#include // TODO(bill): Big numbers // IMPORTANT TODO(bill): This needs to be completely fixed!!!!!!!! gb_global BlockingMutex hash_exact_value_mutex; struct Ast; struct HashKey; struct Type; struct Entity; bool are_types_identical(Type *x, Type *y); struct Complex128 { f64 real, imag; }; struct Quaternion256 { f64 imag, jmag, kmag, real; }; Quaternion256 quaternion256_inverse(Quaternion256 x) { f64 invmag2 = 1.0 / (x.real*x.real + x.imag*x.imag + x.jmag*x.jmag + x.kmag*x.kmag); x.real = +x.real * invmag2; x.imag = -x.imag * invmag2; x.jmag = -x.jmag * invmag2; x.kmag = -x.kmag * invmag2; return x; } enum ExactValueKind { ExactValue_Invalid = 0, ExactValue_Bool = 1, ExactValue_String = 2, ExactValue_Integer = 3, ExactValue_Float = 4, ExactValue_Complex = 5, ExactValue_Quaternion = 6, ExactValue_Pointer = 7, ExactValue_Compound = 8, // TODO(bill): Is this good enough? ExactValue_Procedure = 9, // TODO(bill): Is this good enough? ExactValue_Typeid = 10, ExactValue_Count, }; struct ExactValue { ExactValueKind kind; union { bool value_bool; String value_string; BigInt value_integer; // NOTE(bill): This must be an integer and not a pointer f64 value_float; i64 value_pointer; Complex128 *value_complex; Quaternion256 *value_quaternion; Ast * value_compound; Ast * value_procedure; Type * value_typeid; }; }; gb_global ExactValue const empty_exact_value = {}; HashKey hash_exact_value(ExactValue v) { mutex_lock(&hash_exact_value_mutex); defer (mutex_unlock(&hash_exact_value_mutex)); HashKey empty = {}; switch (v.kind) { case ExactValue_Invalid: return empty; case ExactValue_Bool: return hash_integer(u64(v.value_bool)); case ExactValue_String: { char const *str = string_intern(v.value_string); return hash_pointer(str); } case ExactValue_Integer: { HashKey key = hashing_proc(v.value_integer.dp, gb_size_of(*v.value_integer.dp) * v.value_integer.used); u8 last = (u8)v.value_integer.sign; key.key = (key.key ^ last) * 0x100000001b3ll; return key; } case ExactValue_Float: return hash_f64(v.value_float); case ExactValue_Pointer: return hash_integer(v.value_pointer); case ExactValue_Complex: return hashing_proc(v.value_complex, gb_size_of(Complex128)); case ExactValue_Quaternion: return hashing_proc(v.value_quaternion, gb_size_of(Quaternion256)); case ExactValue_Compound: return hash_pointer(v.value_compound); case ExactValue_Procedure: return hash_pointer(v.value_procedure); case ExactValue_Typeid: return hash_pointer(v.value_typeid); } return hashing_proc(&v, gb_size_of(ExactValue)); } ExactValue exact_value_compound(Ast *node) { ExactValue result = {ExactValue_Compound}; result.value_compound = node; return result; } ExactValue exact_value_bool(bool b) { ExactValue result = {ExactValue_Bool}; result.value_bool = (b != 0); return result; } ExactValue exact_value_string(String string) { // TODO(bill): Allow for numbers with underscores in them ExactValue result = {ExactValue_String}; result.value_string = string; return result; } ExactValue exact_value_i64(i64 i) { ExactValue result = {ExactValue_Integer}; big_int_from_i64(&result.value_integer, i); return result; } ExactValue exact_value_u64(u64 i) { ExactValue result = {ExactValue_Integer}; big_int_from_u64(&result.value_integer, i); return result; } ExactValue exact_value_float(f64 f) { ExactValue result = {ExactValue_Float}; result.value_float = f; return result; } ExactValue exact_value_complex(f64 real, f64 imag) { ExactValue result = {ExactValue_Complex}; result.value_complex = gb_alloc_item(permanent_allocator(), Complex128); result.value_complex->real = real; result.value_complex->imag = imag; return result; } ExactValue exact_value_quaternion(f64 real, f64 imag, f64 jmag, f64 kmag) { ExactValue result = {ExactValue_Quaternion}; result.value_quaternion = gb_alloc_item(permanent_allocator(), Quaternion256); result.value_quaternion->real = real; result.value_quaternion->imag = imag; result.value_quaternion->jmag = jmag; result.value_quaternion->kmag = kmag; return result; } ExactValue exact_value_pointer(i64 ptr) { ExactValue result = {ExactValue_Pointer}; result.value_pointer = ptr; return result; } ExactValue exact_value_procedure(Ast *node) { ExactValue result = {ExactValue_Procedure}; result.value_procedure = node; return result; } ExactValue exact_value_typeid(Type *type) { ExactValue result = {ExactValue_Typeid}; result.value_typeid = type; return result; } ExactValue exact_value_integer_from_string(String const &string) { ExactValue result = {ExactValue_Integer}; big_int_from_string(&result.value_integer, string); return result; } f64 float_from_string(String string) { isize i = 0; u8 *str = string.text; isize len = string.len; f64 sign = 1.0; if (str[i] == '-') { sign = -1.0; i++; } else if (*str == '+') { i++; } f64 value = 0.0; for (; i < len; i++) { Rune r = cast(Rune)str[i]; if (r == '_') { continue; } i64 v = digit_value(r); if (v >= 10) { break; } value *= 10.0; value += v; } if (str[i] == '.') { f64 pow10 = 10.0; i++; for (; i < string.len; i++) { Rune r = cast(Rune)str[i]; if (r == '_') { continue; } i64 v = digit_value(r); if (v >= 10) { break; } value += v/pow10; pow10 *= 10.0; } } bool frac = false; f64 scale = 1.0; if ((str[i] == 'e') || (str[i] == 'E')) { i++; if (str[i] == '-') { frac = true; i++; } else if (str[i] == '+') { i++; } u32 exp = 0; for (; i < len; i++) { Rune r = cast(Rune)str[i]; if (r == '_') { continue; } u32 d = cast(u32)digit_value(r); if (d >= 10) { break; } exp = exp * 10 + d; } if (exp > 308) exp = 308; while (exp >= 50) { scale *= 1e50; exp -= 50; } while (exp >= 8) { scale *= 1e8; exp -= 8; } while (exp > 0) { scale *= 10.0; exp -= 1; } } return sign * (frac ? (value / scale) : (value * scale)); } ExactValue exact_value_float_from_string(String string) { if (string.len > 2 && string[0] == '0' && string[1] == 'h') { isize digit_count = 0; for (isize i = 2; i < string.len; i++) { if (string[i] != '_') { digit_count += 1; } } u64 u = u64_from_string(string); if (digit_count == 4) { u16 x = cast(u16)u; f32 f = f16_to_f32(x); return exact_value_float(cast(f64)f); } else if (digit_count == 8) { u32 x = cast(u32)u; f32 f = bit_cast(x); return exact_value_float(cast(f64)f); } else if (digit_count == 16) { f64 f = bit_cast(u); return exact_value_float(f); } else { GB_PANIC("Invalid hexadecimal float, expected 8 or 16 digits, got %td", digit_count); } } if (!string_contains_char(string, '.') && !string_contains_char(string, '-')) { // NOTE(bill): treat as integer return exact_value_integer_from_string(string); } f64 f = float_from_string(string); return exact_value_float(f); } ExactValue exact_value_from_basic_literal(TokenKind kind, String const &string) { switch (kind) { case Token_String: return exact_value_string(string); case Token_Integer: return exact_value_integer_from_string(string); case Token_Float: return exact_value_float_from_string(string); case Token_Imag: { String str = string; Rune