package math_bits import "core:intrinsics" U8_MIN :: 0; U16_MIN :: 0; U32_MIN :: 0; U64_MIN :: 0; U8_MAX :: 1 << 8 - 1; U16_MAX :: 1 << 16 - 1; U32_MAX :: 1 << 32 - 1; U64_MAX :: 1 << 64 - 1; I8_MIN :: - 1 << 7; I16_MIN :: - 1 << 15; I32_MIN :: - 1 << 31; I64_MIN :: - 1 << 63; I8_MAX :: 1 << 7 - 1; I16_MAX :: 1 << 15 - 1; I32_MAX :: 1 << 31 - 1; I64_MAX :: 1 << 63 - 1; count_ones :: intrinsics.count_ones; count_zeros :: intrinsics.count_zeros; trailing_zeros :: intrinsics.count_trailing_zeros; leading_zeros :: intrinsics.count_leading_zeros; count_trailing_zeros :: intrinsics.count_trailing_zeros; count_leading_zeros :: intrinsics.count_leading_zeros; reverse_bits :: intrinsics.reverse_bits; byte_swap :: intrinsics.byte_swap; overflowing_add :: intrinsics.overflow_add; overflowing_sub :: intrinsics.overflow_sub; overflowing_mul :: intrinsics.overflow_mul; rotate_left8 :: proc(x: u8, k: int) -> u8 { n :: 8; s := uint(k) & (n-1); return x <>(n-s); } rotate_left16 :: proc(x: u16, k: int) -> u16 { n :: 16; s := uint(k) & (n-1); return x <>(n-s); } rotate_left32 :: proc(x: u32, k: int) -> u32 { n :: 32; s := uint(k) & (n-1); return x <>(n-s); } rotate_left64 :: proc(x: u64, k: int) -> u64 { n :: 64; s := uint(k) & (n-1); return x <>(n-s); } rotate_left :: proc(x: uint, k: int) -> uint { n :: 8*size_of(uint); s := uint(k) & (n-1); return x <>(n-s); } from_be_u8 :: proc(i: u8) -> u8 { return i; } from_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } from_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } from_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } from_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } from_le_u8 :: proc(i: u8) -> u8 { return i; } from_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } from_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } from_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } from_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } to_be_u8 :: proc(i: u8) -> u8 { return i; } to_be_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } to_be_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } to_be_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } to_be_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "big" { return i; } else { return byte_swap(i); } } to_le_u8 :: proc(i: u8) -> u8 { return i; } to_le_u16 :: proc(i: u16) -> u16 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } to_le_u32 :: proc(i: u32) -> u32 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } to_le_u64 :: proc(i: u64) -> u64 { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } to_le_uint :: proc(i: uint) -> uint { when ODIN_ENDIAN == "little" { return i; } else { return byte_swap(i); } } len_u8 :: proc(x: u8) -> int { return int(len_u8_table[x]); } len_u16 :: proc(x: u16) -> (n: int) { x := x; if x >= 1<<8 { x >>= 8; n = 8; } return n + int(len_u8_table[x]); } len_u32 :: proc(x: u32) -> (n: int) { x := x; if x >= 1<<16 { x >>= 16; n = 16; } if x >= 1<<8 { x >>= 8; n += 8; } return n + int(len_u8_table[x]); } len_u64 :: proc(x: u64) -> (n: int) { x := x; if x >= 1<<32 { x >>= 32; n = 32; } if x >= 1<<16 { x >>= 16; n += 16; } if x >= 1<<8 { x >>= 8; n += 8; } return n + int(len_u8_table[x]); } len_uint :: proc(x: uint) -> (n: int) { when size_of(uint) == size_of(u64) { return len_u64(u64(x)); } else { return len_u32(u32(x)); } } // returns the minimum number of bits required to represent x len :: proc{len_u8, len_u16, len_u32, len_u64, len_uint}; add_u32 :: proc(x, y, carry: u32) -> (sum, carry_out: u32) { yc := y + carry; sum = x + yc; if sum < x || yc < y { carry_out = 1; } return; } add_u64 :: proc(x, y, carry: u64) -> (sum, carry_out: u64) { yc := y + carry; sum = x + yc; if sum < x || yc < y { carry_out = 1; } return; } add_uint :: proc(x, y, carry: uint) -> (sum, carry_out: uint) { yc := y + carry; sum = x + yc; if sum < x || yc < y { carry_out = 1; } return; } add :: proc{add_u32, add_u64, add_uint}; sub_u32 :: proc(x, y, borrow: u32) -> (diff, borrow_out: u32) { yb := y + borrow; diff = x - yb; if diff > x || yb < y { borrow_out = 