package math import "core:intrinsics" _ :: intrinsics Float_Class :: enum { Normal, // an ordinary nonzero floating point value Subnormal, // a subnormal floating point value Zero, // zero Neg_Zero, // the negative zero NaN, // Not-A-Number (NaN) Inf, // positive infinity Neg_Inf, // negative infinity } TAU :: 6.28318530717958647692528676655900576 PI :: 3.14159265358979323846264338327950288 E :: 2.71828182845904523536 τ :: TAU π :: PI e :: E SQRT_TWO :: 1.41421356237309504880168872420969808 SQRT_THREE :: 1.73205080756887729352744634150587236 SQRT_FIVE :: 2.23606797749978969640917366873127623 LN2 :: 0.693147180559945309417232121458176568 LN10 :: 2.30258509299404568401799145468436421 MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64' MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32' MAX_F16_PRECISION :: 4 // Maximum number of meaningful digits after the decimal point for 'f16' RAD_PER_DEG :: TAU/360.0 DEG_PER_RAD :: 360.0/TAU @(default_calling_convention="none") foreign _ { @(link_name="llvm.sqrt.f16") sqrt_f16 :: proc(x: f16) -> f16 --- @(link_name="llvm.sqrt.f32") sqrt_f32 :: proc(x: f32) -> f32 --- @(link_name="llvm.sqrt.f64") sqrt_f64 :: proc(x: f64) -> f64 --- @(link_name="llvm.sin.f16") sin_f16 :: proc(θ: f16) -> f16 --- @(link_name="llvm.sin.f32") sin_f32 :: proc(θ: f32) -> f32 --- @(link_name="llvm.sin.f64") sin_f64 :: proc(θ: f64) -> f64 --- @(link_name="llvm.cos.f16") cos_f16 :: proc(θ: f16) -> f16 --- @(link_name="llvm.cos.f32") cos_f32 :: proc(θ: f32) -> f32 --- @(link_name="llvm.cos.f64") cos_f64 :: proc(θ: f64) -> f64 --- @(link_name="llvm.pow.f16") pow_f16 :: proc(x, power: f16) -> f16 --- @(link_name="llvm.pow.f32") pow_f32 :: proc(x, power: f32) -> f32 --- @(link_name="llvm.pow.f64") pow_f64 :: proc(x, power: f64) -> f64 --- @(link_name="llvm.fmuladd.f16") fmuladd_f16 :: proc(a, b, c: f16) -> f16 --- @(link_name="llvm.fmuladd.f32") fmuladd_f32 :: proc(a, b, c: f32) -> f32 --- @(link_name="llvm.fmuladd.f64") fmuladd_f64 :: proc(a, b, c: f64) -> f64 --- @(link_name="llvm.log.f16") ln_f16 :: proc(x: f16) -> f16 --- @(link_name="llvm.log.f32") ln_f32 :: proc(x: f32) -> f32 --- @(link_name="llvm.log.f64") ln_f64 :: proc(x: f64) -> f64 --- @(link_name="llvm.exp.f16") exp_f16 :: proc(x: f16) -> f16 --- @(link_name="llvm.exp.f32") exp_f32 :: proc(x: f32) -> f32 --- @(link_name="llvm.exp.f64") exp_f64 :: proc(x: f64) -> f64 --- @(link_name="llvm.ldexp.f16") ldexp_f16 :: proc(val: f16, exp: i32) -> f16 --- @(link_name="llvm.ldexp.f32") ldexp_f32 :: proc(val: f32, exp: i32) -> f32 --- @(link_name="llvm.ldexp.f64") ldexp_f64 :: proc(val: f64, exp: i32) -> f64 --- } sqrt_f16le :: proc(x: f16le) -> f16le { return #force_inline f16le(sqrt_f16(f16(x))) } sqrt_f16be :: proc(x: f16be) -> f16be { return #force_inline f16be(sqrt_f16(f16(x))) } sqrt_f32le :: proc(x: f32le) -> f32le { return #force_inline f32le(sqrt_f32(f32(x))) } sqrt_f32be :: proc(x: f32be) -> f32be { return #force_inline f32be(sqrt_f32(f32(x))) } sqrt_f64le :: proc(x: f64le) -> f64le { return #force_inline f64le(sqrt_f64(f64(x))) } sqrt_f64be :: proc(x: f64be) -> f64be { return #force_inline f64be(sqrt_f64(f64(x))) } sqrt :: proc{ sqrt_f16, sqrt_f16le, sqrt_f16be, sqrt_f32, sqrt_f32le, sqrt_f32be, sqrt_f64, sqrt_f64le, sqrt_f64be, } sin_f16le :: proc(θ: f16le) -> f16le { return #force_inline f16le(sin_f16(f16(θ))) } sin_f16be :: proc(θ: f16be) -> f16be { return #force_inline f16be(sin_f16(f16(θ))) } sin_f32le :: proc(θ: f32le) -> f32le { return #force_inline f32le(sin_f32(f32(θ))) } sin_f32be :: proc(θ: f32be) -> f32be { return #force_inline f32be(sin_f32(f32(θ))) } sin_f64le :: proc(θ: f64le) -> f64le { return #force_inline f64le(sin_f64(f64(θ))) } sin_f64be :: proc(θ: f64be) -> f64be { return #force_inline f64be(sin_f64(f64(θ))) } sin :: proc{ sin_f16, sin_f16le, sin_f16be, sin_f32, sin_f32le, sin_f32be, sin_f64, sin_f64le, sin_f64be, } cos_f16le :: proc(θ: f16le) -> f16le { return #force_inline f16le(cos_f16(f16(θ))) } cos_f16be :: proc(θ: f16be) -> f16be { return #force_inline f16be(cos_f16(f16(θ))) } cos_f32le :: proc(θ: f32le) -> f32le { return #force_inline f32le(cos_f32(f32(θ))) } cos_f32be :: proc(θ: f32be) -> f32be { return #force_inline f32be(cos_f32(f32(θ))) } cos_f64le :: proc(θ: f64le) -> f64le { return #force_inline f64le(cos_f64(f64(θ))) } cos_f64be :: proc(θ: f64be) -> f64be { return #force_inline f64be(cos_f64(f64(θ))) } cos :: proc{ cos_f16, cos_f16le, cos_f16be, cos_f32, cos_f32le, cos_f32be, cos_f64, cos_f64le, cos_f64be, } pow_f16le :: proc(x, power: f16le) -> f16le { return #force_inline f16le(pow_f16(f16(x), f16(power))) } pow_f16be :: proc(x, power: f16be) -> f16be { return #force_inline f16be(pow_f16(f16(x), f16(power))) } pow_f32le :: proc(x, power: f32le) -> f32le { return #force_inline f32le(pow_f32(f32(x), f32(power))) } pow_f32be :: proc(x, power: f32be) -> f32be { return #force_inline