return u16(s | 0x7c00); /* NOTE(bill): infinity */ } else { /* NOTE(bill): NAN */ m >>= 13; return u16(s | 0x7c00 | m | i32(m == 0)); } } else { if m & 0x00001000 != 0 { m += 0x00002000; if (m & 0x00800000) != 0 { m = 0; e += 1; } } if e > 30 { f := i64(1e12); for j := 0; j < 10; j += 1 { /* NOTE(bill): Cause overflow */ g := intrinsics.volatile_load(&f); g *= g; intrinsics.volatile_store(&f, g); } return u16(s | 0x7c00); } return u16(s | (e << 10) | (m >> 13)); } } @(link_name="__truncdfhf2") truncdfhf2 :: proc "c" (value: f64) -> u16 { return truncsfhf2(f32(value)); } @(link_name="__gnu_h2f_ieee") gnu_h2f_ieee :: proc "c" (value: u16) -> f32 { fp32 :: struct #raw_union { u: u32, f: f32 }; v: fp32; magic, inf_or_nan: fp32; magic.u = u32((254 - 15) << 23); inf_or_nan.u = u32((127 + 16) << 23); v.u = u32(value & 0x7fff) << 13; v.f *= magic.f; if v.f >= inf_or_nan.f { v.u |= 255 << 23; } v.u |= u32(value & 0x8000) << 16; return v.f; } @(link_name="__gnu_f2h_ieee") gnu_f2h_ieee :: proc "c" (value: f32) -> u16 { return truncsfhf2(value); } @(link_name="__extendhfsf2") extendhfsf2 :: proc "c" (value: u16) -> f32 { return gnu_h2f_ieee(value); } @(link_name="__floattidf") floattidf :: proc(a: i128) -> f64 { DBL_MANT_DIG :: 53; if a == 0 { return 0.0; } a := a; N :: size_of(i128) * 8; s := a >> (N-1); a = (a ~ s) - s; sd: = N - intrinsics.count_leading_zeros(a); // number of significant digits e := u32(sd - 1); // exponent if sd > DBL_MANT_DIG { switch sd { case DBL_MANT_DIG + 1: a <<= 1; case DBL_MANT_DIG + 2: // okay case: a = i128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) | i128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0); }; a |= i128((a & 4) != 0); a += 1; a >>= 2; if a & (1 << DBL_MANT_DIG) != 0 { a >>= 1; e += 1; } } else { a <<= u128(DBL_MANT_DIG - sd); } fb: [2]u32; fb[0] = (u32(s) & 0x80000000) | // sign ((e + 1023) << 20) | // exponent u32((u64(a) >> 32) & 0x000FFFFF); // mantissa-high fb[1] = u32(a); // mantissa-low return transmute(f64)fb; } @(link_name="__floattidf_unsigned") floattidf_unsigned :: proc(a: u128) -> f64 { DBL_MANT_DIG :: 53; if a == 0 { return 0.0; } a := a; N :: size_of(u128) * 8; sd: = N - intrinsics.count_leading_zeros(a); // number of significant digits e := u32(sd - 1); // exponent if sd > DBL_MANT_DIG { switch sd { case DBL_MANT_DIG + 1: a <<= 1; case DBL_MANT_DIG + 2: // okay case: a = u128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) | u128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0); }; a |= u128((a & 4) != 0); a += 1; a >>= 2; if a & (1 << DBL_MANT_DIG) != 0 { a >>= 1; e += 1; } } else { a <<= u128(DBL_MANT_DIG - sd); } fb: [2]u32; fb[0] = (0) | // sign ((e + 1023) << 20) | // exponent u32((u64(a) >> 32) & 0x000FFFFF); // mantissa-high fb[1] = u32(a); // mantissa-low return transmute(f64)fb; }