last_rune = cast(Rune)str[str.len-1]; str.len--; // Ignore the 'i|j|k' f64 imag = float_from_string(str); switch (last_rune) { case 'i': return exact_value_complex(0, imag); case 'j': return exact_value_quaternion(0, 0, imag, 0); case 'k': return exact_value_quaternion(0, 0, 0, imag); default: GB_PANIC("Invalid imaginary basic literal"); } } case Token_Rune: { Rune r = GB_RUNE_INVALID; utf8_decode(string.text, string.len, &r); return exact_value_i64(r); } default: GB_PANIC("Invalid token for basic literal"); break; } ExactValue result = {ExactValue_Invalid}; return result; } ExactValue exact_value_to_integer(ExactValue v) { switch (v.kind) { case ExactValue_Bool: { i64 i = 0; if (v.value_bool) { i = 1; } return exact_value_i64(i); } case ExactValue_Integer: return v; case ExactValue_Float: { i64 i = cast(i64)v.value_float; f64 f = cast(f64)i; if (f == v.value_float) { return exact_value_i64(i); } break; } case ExactValue_Pointer: return exact_value_i64(cast(i64)cast(intptr)v.value_pointer); } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_to_float(ExactValue v) { switch (v.kind) { case ExactValue_Integer: return exact_value_float(big_int_to_f64(&v.value_integer)); case ExactValue_Float: return v; } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_to_complex(ExactValue v) { switch (v.kind) { case ExactValue_Integer: return exact_value_complex(big_int_to_f64(&v.value_integer), 0); case ExactValue_Float: return exact_value_complex(v.value_float, 0); case ExactValue_Complex: return v; // case ExactValue_Quaternion: // return exact_value_complex(v.value_quaternion.real, v.value_quaternion.imag); } ExactValue r = {ExactValue_Invalid}; v.value_complex = gb_alloc_item(permanent_allocator(), Complex128); return r; } ExactValue exact_value_to_quaternion(ExactValue v) { switch (v.kind) { case ExactValue_Integer: return exact_value_quaternion(big_int_to_f64(&v.value_integer), 0, 0, 0); case ExactValue_Float: return exact_value_quaternion(v.value_float, 0, 0, 0); case ExactValue_Complex: return exact_value_quaternion(v.value_complex->real, v.value_complex->imag, 0, 0); case ExactValue_Quaternion: return v; } ExactValue r = {ExactValue_Invalid}; v.value_quaternion = gb_alloc_item(permanent_allocator(), Quaternion256); return r; } ExactValue exact_value_real(ExactValue v) { switch (v.kind) { case ExactValue_Integer: case ExactValue_Float: return v; case ExactValue_Complex: return exact_value_float(v.value_complex->real); case ExactValue_Quaternion: return exact_value_float(v.value_quaternion->real); } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_imag(ExactValue v) { switch (v.kind) { case ExactValue_Integer: case ExactValue_Float: return exact_value_i64(0); case ExactValue_Complex: return exact_value_float(v.value_complex->imag); case ExactValue_Quaternion: return exact_value_float(v.value_quaternion->imag); } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_jmag(ExactValue v) { switch (v.kind) { case ExactValue_Integer: case ExactValue_Float: case ExactValue_Complex: return exact_value_i64(0); case ExactValue_Quaternion: return exact_value_float(v.value_quaternion->jmag); } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_kmag(ExactValue v) { switch (v.kind) { case ExactValue_Integer: case ExactValue_Float: case ExactValue_Complex: return exact_value_i64(0); case ExactValue_Quaternion: return exact_value_float(v.value_quaternion->kmag); } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_make_imag(ExactValue