f32be(pow_f32(f32(x), f32(power))) } pow_f64le :: proc(x, power: f64le) -> f64le { return #force_inline f64le(pow_f64(f64(x), f64(power))) } pow_f64be :: proc(x, power: f64be) -> f64be { return #force_inline f64be(pow_f64(f64(x), f64(power))) } pow :: proc{ pow_f16, pow_f16le, pow_f16be, pow_f32, pow_f32le, pow_f32be, pow_f64, pow_f64le, pow_f64be, } fmuladd_f16le :: proc(a, b, c: f16le) -> f16le { return #force_inline f16le(fmuladd_f16(f16(a), f16(b), f16(c))) } fmuladd_f16be :: proc(a, b, c: f16be) -> f16be { return #force_inline f16be(fmuladd_f16(f16(a), f16(b), f16(c))) } fmuladd_f32le :: proc(a, b, c: f32le) -> f32le { return #force_inline f32le(fmuladd_f32(f32(a), f32(b), f32(c))) } fmuladd_f32be :: proc(a, b, c: f32be) -> f32be { return #force_inline f32be(fmuladd_f32(f32(a), f32(b), f32(c))) } fmuladd_f64le :: proc(a, b, c: f64le) -> f64le { return #force_inline f64le(fmuladd_f64(f64(a), f64(b), f64(c))) } fmuladd_f64be :: proc(a, b, c: f64be) -> f64be { return #force_inline f64be(fmuladd_f64(f64(a), f64(b), f64(c))) } fmuladd :: proc{ fmuladd_f16, fmuladd_f16le, fmuladd_f16be, fmuladd_f32, fmuladd_f32le, fmuladd_f32be, fmuladd_f64, fmuladd_f64le, fmuladd_f64be, } ln_f16le :: proc(x: f16le) -> f16le { return #force_inline f16le(ln_f16(f16(x))) } ln_f16be :: proc(x: f16be) -> f16be { return #force_inline f16be(ln_f16(f16(x))) } ln_f32le :: proc(x: f32le) -> f32le { return #force_inline f32le(ln_f32(f32(x))) } ln_f32be :: proc(x: f32be) -> f32be { return #force_inline f32be(ln_f32(f32(x))) } ln_f64le :: proc(x: f64le) -> f64le { return #force_inline f64le(ln_f64(f64(x))) } ln_f64be :: proc(x: f64be) -> f64be { return #force_inline f64be(ln_f64(f64(x))) } ln :: proc{ ln_f16, ln_f16le, ln_f16be, ln_f32, ln_f32le, ln_f32be, ln_f64, ln_f64le, ln_f64be, } exp_f16le :: proc(x: f16le) -> f16le { return #force_inline f16le(exp_f16(f16(x))) } exp_f16be :: proc(x: f16be) -> f16be { return #force_inline f16be(exp_f16(f16(x))) } exp_f32le :: proc(x: f32le) -> f32le { return #force_inline f32le(exp_f32(f32(x))) } exp_f32be :: proc(x: f32be) -> f32be { return #force_inline f32be(exp_f32(f32(x))) } exp_f64le :: proc(x: f64le) -> f64le { return #force_inline f64le(exp_f64(f64(x))) } exp_f64be :: proc(x: f64be) -> f64be { return #force_inline f64be(exp_f64(f64(x))) } exp :: proc{ exp_f16, exp_f16le, exp_f16be, exp_f32, exp_f32le, exp_f32be, exp_f64, exp_f64le, exp_f64be, } ldexp_f16le :: proc(val: f16le, exp: i32) -> f16le { return #force_inline f16le(ldexp_f16(f16(val), exp)) } ldexp_f16be :: proc(val: f16be, exp: i32) -> f16be { return #force_inline f16be(ldexp_f16(f16(val), exp)) } ldexp_f32le :: proc(val: f32le, exp: i32) -> f32le { return #force_inline f32le(ldexp_f32(f32(val), exp)) } ldexp_f32be :: proc(val: f32be, exp: i32) -> f32be { return #force_inline f32be(ldexp_f32(f32(val), exp)) } ldexp_f64le :: proc(val: f64le, exp: i32) -> f64le { return #force_inline f64le(ldexp_f64(f64(val), exp)) } ldexp_f64be :: proc(val: f64be, exp: i32) -> f64be { return #force_inline f64be(ldexp_f64(f64(val), exp)) } ldexp :: proc{ ldexp_f16, ldexp_f16le, ldexp_f16be, ldexp_f32, ldexp_f32le, ldexp_f32be, ldexp_f64, ldexp_f64le, ldexp_f64be, } log_f16 :: proc(x, base: f16) -> f16 { return ln(x) / ln(base) } log_f16le :: proc(x, base: f16le) -> f16le { return f16le(log_f16(f16(x), f16(base))) } log_f16be :: proc(x, base: f16be) -> f16be { return f16be(log_f16(f16(x), f16(base))) } log_f32 :: proc(x, base: f32) -> f32 { return ln(x) / ln(base) } log_f32le :: proc(x, base: f32le) -> f32le { return f32le(log_f32(f32(x), f32(base))) } log_f32be :: proc(x, base: f32be) -> f32be { return f32be(log_f32(f32(x), f32(base))) } log_f64 :: proc(x, base: f64) -> f64 { return ln(x) / ln(base) } log_f64le :: proc(x, base: f64le) -> f64le { return f64le(log_f64(f64(x), f64(base))) } log_f64be :: proc(x, base: f64be) -> f64be { return f64be(log_f64(f64(x), f64(base))) } log :: proc{ log_f16, log_f16le, log_f16be, log_f32, log_f32le, log_f32be, log_f64, log_f64le, log_f64be, } log2_f16 :: proc(x: f16) -> f16 { return ln(x)/LN2 } log2_f16le :: proc(x: f16le) -> f16le { return f16le(log2_f16(f16(x))) } log2_f16be :: proc(x: f16be) -> f16be { return f16be(log2_f16(f16(x))) } log2_f32 :: proc(x: f32) -> f32 { return ln(x)/LN2 } log2_f32le :: proc(x: f32le) -> f32le { return f32le(log2_f32(f32(x))) } log2_f32be :: proc(x: f32be) -> f32be { return f32be(log2_f32(f32(x))) } log2_f64 :: proc(x: f64) -> f64 { return ln(x)/LN2 } log2_f64le :: proc(x: f64le) -> f64le { return f64le(log2_f64(f64(x))) } log2_f64be :: proc(x: f64be) -> f64be { return f64be(log2_f64(f64(x))) } log2 :: proc{ log2_f16, log2_f16le, log2_f16be, log2_f32, log2_f32le, log2_f32be, log2_f64, log2_f64le, log2_f64be, } log10_f16 :: proc(x: f16) -> f16 { return ln(x)/LN10 } log10_f16le :: proc(x: f16le) -> f16le { return f16le(log10_f16(f16(x))) } log10_f16be :: proc(x: f16be) -> f16be { return