1; } return; } sub_u64 :: proc(x, y, borrow: u64) -> (diff, borrow_out: u64) { yb := y + borrow; diff = x - yb; if diff > x || yb < y { borrow_out = 1; } return; } sub_uint :: proc(x, y, borrow: uint) -> (diff, borrow_out: uint) { yb := y + borrow; diff = x - yb; if diff > x || yb < y { borrow_out = 1; } return; } sub :: proc{sub_u32, sub_u64, sub_uint}; mul_u32 :: proc(x, y: u32) -> (hi, lo: u32) { z := u64(x) * u64(y); hi, lo = u32(z>>32), u32(z); return; } mul_u64 :: proc(x, y: u64) -> (hi, lo: u64) { mask :: 1<<32 - 1; x0, x1 := x & mask, x >> 32; y0, y1 := y & mask, y >> 32; w0 := x0 * y0; t := x1*y0 + w0>>32; w1, w2 := t & mask, t >> 32; w1 += x0 * y1; hi = x1*y1 + w2 + w1>>32; lo = x * y; return; } mul_uint :: proc(x, y: uint) -> (hi, lo: uint) { when size_of(uint) == size_of(u32) { a, b := mul_u32(u32(x), u32(y)); } else { #assert(size_of(uint) == size_of(u64)); a, b := mul_u64(u64(x), u64(y)); } return uint(a), uint(b); } mul :: proc{mul_u32, mul_u64, mul_uint}; div_u32 :: proc(hi, lo, y: u32) -> (quo, rem: u32) { assert(y != 0 && y <= hi); z := u64(hi)<<32 | u64(lo); quo, rem = u32(z/u64(y)), u32(z%u64(y)); return; } div_u64 :: proc(hi, lo, y: u64) -> (quo, rem: u64) { y := y; two32 :: 1 << 32; mask32 :: two32 - 1; if y == 0 { panic("divide error"); } if y <= hi { panic("overflow error"); } s := uint(count_leading_zeros(y)); y <<= s; yn1 := y >> 32; yn0 := y & mask32; un32 := hi<>(64-s); un10 := lo << s; un1 := un10 >> 32; un0 := un10 & mask32; q1 := un32 / yn1; rhat := un32 - q1*yn1; for q1 >= two32 || q1*yn0 > two32*rhat+un1 { q1 -= 1; rhat += yn1; if rhat >= two32 { break; } } un21 := un32*two32 + un1 - q1*y; q0 := un21 / yn1; rhat = un21 - q0*yn1; for q0 >= two32 || q0*yn0 > two32*rhat+un0 { q0 -= 1; rhat += yn1; if rhat >= two32 { break; } } return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s; } div_uint :: proc(hi, lo, y: uint) -> (quo, rem: uint) { when size_of(uint) == size_of(u32) { a, b := div_u32(u32(hi), u32(lo), u32(y)); } else { #assert(size_of(uint) == size_of(u64)); a, b := div_u64(u64(hi), u64(lo), u64(y)); } return uint(a), uint(b); } div :: proc{div_u32, div_u64, div_uint}; is_power_of_two_u8 :: proc(i: u8) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_i8 :: proc(i: i8) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_u16 :: proc(i: u16) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_i16 :: proc(i: i16) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_u32 :: proc(i: u32) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_i32 :: proc(i: i32) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_u64 :: proc(i: u64) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_i64 :: proc(i: i64) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_uint :: proc(i: uint) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two_int :: proc(i: int) -> bool { return i > 0 && (i & (i-1)) == 0; } is_power_of_two :: proc{ is_power_of_two_u8, is_power_of_two_i8, is_power_of_two_u16, is_power_of_two_i16, is_power_of_two_u32, is_power_of_two_i32, is_power_of_two_u64, is_power_of_two_i64, is_power_of_two_uint, is_power_of_two_int, }; @private len_u8_table := [256]u8{ 0 = 0, 1 = 1, 2..<4 = 2, 4..<8 = 3, 8..<16 = 4, 16..<32 = 5, 32..<64 = 6, 64..<128 = 7, 128..<256 = 8, }; bitfield_extract_u8 :: proc(value: u8, offset, bits: uint) -> u8 { return (value >> offset) & u8(1< u16 { return (value >> offset) & u16(1< u32 { return (value >> offset) & u32(1< u64 { return (value >> offset) & u64(1< u128 { return (value >> offset) & u128(1< uint { return (value >> offset) & uint(1< i8 { v := (u8(value) >> offset) & u8(1< i16 { v := (u16(value) >> offset) & u16(1< i32 { v := (u32(value) >> offset) & u32(1< i64 { v := (u64(value) >> offset) & u64(1< i128 { v := (u128(value) >> offset) & u128(1< int { v := (uint(value) >> offset) & uint(1< u8 { mask := u8(1< u16 { mask := u16(1< u32 { mask := u32(1< u64 { mask := u64(1< u128 { mask := u128(1< uint { mask := uint(1< i8 { mask := i8(1< i16 { mask := i16(1< i32 { mask := i32(1< i64 { mask := i64(1< i128 { mask := i128(1< int { mask := int(1<