v) { switch (v.kind) { case ExactValue_Integer: return exact_value_complex(0, exact_value_to_float(v).value_float); case ExactValue_Float: return exact_value_complex(0, v.value_float); default: GB_PANIC("Expected an integer or float type for 'exact_value_make_imag'"); } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_make_jmag(ExactValue v) { switch (v.kind) { case ExactValue_Integer: return exact_value_quaternion(0, 0, exact_value_to_float(v).value_float, 0); case ExactValue_Float: return exact_value_quaternion(0, 0, v.value_float, 0); default: GB_PANIC("Expected an integer or float type for 'exact_value_make_imag'"); } ExactValue r = {ExactValue_Invalid}; return r; } ExactValue exact_value_make_kmag(ExactValue v) { switch (v.kind) { case ExactValue_Integer: return exact_value_quaternion(0, 0, 0, exact_value_to_float(v).value_float); case ExactValue_Float: return exact_value_quaternion(0, 0, 0, v.value_float); default: GB_PANIC("Expected an integer or float type for 'exact_value_make_imag'"); } ExactValue r = {ExactValue_Invalid}; return r; } i64 exact_value_to_i64(ExactValue v) { v = exact_value_to_integer(v); if (v.kind == ExactValue_Integer) { return big_int_to_i64(&v.value_integer); } return 0; } f64 exact_value_to_f64(ExactValue v) { v = exact_value_to_float(v); if (v.kind == ExactValue_Float) { return v.value_float; } return 0.0; } ExactValue exact_unary_operator_value(TokenKind op, ExactValue v, i32 precision, bool is_unsigned) { switch (op) { case Token_Add: { switch (v.kind) { case ExactValue_Invalid: case ExactValue_Integer: case ExactValue_Float: case ExactValue_Complex: case ExactValue_Quaternion: return v; } break; } case Token_Sub: { switch (v.kind) { case ExactValue_Invalid: return v; case ExactValue_Integer: { ExactValue i = {ExactValue_Integer}; big_int_neg(&i.value_integer, &v.value_integer); return i; } case ExactValue_Float: { ExactValue i = v; i.value_float = -i.value_float; return i; } case ExactValue_Complex: { f64 real = v.value_complex->real; f64 imag = v.value_complex->imag; return exact_value_complex(-real, -imag); } case ExactValue_Quaternion: { f64 real = v.value_quaternion->real; f64 imag = v.value_quaternion->imag; f64 jmag = v.value_quaternion->jmag; f64 kmag = v.value_quaternion->kmag; return exact_value_quaternion(-real, -imag, -jmag, -kmag); } } break; } case Token_Xor: { switch (v.kind) { case ExactValue_Invalid: return v; case ExactValue_Integer: { GB_ASSERT(precision != 0); ExactValue i = {ExactValue_Integer}; big_int_not(&i.value_integer, &v.value_integer, precision, !is_unsigned); return i; } default: goto failure; } } case Token_Not: { switch (v.kind) { case ExactValue_Invalid: return v; case ExactValue_Bool: return exact_value_bool(!v.value_bool); } break; } } failure: GB_PANIC("Invalid unary operation, %.*s", LIT(token_strings[op])); ExactValue error_value = {}; return error_value; } // NOTE(bill): Make sure things are evaluated in correct order i32 exact_value_order(ExactValue const &v) { switch (v.kind) { case ExactValue_Invalid: return 0; case ExactValue_Bool: case ExactValue_String: return 1; case ExactValue_Integer: return 2; case ExactValue_Float: return 3; case ExactValue_Complex: return 4; case ExactValue_Quaternion: return 5; case ExactValue_Pointer: return 6; case ExactValue_Procedure: return 7; // case ExactValue_Compound: // return 8; default: GB_PANIC("How'd you get here? Invalid Value.kind %d", v.kind); return -1; } } void match_exact_values(ExactValue *x, ExactValue *y) { if (exact_value_order(*y) < exact_value_order(*x)) { match_exact_values(y, x); return; } switch (x->kind) { case ExactValue_Invalid: *y = *x; return; case ExactValue_Bool: case ExactValue_String: case ExactValue_Quaternion: return; case ExactValue_Integer: switch (y->kind) { case ExactValue_Integer: return; case ExactValue_Float: // TODO(bill): Is this good enough? *x = exact_value_float(big_int_to_f64(&x->value_integer)); return; case ExactValue_Complex: *x = exact_value_complex(big_int_to_f64(&x->value_integer), 0); return; case ExactValue_Quaternion: *x = exact_value_quaternion(big_int_to_f64(&x->value_integer), 0, 0, 0); return; } break; case ExactValue_Float: switch (y->kind) { case ExactValue_Float: return; case ExactValue_Complex: *x = exact_value_to_complex(*x); return; case ExactValue_Quaternion: *x = exact_value_to_quaternion(*x); return; } break; case ExactValue_Complex: switch (y->kind) { case ExactValue_Complex: return; case ExactValue_Quaternion: *x = exact_value_to_quaternion(*x); return; } break; case ExactValue_Procedure: return; } compiler_error("match_exact_values: How'd you get here? Invalid ExactValueKind %d", x->kind); } // TODO(bill): Allow for pointer arithmetic? Or are pointer slices good enough? ExactValue exact_binary_operator_value(TokenKind op, ExactValue x, ExactValue y) { match_exact_values(&x, &y); switch (x.kind) { case ExactValue_Invalid: return x; case ExactValue_Bool: switch (op) { case Token_CmpAnd: return exact_value_bool(x.value_bool && y.value_bool); case Token_CmpOr: return exact_value_bool(x.value_bool || y.value_bool); case Token_And: return exact_value_bool(x.value_bool & y.value_bool); case Token_Or: return exact_value_bool(x.value_bool | y.value_bool); case Token_AndNot: return exact_value_bool(x.value_bool & !y.value_bool); case Token_Xor: return exact_value_bool((x.value_bool && !y.value_bool) || (!x.value_bool && y.value_bool)); default: goto error; } break; case ExactValue_Integer: { BigInt const *a = &x.value_integer; BigInt const *b = &y.value_integer; BigInt c = {}; switch (op) { case Token_Add: big_int_add(&c, a, b); break; case Token_Sub: big_int_sub(&c, a, b); break; case Token_Mul: big_int_mul(&c, a, b); break; case Token_Quo: return exact_value_float(fmod(big_int_to_f64(a), big_int_to_f64(b))); case Token_QuoEq: big_int_quo(&c, a, b); break; // NOTE(bill): Integer division case Token_Mod: big_int_rem(&c, a, b); break; case Token_ModMod: big_int_euclidean_mod(&c, a, b); break; case Token_And: big_int_and(&c, a, b); break; case Token_Or: big_int_or(&c, a, b); break; case Token_Xor: big_int_xor(&c, a, b); break; case Token_AndNot: big_int_and_not(&c, a, b); break; case Token_Shl: big_int_shl(&c, a, b); break; case Token_Shr: big_int_shr(&c, a, b); break; default: goto error; } ExactValue res = {ExactValue_Integer}; res.value_integer = c; return res; } case ExactValue_Float: { f64 a = x.value_float; f64 b = y.value_float; switch (op) { case Token_Add: return exact_value_float(a + b); case Token_Sub: return exact_value_float(a - b); case Token_Mul: return exact_value_float(a * b); case Token_Quo: return exact_value_float(a / b); default: goto error; } break; } case ExactValue_Complex: { y = exact_value_to_complex(y); f64 a = x.value_complex->real; f64 b = x.value_complex->imag; f64 c = y.value_complex->real; f64 d = y.value_complex->imag; f64 real = 0; f64 imag = 