f16be(log10_f16(f16(x))) } log10_f32 :: proc(x: f32) -> f32 { return ln(x)/LN10 } log10_f32le :: proc(x: f32le) -> f32le { return f32le(log10_f32(f32(x))) } log10_f32be :: proc(x: f32be) -> f32be { return f32be(log10_f32(f32(x))) } log10_f64 :: proc(x: f64) -> f64 { return ln(x)/LN10 } log10_f64le :: proc(x: f64le) -> f64le { return f64le(log10_f64(f64(x))) } log10_f64be :: proc(x: f64be) -> f64be { return f64be(log10_f64(f64(x))) } log10 :: proc{ log10_f16, log10_f16le, log10_f16be, log10_f32, log10_f32le, log10_f32be, log10_f64, log10_f64le, log10_f64be, } tan_f16 :: proc(θ: f16) -> f16 { return sin(θ)/cos(θ) } tan_f16le :: proc(θ: f16le) -> f16le { return f16le(tan_f16(f16(θ))) } tan_f16be :: proc(θ: f16be) -> f16be { return f16be(tan_f16(f16(θ))) } tan_f32 :: proc(θ: f32) -> f32 { return sin(θ)/cos(θ) } tan_f32le :: proc(θ: f32le) -> f32le { return f32le(tan_f32(f32(θ))) } tan_f32be :: proc(θ: f32be) -> f32be { return f32be(tan_f32(f32(θ))) } tan_f64 :: proc(θ: f64) -> f64 { return sin(θ)/cos(θ) } tan_f64le :: proc(θ: f64le) -> f64le { return f64le(tan_f64(f64(θ))) } tan_f64be :: proc(θ: f64be) -> f64be { return f64be(tan_f64(f64(θ))) } tan :: proc{ tan_f16, tan_f16le, tan_f16be, tan_f32, tan_f32le, tan_f32be, tan_f64, tan_f64le, tan_f64be, } lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t } saturate :: proc(a: $T) -> (x: T) { return clamp(a, 0, 1) } unlerp :: proc(a, b, x: $T) -> (t: T) where intrinsics.type_is_float(T), !intrinsics.type_is_array(T) { return (x-a)/(b-a) } remap :: proc(old_value, old_min, old_max, new_min, new_max: $T) -> (x: T) where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { old_range := old_max - old_min new_range := new_max - new_min if old_range == 0 { return new_range / 2 } return ((old_value - old_min) / old_range) * new_range + new_min } wrap :: proc(x, y: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { tmp := mod(x, y) return y + tmp if tmp < 0 else tmp } angle_diff :: proc(a, b: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { dist := wrap(b - a, TAU) return wrap(dist*2, TAU) - dist } angle_lerp :: proc(a, b, t: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { return a + angle_diff(a, b) * t } step :: proc(edge, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { return 0 if x < edge else 1 } smoothstep :: proc(edge0, edge1, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) { t := clamp((x - edge0) / (edge1 - edge0), 0, 1) return t * t * (3 - 2*t) } bias :: proc(t, b: $T) -> T where intrinsics.type_is_numeric(T) { return t / (((1/b) - 2) * (1 - t) + 1) } gain :: proc(t, g: $T) -> T where intrinsics.type_is_numeric(T) { if t < 0.5 { return bias(t*2, g)*0.5 } return bias(t*2 - 1, 1 - g)*0.5 + 0.5 } sign_f16 :: proc(x: f16) -> f16 { return f16(int(0 < x) - int(x < 0)) } sign_f16le :: proc(x: f16le) -> f16le { return f16le(int(0 < x) - int(x < 0)) } sign_f16be :: proc(x: f16be) -> f16be { return f16be(int(0 < x) - int(x < 0)) } sign_f32 :: proc(x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)) } sign_f32le :: proc(x: f32le) -> f32le { return f32le(int(0 < x) - int(x < 0)) } sign_f32be :: proc(x: f32be) -> f32be { return f32be(int(0 < x) - int(x < 0)) } sign_f64 :: proc(x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)) } sign_f64le :: proc(x: f64le) -> f64le { return f64le(int(0 < x) - int(x < 0)) } sign_f64be :: proc(x: f64be) -> f64be { return f64be(int(0 < x) - int(x < 0)) } sign :: proc{ sign_f16, sign_f16le, sign_f16be, sign_f32, sign_f32le, sign_f32be, sign_f64, sign_f64le, sign_f64be, } sign_bit_f16 :: proc(x: f16) -> bool { return (transmute(u16)x) & (1<<15) != 0 } sign_bit_f16le :: proc(x: f16le) -> bool { return #force_inline sign_bit_f16(f16(x)) } sign_bit_f16be :: proc(x: f16be) -> bool { return #force_inline sign_bit_f16(f16(x)) } sign_bit_f32 :: proc(x: f32) -> bool { return (transmute(u32)x) & (1<<31) != 0 } sign_bit_f32le :: proc(x: f32le) -> bool { return #force_inline sign_bit_f32(f32(x)) } sign_bit_f32be :: proc(x: f32be) -> bool { return #force_inline sign_bit_f32(f32(x)) } sign_bit_f64 :: proc(x: f64) -> bool { return (transmute(u64)x) & (1<<63) != 0 } sign_bit_f64le :: proc(x: f64le) -> bool { return #force_inline sign_bit_f64(f64(x)) } sign_bit_f64be :: proc(x: f64be) -> bool { return #force_inline sign_bit_f64(f64(x)) } sign_bit :: proc{ sign_bit_f16, sign_bit_f16le, sign_bit_f16be, sign_bit_f32, sign_bit_f32le, sign_bit_f32be, sign_bit_f64, sign_bit_f64le, sign_bit_f64be, } copy_sign_f16 :: proc(x, y: f16) -> f16 { ix := transmute(u16)x iy := transmute(u16)y ix &= 0x7fff ix |= iy & 0x8000 return transmute(f16)ix } copy_sign_f16le :: proc(x, y: f16le) -> f16le { return #force_inline f16le(copy_sign_f16(f16(x), f16(y))) } copy_sign_f16be :: proc(x, y: f16be) -> f16be { return #force_inline f16be(copy_sign_f16(f16(x), f16(y))) } copy_sign_f32 :: proc(x, y: f32) -> f32 { ix := transmute(u32)x iy := transmute(u32)y ix &= 0x7fff_ffff ix |= iy & 0x8000_0000 return transmute(f32)ix } copy_sign_f32le :: proc(x, y: f32le) -> f32le { return #force_inline f32le(copy_sign_f32(f32(x), f32(y))) } copy_sign_f32be :: proc(x, y: f32be) -> f32be { return #force_inline f32be(copy_sign_f32(f32(x), f32(y))) } copy_sign_f64 :: proc(x, y: f64) -> f64 { ix := transmute(u64)x iy := transmute(u64)y ix &= 0x7fff_ffff_ffff_ffff ix |= iy & 0x8000_0000_0000_0000 return transmute(f64)ix } copy_sign_f64le :: proc(x, y: f64le) -> f64le { return #force_inline f64le(copy_sign_f64(f64(x), f64(y))) } copy_sign_f64be :: proc(x, y: f64be) -> f64be { return #force_inline f64be(copy_sign_f64(f64(x), f64(y))) } copy_sign :: proc{ copy_sign_f16, copy_sign_f16le, copy_sign_f16be, copy_sign_f32, copy_sign_f32le, copy_sign_f32be, copy_sign_f64, copy_sign_f64le, copy_sign_f64be, } to_radians_f16 :: proc(degrees: f16) -> f16 { return degrees * RAD_PER_DEG } to_radians_f16le :: proc(degrees: f16le) -> f16le { return degrees * RAD_PER_DEG } to_radians_f16be :: proc(degrees: f16be) -> f16be { return degrees * RAD_PER_DEG } to_radians_f32 :: proc(degrees: f32) -> f32 { return degrees * RAD_PER_DEG } to_radians_f32le :: proc(degrees: f32le) -> f32le { return degrees * RAD_PER_DEG } to_radians_f32be :: proc(degrees: f32be) -> f32be { return degrees * RAD_PER_DEG } to_radians_f64 :: proc(degrees: f64) -> f64 { return degrees * RAD_PER_DEG } to_radians_f64le :: proc(degrees: f64le) -> f64le { return degrees * RAD_PER_DEG } to_radians_f64be :: proc(degrees: f64be) -> f64be { return degrees * RAD_PER_DEG } to_degrees_f16 :: proc(radians: f16) -> f16 { return radians * DEG_PER_RAD } to_degrees_f16le :: proc(radians: f16le) -> f16le { return radians * DEG_PER_RAD } to_degrees_f16be :: proc(radians: f16be) -> f16be { return radians * DEG_PER_RAD } to_degrees_f32 :: proc(radians: f32) -> f32 { return radians * DEG_PER_RAD } to_degrees_f32le :: proc(radians: f32le) -> f32le { return radians * DEG_PER_RAD } to_degrees_f32be :: proc(radians: f32be) -> f32be { return radians * DEG_PER_RAD } to_degrees_f64 :: proc(radians: f64) -> f64 { return radians * DEG_PER_RAD } to_degrees_f64le :: proc(radians: f64le) -> f64le { return radians * DEG_PER_RAD } to_degrees_f64be :: proc(radians: f64be) -> f64be { return radians * DEG_PER_RAD } to_radians :: proc{ to_radians_f16, to_radians_f16le, to_radians_f16be, to_radians_f32, to_radians_f32le, to_radians_f32be, to_radians_f64, to_radians_f64le, to_radians_f64be, } to_degrees :: proc{ to_degrees_f16, to_degrees_f16le, to_degrees_f16be, to_degrees_f32, to_degrees_f32le, to_degrees_f32be, to_degrees_f64, to_degrees_f64le, to_degrees_f64be, } trunc_f16 :: proc(x: f16) -> f16 { trunc_internal :: proc(f: f16) -> f16 { mask :: 0x1f shift :: 16 - 6 bias :: 0xf if f < 1 { switch { case f < 0: return -trunc_internal(-f) case f == 0: return f case: return 0 } } x := transmute(u16)f e := (x >> shift) & mask - bias if e < shift { x &= ~(1 << (shift-e)) - 1 } return transmute(f16)x } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x case .Normal, .Subnormal: // carry on } return trunc_internal(x) } trunc_f16le :: proc(x: f16le) -> f16le { return #force_inline f16le(trunc_f16(f16(x))) } trunc_f16be :: proc(x: f16be) -> f16be { return #force_inline f16be(trunc_f16(f16(x))) } trunc_f32 :: proc(x: f32) -> f32 { trunc_internal :: proc(f: f32) -> f32 { mask :: 0xff shift :: 32 - 9 bias :: 0x7f if f < 1 { switch { case f < 0: return -trunc_internal(-f) case f == 0: return f case: return 0 } } x := transmute(u32)f e := (x >> shift) & mask - bias if e < shift { x &= ~(1 << (shift-e)) - 1 } return transmute(f32)x } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x case .Normal, .Subnormal: // carry on } return trunc_internal(x) } trunc_f32le :: proc(x: f32le) -> f32le { return #force_inline f32le(trunc_f32(f32(x))) } trunc_f32be :: proc(x: f32be) -> f32be { return #force_inline f32be(trunc_f32(f32(x))) } trunc_f64 :: proc(x: f64) -> f64 { trunc_internal :: proc(f: f64) -> f64 { mask :: 0x7ff shift :: 64 - 12 bias :: 0x3ff if f < 1 { switch { case f < 0: return -trunc_internal(-f) case f == 0: return f case: return 0 } } x := transmute(u64)f e := (x >> shift) & mask - bias if e < shift { x &= ~(1 << (shift-e)) - 1 } return transmute(f64)x } switch classify(x) { case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: return x case .Normal, .Subnormal: // carry on } return trunc_internal(x) } trunc_f64le :: proc(x: f64le) -> f64le { return #force_inline f64le(trunc_f64(f64(x))) } trunc_f64be :: proc(x: f64be) -> f64be { return #force_inline f64be(trunc_f64(f64(x))) } trunc :: proc{ trunc_f16, trunc_f16le, trunc_f16be, trunc_f32, trunc_f32le, trunc_f32be, trunc_f64, trunc_f64le, trunc_f64be, } round_f16 :: proc(x: f16) -> f16 { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f16le :: proc(x: f16le) -> f16le { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f16be :: proc(x: f16be) -> f16be { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f32 :: proc(x: f32) -> f32 { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f32le :: proc(x: f32le) -> f32le { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f32be :: proc(x: f32be) -> f32be { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f64 :: proc(x: f64) -> f64 { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f64le :: proc(x: f64le) -> f64le { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round_f64be :: proc(x: f64be) -> f64be { return ceil(x - 0.5) if x < 0 else floor(x + 0.5) } round :: proc{ round_f16, round_f16le, round_f16be, round_f32, round_f32le, round_f32be, round_f64, round_f64le, round_f64be, } ceil_f16 :: proc(x: f16) -> f16 { return -floor(-x) } ceil_f16le :: proc(x: f16le) -> f16le { return -floor(-x) } ceil_f16be :: proc(x: f16be) -> f16be { return -floor(-x) } ceil_f32 :: proc(x: f32) -> f32 { return -floor(-x) } ceil_f32le :: proc(x: f32le) -> f32le { return -floor(-x) } ceil_f32be :: proc(x: f32be) -> f32be { return -floor(-x) } ceil_f64 :: proc(x: f64) -> f64 { return -floor(-x) } ceil_f64le :: proc(x: f64le) -> f64le { return -floor(-x) } ceil_f64be :: proc(x: f64be) -> f64be { return -floor(-x) } ceil :: proc{ ceil_f16, ceil_f16le, ceil_f16be, ceil_f32, ceil_f32le, ceil_f32be, ceil_f64, ceil_f64le, ceil_f64be, } floor_f16 :: proc(x: f16) -> f16 { if x == 0 || is_nan(x) || is_inf(x) { return x } if x < 0 { d, fract := modf(-x) if fract != 0.0 { d = d + 1 } return -d } d, _ := modf(x) return d } floor_f16le :: proc(x: f16le) -> f16le { return #force_inline f16le(floor_f16(f16(x))) } floor_f16be :: proc(x: f16be) -> f16be { return #force_inline f16be(floor_f16(f16(x))) } floor_f32 :: proc(x: f32) -> f32 { if x == 0 || is_nan(x) || is_inf(x) { return x } if x < 0 { d, fract := modf(-x) if fract != 0.0 { d = d + 1 } return -d } d, _ := modf(x) return d } floor_f32le :: proc(x: f32le) -> f32le { return #force_inline f32le(floor_f32(f32(x))) } floor_f32be :: proc(x: f32be) -> f32be { return #force_inline f32be(floor_f32(f32(x))) } floor_f64 :: proc(x: f64) -> f64 { if x == 0 || is_nan(x) || is_inf(x) { return x } if x < 0 { d, fract := modf(-x) if fract != 0.0 { d = d + 1 } return -d } d, _ := modf(x) return d } floor_f64le :: proc(x: f64le) -> f64le { return #force_inline f64le(floor_f64(f64(x))) } floor_f64be :: proc(x: f64be) -> f64be { return #force_inline f64be(floor_f64(f64(x))) } floor :: proc{ floor_f16, floor_f16le, floor_f16be, floor_f32, floor_f32le, floor_f32be, floor_f64, floor_f64le, floor_f64be, } floor_div :: proc(x, y: $T) -> T where intrinsics.type_is_integer(T) { a := x / y r := x % y if (r > 0 && y < 0) || (r < 0 && y > 0) { a -= 1 } return a } floor_mod :: proc(x, y: $T) -> T where intrinsics.type_is_integer(T) { r := x % y if (r > 0 && y < 0) || (r < 0 && y > 0) { r += y } return r } modf_f16 :: proc(x: f16) -> (int: f16, frac: f16) { shift :: 16 - 5 - 1 mask :: 0x1f bias :: 15 if x < 1 { switch { case x < 0: int, frac = modf(-x) return -int, -frac case x == 0: return x, x } return 0, x } i := transmute(u16)x e := uint(i>>shift)&mask - bias if e < shift { i &~= 1<<(shift-e) - 1 } int = transmute(f16)i frac = x - int return } modf_f16le :: proc(x: f16le) -> (int: f16le, frac: f16le) { i, f := #force_inline modf_f16(f16(x)) return f16le(i), f16le(f) } modf_f16be :: proc(x: f16be) -> (int: f16be, frac: f16be) { i, f := #force_inline modf_f16(f16(x)) return f16be(i), f16be(f) } modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) { shift :: 32 - 8 - 1 mask :: 0xff bias :: 127 if x < 1 { switch { case x < 0: int, frac = modf(-x) return -int, -frac case x == 0: return x, x } return 0, x } i := transmute(u32)x e := uint(i>>shift)&mask - bias if e < shift { i &~= 1<<(shift-e) - 1 } int = transmute(f32)i frac = x - int return } modf_f32le :: proc(x: f32le) -> (int: f32le, frac: f32le) { i, f := #force_inline modf_f32(f32(x)) return f32le(i), f32le(f) } modf_f32be :: proc(x: f32be) -> (int: f32be, frac: f32be) { i, f := #force_inline modf_f32(f32(x)) return f32be(i), f32be(f) } modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) { shift :: 64 - 11 - 1 mask :: 0x7ff bias :: 1023 if x < 1 { switch { case x < 0: int, frac = modf(-x) return -int, -frac case x == 0: return x, x } return 0, x } i := transmute(u64)x e := uint(i>>shift)&mask - bias if e < shift { i &~= 1<<(shift-e) - 1 } int = transmute(f64)i frac = x - int return } modf_f64le :: proc(x: f64le) -> (int: f64le, frac: f64le) { i, f := #force_inline modf_f64(f64(x)) return f64le(i), f64le(f) } modf_f64be :: proc(x: f64be) -> (int: f64be, frac: f64be) { i, f := #force_inline modf_f64(f64(x)) return f64be(i), f64be(f) } modf :: proc{ modf_f16, modf_f16le, modf_f16be, modf_f32, modf_f32le, modf_f32be, modf_f64, modf_f64le, modf_f64be, } split_decimal :: modf mod_f16 :: proc(x, y: f16) -> (n: f16) { z := abs(y) n = remainder(abs(x), z) if sign(n) < 0 { n += z } return copy_sign(n, x) } mod_f16le :: proc(x, y: f16le) -> (n: f16le) { return #force_inline f16le(mod_f16(f16(x), f16(y))) } mod_f16be :: proc(x, y: f16be) -> (n: f16be) { return #force_inline f16be(mod_f16(f16(x), f16(y))) } mod_f32 :: proc(x, y: f32) -> (n: f32) { z := abs(y) n = remainder(abs(x), z) if sign(n) < 0 { n += z } return copy_sign(n, x) } mod_f32le :: proc(x, y: f32le) -> (n: f32le) { return #force_inline f32le(mod_f32(f32(x), f32(y))) } mod_f32be :: proc(x, y: f32be) -> (n: f32be) { return #force_inline f32be(mod_f32(f32(x), f32(y))) } mod_f64 :: proc(x, y: f64) -> (n: f64) { z := abs(y) n = remainder(abs(x), z) if sign(n) < 0 { n += z } return copy_sign(n, x) } mod_f64le :: proc(x, y: f64le) -> (n: f64le) { return #force_inline f64le(mod_f64(f64(x), f64(y))) } mod_f64be :: proc(x, y: f64be) -> (n: f64be) { return #force_inline f64be(mod_f64(f64(x), f64(y))) } mod :: proc{ mod_f16, mod_f16le, mod_f16be, mod_f32, mod_f32le, mod_f32be, mod_f64, mod_f64le, mod_f64be, } remainder_f16 :: proc(x, y: f16 ) -> f16 { return x - round(x/y) * y } remainder_f16le :: proc(x, y: f16le) -> f16le { return x - round(x/y) * y } remainder_f16be :: proc(x, y: f16be) -> f16be { return x - round(x/y) * y } remainder_f32 :: proc(x, y: f32 ) -> f32 { return x - round(x/y) * y } remainder_f32le :: proc(x, y: f32le) -> f32le { return x - round(x/y) * y } remainder_f32be :: proc(x, y: f32be) -> f32be { return x - round(x/y) * y } remainder_f64 :: proc(x, y: f64 ) -> f64 { return x - round(x/y) * y } remainder_f64le :: proc(x, y: f64le) -> f64le { return x - round(x/y) * y } remainder_f64be :: proc(x, y: f64be) -> f64be { return x - round(x/y) * y } remainder :: proc{ remainder_f16, remainder_f16le, remainder_f16be, remainder_f32, remainder_f32le, remainder_f32be, remainder_f64, remainder_f64le, remainder_f64be, } gcd :: proc(x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { x, y := x, y for y != 0 { x %= y x, y = y, x } return abs(x) } lcm :: proc(x, y: $T) -> T where intrinsics.type_is_ordered_numeric(T) { return x / gcd(x, y) * y } frexp_f16 :: proc(x: f16) -> (significand: f16, exponent: int) { f, e := frexp_f64(f64(x)) return f16(f), e } frexp_f16le :: proc(x: f16le) -> (significand: f16le, exponent: int) { f, e := frexp_f64(f64(x)) return f16le(f), e } frexp_f16be :: proc(x: f16be) -> (significand: f16be, exponent: int) { f, e := frexp_f64(f64(x)) return f16be(f), e } frexp_f32 :: proc(x: f32) -> (significand: f32, exponent: int) { f, e := frexp_f64(f64(x)) return f32(f), e } frexp_f32le :: proc(x: f32le) -> (significand: f32le, exponent: int) { f, e := frexp_f64(f64(x)) return f32le(f), e } frexp_f32be :: proc(x: f32be) -> (significand: f32be, exponent: int) { f, e := frexp_f64(f64(x)) return f32be(f), e } frexp_f64 :: proc(x: f64) -> (significand: f64, exponent: int) { switch { case x == 0: return 0, 0 case x < 0: significand, exponent = frexp(-x) return -significand, exponent } ex := trunc(log2(x)) exponent = int(ex) significand = x / pow(2.0, ex) if abs(significand) >= 1 { exponent += 1 significand /= 2 } if exponent == 1024 && significand == 0 { significand = 0.99999999999999988898 } return } frexp_f64le :: proc(x: f64le) -> (significand: f64le, exponent: int) { f, e := frexp_f64(f64(x)) return f64le(f), e } frexp_f64be :: proc(x: f64be) -> (significand: f64be, exponent: int) { f, e := frexp_f64(f64(x)) return f64be(f), e } frexp :: proc{ frexp_f16, frexp_f16le, frexp_f16be, frexp_f32, frexp_f32le, frexp_f32be, frexp_f64, frexp_f64le, frexp_f64be, } binomial :: proc(n, k: int) -> int { switch { case k <= 0: return 1 case 2*k > n: return binomial(n, n-k) } b := n for i in 2.. int { when size_of(int) == size_of(i64) { @static table := [21]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, 6_227_020_800, 87_178_291_200, 1_307_674_368_000, 20_922_789_888_000, 355_687_428_096_000, 6_402_373_705_728_000, 121_645_100_408_832_000, 2_432_902_008_176_640_000, } } else { @static table := [13]int{ 1, 1, 2, 6, 24, 120, 720, 5_040, 40_320, 362_880, 3_628_800, 39_916_800, 479_001_600, } } assert(n >= 0, "parameter must not be negative") assert(n < len(table), "parameter is too large to lookup in the table") return table[n] } classify_f16 :: proc(x: f16) -> Float_Class { switch { case x == 0: i := transmute(i16)x if i < 0 { return .Neg_Zero } return .Zero case x*0.5 == x: if x < 0 { return .Neg_Inf } return .Inf case !(x == x): return .NaN } u := transmute(u16)x exp := int(u>>10) & (1<<5 - 1) if exp == 0 { return .Subnormal } return .Normal } classify_f16le :: proc(x: f16le) -> Float_Class { return #force_inline classify_f16(f16(x)) } classify_f16be :: proc(x: f16be) -> Float_Class { return #force_inline classify_f16(f16(x)) } classify_f32 :: proc(x: f32) -> Float_Class { switch { case x == 0: i := transmute(i32)x if i < 0 { return .Neg_Zero } return .Zero case x*0.5 == x: if x < 0 { return .Neg_Inf } return .Inf case !