0; switch (op) { case Token_Add: real = a + c; imag = b + d; break; case Token_Sub: real = a - c; imag = b - d; break; case Token_Mul: real = (a*c - b*d); imag = (b*c + a*d); break; case Token_Quo: { f64 s = c*c + d*d; real = (a*c + b*d)/s; imag = (b*c - a*d)/s; break; } default: goto error; } return exact_value_complex(real, imag); break; } case ExactValue_Quaternion: { y = exact_value_to_quaternion(y); f64 xr = x.value_quaternion->real; f64 xi = x.value_quaternion->imag; f64 xj = x.value_quaternion->jmag; f64 xk = x.value_quaternion->kmag; f64 yr = y.value_quaternion->real; f64 yi = y.value_quaternion->imag; f64 yj = y.value_quaternion->jmag; f64 yk = y.value_quaternion->kmag; f64 real = 0; f64 imag = 0; f64 jmag = 0; f64 kmag = 0; switch (op) { case Token_Add: real = xr + yr; imag = xi + yi; jmag = xj + yj; kmag = xk + yk; break; case Token_Sub: real = xr - yr; imag = xi - yi; jmag = xj - yj; kmag = xk - yk; break; case Token_Mul: imag = xr * yi + xi * yr + xj * yk - xk * yj; jmag = xr * yj - xi * yk + xj * yr + xk * yi; kmag = xr * yk + xi * yj - xj * yi + xk * yr; real = xr * yr - xi * yi - xj * yj - xk * yk; break; case Token_Quo: { f64 invmag2 = 1.0 / (yr*yr + yi*yi + yj*yj + yk*yk); imag = (xr * -yi + xi * +yr + xj * -yk - xk * -yj) * invmag2; jmag = (xr * -yj - xi * -yk + xj * +yr + xk * -yi) * invmag2; kmag = (xr * -yk + xi * -yj - xj * -yi + xk * +yr) * invmag2; real = (xr * +yr - xi * -yi - xj * -yj - xk * -yk) * invmag2; break; } default: goto error; } return exact_value_quaternion(real, imag, jmag, kmag); break; } case ExactValue_String: { if (op != Token_Add) goto error; // NOTE(bill): How do you minimize this over allocation? String sx = x.value_string; String sy = y.value_string; isize len = sx.len+sy.len; u8 *data = gb_alloc_array(permanent_allocator(), u8, len); gb_memmove(data, sx.text, sx.len); gb_memmove(data+sx.len, sy.text, sy.len); return exact_value_string(make_string(data, len)); break; } } error:; // NOTE(bill): MSVC accepts this??? apparently you cannot declare variables immediately after labels... return empty_exact_value; } gb_inline ExactValue exact_value_add(ExactValue const &x, ExactValue const &y) { return exact_binary_operator_value(Token_Add, x, y); } gb_inline ExactValue exact_value_sub(ExactValue const &x, ExactValue const &y) { return exact_binary_operator_value(Token_Sub, x, y); } gb_inline ExactValue exact_value_mul(ExactValue const &x, ExactValue const &y) { return exact_binary_operator_value(Token_Mul, x, y); } gb_inline ExactValue exact_value_quo(ExactValue const &x, ExactValue const &y) { return exact_binary_operator_value(Token_Quo, x, y); } gb_inline ExactValue exact_value_shift(TokenKind op, ExactValue const &x, ExactValue const &y) { return exact_binary_operator_value(op, x, y); } gb_inline ExactValue exact_value_increment_one(ExactValue const &x) { return exact_binary_operator_value(Token_Add, x, exact_value_i64(1)); } i32 cmp_f64(f64 a, f64 b) { return (a > b) - (a < b); } bool compare_exact_values(TokenKind op, ExactValue x, ExactValue y) { match_exact_values(&x, &y); switch (x.kind) { case ExactValue_Invalid: return false; case ExactValue_Bool: switch (op) { case Token_CmpEq: return x.value_bool == y.value_bool; case Token_NotEq: return x.value_bool != y.value_bool; } break; case ExactValue_Integer: { i32 cmp = big_int_cmp(&x.value_integer, &y.value_integer); switch (op) { case Token_CmpEq: return cmp == 0; case Token_NotEq: return cmp != 