(x == x): return .NaN } u := transmute(u32)x exp := int(u>>23) & (1<<8 - 1) if exp == 0 { return .Subnormal } return .Normal } classify_f32le :: proc(x: f32le) -> Float_Class { return #force_inline classify_f32(f32(x)) } classify_f32be :: proc(x: f32be) -> Float_Class { return #force_inline classify_f32(f32(x)) } classify_f64 :: proc(x: f64) -> Float_Class { switch { case x == 0: i := transmute(i64)x if i < 0 { return .Neg_Zero } return .Zero case x*0.5 == x: if x < 0 { return .Neg_Inf } return .Inf case !(x == x): return .NaN } u := transmute(u64)x exp := int(u>>52) & (1<<11 - 1) if exp == 0 { return .Subnormal } return .Normal } classify_f64le :: proc(x: f64le) -> Float_Class { return #force_inline classify_f64(f64(x)) } classify_f64be :: proc(x: f64be) -> Float_Class { return #force_inline classify_f64(f64(x)) } classify :: proc{ classify_f16, classify_f16le, classify_f16be, classify_f32, classify_f32le, classify_f32be, classify_f64, classify_f64le, classify_f64be, } is_nan_f16 :: proc(x: f16) -> bool { return classify(x) == .NaN } is_nan_f16le :: proc(x: f16le) -> bool { return classify(x) == .NaN } is_nan_f16be :: proc(x: f16be) -> bool { return classify(x) == .NaN } is_nan_f32 :: proc(x: f32) -> bool { return classify(x) == .NaN } is_nan_f32le :: proc(x: f32le) -> bool { return classify(x) == .NaN } is_nan_f32be :: proc(x: f32be) -> bool { return classify(x) == .NaN } is_nan_f64 :: proc(x: f64) -> bool { return classify(x) == .NaN } is_nan_f64le :: proc(x: f64le) -> bool { return classify(x) == .NaN } is_nan_f64be :: proc(x: f64be) -> bool { return classify(x) == .NaN } is_nan :: proc{ is_nan_f16, is_nan_f16le, is_nan_f16be, is_nan_f32, is_nan_f32le, is_nan_f32be, is_nan_f64, is_nan_f64le, is_nan_f64be, } // is_inf reports whether f is an infinity, according to sign. // If sign > 0, is_inf reports whether f is positive infinity. // If sign < 0, is_inf reports whether f is negative infinity. // If sign == 0, is_inf reports whether f is either infinity. is_inf_f16 :: proc(x: f16, sign: int = 0) -> bool { class := classify(abs(x)) switch { case sign > 0: return class == .Inf case sign < 0: return class == .Neg_Inf } return class == .Inf || class == .Neg_Inf } is_inf_f16le :: proc(x: f16le, sign: int = 0) -> bool { return #force_inline is_inf_f16(f16(x), sign) } is_inf_f16be :: proc(x: f16be, sign: int = 0) -> bool { return #force_inline is_inf_f16(f16(x), sign) } is_inf_f32 :: proc(x: f32, sign: int = 0) -> bool { class := classify(abs(x)) switch { case sign > 0: return class == .Inf case sign < 0: return class == .Neg_Inf } return class == .Inf || class == .Neg_Inf } is_inf_f32le :: proc(x: f32le, sign: int = 0) -> bool { return #force_inline is_inf_f32(f32(x), sign) } is_inf_f32be :: proc(x: f32be, sign: int = 0) -> bool { return #force_inline is_inf_f32(f32(x), sign) } is_inf_f64 :: proc(x: f64, sign: int = 0) -> bool { class := classify(abs(x)) switch { case sign > 0: return class == .Inf case sign < 0: return class == .Neg_Inf } return class == .Inf || class == .Neg_Inf } is_inf_f64le :: proc(x: f64le, sign: int = 0) -> bool { return #force_inline is_inf_f64(f64(x), sign) } is_inf_f64be :: proc(x: f64be, sign: int = 0) -> bool { return #force_inline is_inf_f64(f64(x), sign) } is_inf :: proc{ is_inf_f16, is_inf_f16le, is_inf_f16be, is_inf_f32, is_inf_f32le, is_inf_f32be, is_inf_f64, is_inf_f64le, is_inf_f64be, } inf_f16 :: proc(sign: int) -> f16 { return f16(inf_f64(sign)) } inf_f16le :: proc(sign: int) -> f16le { return f16le(inf_f64(sign)) } inf_f16be :: proc(sign: int) -> f16be { return f16be(inf_f64(sign)) } inf_f32 :: proc(sign: int) -> f32 { return f32(inf_f64(sign)) } inf_f32le :: proc(sign: int) -> f32le { return f32le(inf_f64(sign)) } inf_f32be :: proc(sign: int) -> f32be { return f32be(inf_f64(sign)) } inf_f64 :: proc(sign: int) -> f64 { v: u64 if sign >= 0 { v = 0x7ff00000_00000000 } else { v = 0xfff00000_00000000 } return transmute(f64)v } inf_f64le :: proc(sign: int) -> f64le { return f64le(inf_f64(sign)) } inf_f64be :: proc(sign: int) -> f64be { return f64be(inf_f64(sign)) } nan_f16 :: proc() -> f16 { return f16(nan_f64()) } nan_f16le :: proc() -> f16le { return f16le(nan_f64()) } nan_f16be :: proc() -> f16be { return f16be(nan_f64()) } nan_f32 :: proc() -> f32 { return f32(nan_f64()) } nan_f32le :: proc() -> f32le { return f32le(nan_f64()) } nan_f32be :: proc() -> f32be { return f32be(nan_f64()) } nan_f64 :: proc() -> f64 { v: u64 = 0x7ff80000_00000001 return transmute(f64)v } nan_f64le :: proc() -> f64le { return f64le(nan_f64()) } nan_f64be :: proc() -> f64be { return f64be(nan_f64()) } is_power_of_two :: proc(x: int) -> bool { return x > 0 && (x & (x-1)) == 0 } next_power_of_two :: proc(x: int) -> int { k := x -1 when size_of(int) == 8 { k = k | (k >> 32) } k = k | (k >> 16) k = k | (k >> 8) k = k | (k >> 4) k = k | (k >> 2) k = k | (k >> 1) k += 1 + int(x <= 0) return k } sum :: proc(x: $T/[]$E) -> (res: E) where intrinsics.type_is_numeric(E) { for i in x { res += i } return } prod :: proc(x: $T/[]$E) -> (res: E) where intrinsics.type_is_numeric(E) { for i in x { res *= i } return } cumsum_inplace :: proc(x: $T/[]$E) -> T where intrinsics.type_is_numeric(E) { for i in 1.. T where intrinsics.type_is_numeric(E) { N := min(len(dst), len(src)) if N > 0 { dst[0] = src[0] for i in 1.. f16 { // TODO(bill): Better atan2_f16 return f16(atan2_f64(f64(y), f64(x))) } atan2_f16le :: proc(y, x: f16le) -> f16le { // TODO(bill): Better atan2_f16 return f16le(atan2_f64(f64(y), f64(x))) } atan2_f16be :: proc(y, x: f16be) -> f16be { // TODO(bill): Better atan2_f16 return f16be(atan2_f64(f64(y), f64(x))) } atan2_f32 :: proc(y, x: f32) -> f32 { // TODO(bill): Better atan2_f32 return f32(atan2_f64(f64(y), f64(x))) } atan2_f32le :: proc(y, x: f32le) -> f32le { // TODO(bill): Better atan2_f32 return f32le(atan2_f64(f64(y), f64(x))) } atan2_f32be :: proc(y, x: f32be) -> f32be { // TODO(bill): Better atan2_f32 return f32be(atan2_f64(f64(y), f64(x))) } atan2_f64 :: proc(y, x: f64) -> f64 { // TODO(bill): Faster atan2_f64 if possible // The original C code: // Stephen L. Moshier // moshier@na-net.ornl.gov NAN :: 0h7fff_ffff_ffff_ffff INF :: 0h7FF0_0000_0000_0000 PI :: 0h4009_21fb_5444_2d18 atan :: proc(x: f64) -> f64 { if x == 0 { return x } if x > 0 { return s_atan(x) } return -s_atan(-x) } // s_atan reduces its argument (known to be positive) to the range [0, 0.66] and calls x_atan. s_atan :: proc(x: f64) -> f64 { MORE_BITS :: 6.123233995736765886130e-17 // pi/2 = PIO2 + MORE_BITS TAN3PI08 :: 2.41421356237309504880 // tan(3*pi/8) if x <= 0.66 { return x_atan(x) } if x > TAN3PI08 { return PI/2 - x_atan(1/x) + MORE_BITS } return PI/4 + x_atan((x-1)/(x+1)) + 0.5*MORE_BITS } // x_atan evaluates a series valid in the range [0, 0.66]. x_atan :: proc(x: f64) -> f64 { P0 :: -8.750608600031904122785e-01 P1 :: -1.615753718733365076637e+01 P2 :: -7.500855792314704667340e+01 P3 :: -1.228866684490136173410e+02 P4 :: -6.485021904942025371773e+01 Q0 :: +2.485846490142306297962e+01 Q1 :: +1.650270098316988542046e+02 Q2 :: +4.328810604912902668951e+02 Q3 :: +4.853903996359136964868e+02 Q4 :: +1.945506571482613964425e+02 z := x * x z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4) z = x*z + x return z } switch { case is_nan(y) || is_nan(x): return NAN case y == 0: if x >= 0 && !sign_bit(x) { return copy_sign(0.0, y) } return copy_sign(PI, y) case x == 0: return copy_sign(PI*0.5, y) case is_inf(x, 0): if is_inf(x, 1) { if is_inf(y, 0) { return copy_sign(PI*0.25, y) } return copy_sign(0, y) } if is_inf(y, 0) { return copy_sign(PI*0.75, y) } return copy_sign(PI, y) case is_inf(y, 0): return copy_sign(PI*0.5, y) } q := atan(y / x) if x < 0 { if q <= 0 { return q + PI } return q - PI } return q } atan2_f64le :: proc(y, x: f64le) -> f64le { // TODO(bill): Better atan2_f32 return f64le(atan2_f64(f64(y), f64(x))) } atan2_f64be :: proc(y, x: f64be) -> f64be { // TODO(bill): Better atan2_f32 return f64be(atan2_f64(f64(y), f64(x))) } atan2 :: proc{ atan2_f16, atan2_f16le, atan2_f16be, atan2_f32, atan2_f32le, atan2_f32be, atan2_f64, atan2_f64le, atan2_f64be, } atan :: proc(x: $T) -> T where intrinsics.type_is_float(T) { return atan2(x, 1) } asin :: proc(x: $T) -> T where intrinsics.type_is_float(T) { return atan2(x, 1 + sqrt(1 - x*x)) } acos :: proc(x: $T) -> T where intrinsics.type_is_float(T) { return 2 * atan2(sqrt(1 - x), sqrt(1 + x)) } sinh :: proc(x: $T) -> T where intrinsics.type_is_float(T) { return (exp(x) - exp(-x))*0.5 } cosh :: proc(x: $T) -> T where intrinsics.type_is_float(T) { return (exp(x) + exp(-x))*0.5 } tanh :: proc(x: $T) -> T where intrinsics.type_is_float(T) { t := exp(2*x) return (t - 1) / (t + 1) } F16_DIG :: 3 F16_EPSILON :: 0.00097656 F16_GUARD :: 0 F16_MANT_DIG :: 11 F16_MAX :: 65504.0 F16_MAX_10_EXP :: 4 F16_MAX_EXP :: 15 F16_MIN :: 6.10351562e-5 F16_MIN_10_EXP :: -4 F16_MIN_EXP :: -14 F16_NORMALIZE :: 0 F16_RADIX :: 2 F16_ROUNDS :: 1 F32_DIG :: 6 F32_EPSILON :: 1.192092896e-07 F32_GUARD :: 0 F32_MANT_DIG :: 24 F32_MAX :: 3.402823466e+38 F32_MAX_10_EXP :: 38 F32_MAX_EXP :: 128 F32_MIN :: 1.175494351e-38 F32_MIN_10_EXP :: -37 F32_MIN_EXP :: -125 F32_NORMALIZE :: 0 F32_RADIX :: 2 F32_ROUNDS :: 1 F64_DIG :: 15 // # of decimal digits of precision F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0 F64_MANT_DIG :: 53 // # of bits in mantissa F64_MAX :: 1.7976931348623158e+308 // max value F64_MAX_10_EXP :: 308 // max decimal exponent F64_MAX_EXP :: 1024 // max binary exponent F64_MIN :: 2.2250738585072014e-308 // min positive value F64_MIN_10_EXP :: -307 // min decimal exponent F64_MIN_EXP :: -1021 // min binary exponent F64_RADIX :: 2 // exponent radix F64_ROUNDS :: 1 // addition rounding: near