0; case Token_Lt: return cmp < 0; case Token_LtEq: return cmp <= 0; case Token_Gt: return cmp > 0; case Token_GtEq: return cmp >= 0; } break; } case ExactValue_Float: { f64 a = x.value_float; f64 b = y.value_float; switch (op) { case Token_CmpEq: return cmp_f64(a, b) == 0; case Token_NotEq: return cmp_f64(a, b) != 0; case Token_Lt: return cmp_f64(a, b) < 0; case Token_LtEq: return cmp_f64(a, b) <= 0; case Token_Gt: return cmp_f64(a, b) > 0; case Token_GtEq: return cmp_f64(a, b) >= 0; } break; } case ExactValue_Complex: { f64 a = x.value_complex->real; f64 b = x.value_complex->imag; f64 c = y.value_complex->real; f64 d = y.value_complex->imag; switch (op) { case Token_CmpEq: return cmp_f64(a, c) == 0 && cmp_f64(b, d) == 0; case Token_NotEq: return cmp_f64(a, c) != 0 || cmp_f64(b, d) != 0; } break; } case ExactValue_String: { String a = x.value_string; String b = y.value_string; // TODO(bill): gb_memcompare is used because the strings are UTF-8 switch (op) { case Token_CmpEq: return a == b; case Token_NotEq: return a != b; case Token_Lt: return a < b; case Token_LtEq: return a <= b; case Token_Gt: return a > b; case Token_GtEq: return a >= b; } break; } case ExactValue_Typeid: switch (op) { case Token_CmpEq: return are_types_identical(x.value_typeid, y.value_typeid); case Token_NotEq: return !are_types_identical(x.value_typeid, y.value_typeid); } break; case ExactValue_Procedure: switch (op) { case Token_CmpEq: return are_types_identical(x.value_typeid, y.value_typeid); case Token_NotEq: return !are_types_identical(x.value_typeid, y.value_typeid); } break; } GB_PANIC("Invalid comparison"); return false; } Entity *strip_entity_wrapping(Ast *expr); Entity *strip_entity_wrapping(Entity *e); gbString write_expr_to_string(gbString str, Ast *node, bool shorthand); gbString write_exact_value_to_string(gbString str, ExactValue const &v, isize string_limit=36) { switch (v.kind) { case ExactValue_Invalid: return str; case ExactValue_Bool: return gb_string_appendc(str, v.value_bool ? "true" : "false"); case ExactValue_String: { String s = quote_to_ascii(heap_allocator(), v.value_string); string_limit = gb_max(string_limit, 36); if (s.len <= string_limit) { str = gb_string_append_length(str, s.text, s.len); } else { isize n = string_limit/5; str = gb_string_append_length(str, s.text, n); str = gb_string_append_fmt(str, "\"..%lld chars..\"", s.len-(2*n)); str = gb_string_append_length(str, s.text+s.len-n, n); } gb_free(heap_allocator(), s.text); return str; } case ExactValue_Integer: { String s = big_int_to_string(heap_allocator(), &v.value_integer); str = gb_string_append_length(str, s.text, s.len); gb_free(heap_allocator(), s.text); return str; } case ExactValue_Float: return gb_string_append_fmt(str, "%f", v.value_float); case ExactValue_Complex: return gb_string_append_fmt(str, "%f+%fi", v.value_complex->real, v.value_complex->imag); case ExactValue_Quaternion: return gb_string_append_fmt(str, "%f+%fi+%fj+%fk", v.value_quaternion->real, v.value_quaternion->imag, v.value_quaternion->jmag, v.value_quaternion->kmag); case ExactValue_Pointer: return str; case ExactValue_Compound: return write_expr_to_string(str, v.value_compound, false); case ExactValue_Procedure: return write_expr_to_string(str, v.value_procedure, false); } return str; }; gbString exact_value_to_string(ExactValue const &v, isize string_limit=36) { return write_exact_value_to_string(gb_string_make(heap_allocator(), ""), v, string_limit); }