package os import "core:mem" import "core:strconv" import "core:unicode/utf8" OS :: ODIN_OS ARCH :: ODIN_ARCH ENDIAN :: ODIN_ENDIAN write_string :: proc(fd: Handle, str: string) -> (int, Errno) { return write(fd, transmute([]byte)str) } write_byte :: proc(fd: Handle, b: byte) -> (int, Errno) { return write(fd, []byte{b}) } write_rune :: proc(fd: Handle, r: rune) -> (int, Errno) { if r < utf8.RUNE_SELF { return write_byte(fd, byte(r)) } b, n := utf8.encode_rune(r) return write(fd, b[:n]) } write_encoded_rune :: proc(fd: Handle, r: rune) { write_byte(fd, '\'') switch r { case '\a': write_string(fd, "\\a") case '\b': write_string(fd, "\\b") case '\e': write_string(fd, "\\e") case '\f': write_string(fd, "\\f") case '\n': write_string(fd, "\\n") case '\r': write_string(fd, "\\r") case '\t': write_string(fd, "\\t") case '\v': write_string(fd, "\\v") case: if r < 32 { write_string(fd, "\\x") b: [2]byte s := strconv.append_bits(b[:], u64(r), 16, true, 64, strconv.digits, nil) switch len(s) { case 0: write_string(fd, "00") case 1: write_rune(fd, '0') case 2: write_string(fd, s) } } else { write_rune(fd, r) } } write_byte(fd, '\'') } file_size_from_path :: proc(path: string) -> i64 { fd, err := open(path, O_RDONLY, 0) if err != 0 { return -1 } defer close(fd) length: i64 if length, err = file_size(fd); err != 0 { return -1 } return length } read_entire_file_from_filename :: proc(name: string, allocator := context.allocator) -> (data: []byte, success: bool) { context.allocator = allocator fd, err := open(name, O_RDONLY, 0) if err != 0 { return nil, false } defer close(fd) return read_entire_file_from_handle(fd, allocator) } read_entire_file_from_handle :: proc(fd: Handle, allocator := context.allocator) -> (data: []byte, success: bool) { context.allocator = allocator length: i64 err: Errno if length, err = file_size(fd); err != 0 { return nil, false } if length <= 0 { return nil, true } data = make([]byte, int(length), allocator) if data == nil { return nil, false } bytes_read, read_err := read(fd, data) if read_err != ERROR_NONE { delete(data) return nil, false } return data[:bytes_read], true } read_entire_file :: proc { read_entire_file_from_filename, read_entire_file_from_handle, } write_entire_file :: proc(name: string, data: []byte, truncate := true) -> (success: bool) { flags: int = O_WRONLY|O_CREATE if truncate { flags |= O_TRUNC } mode: int = 0 when OS == "linux" || OS == "darwin" { // NOTE(justasd): 644 (owner read, write; group read; others read) mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH } fd, err := open(name, flags, mode) if err != 0 { return false } defer close(fd) _, write_err := write(fd, data) return write_err == 0 } write_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) { s := transmute([]byte)mem.Raw_Slice{data, len} return write(fd, s) } read_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) { s := transmute([]byte)mem.Raw_Slice{data, len} return read(fd, s) } heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, mem.Allocator_Error) { // // NOTE(tetra, 2020-01-14): The heap doesn't respect alignment. // Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert // padding. We also store the original pointer returned by heap_alloc right before // the pointer we return to the user. // aligned_alloc :: proc(size, alignment: int, old_ptr: rawptr = nil) -> ([]byte, mem.Allocator_Error) { a := max(alignment, align_of(rawptr)) space := size + a - 1 allocated_mem: rawptr if old_ptr != nil { original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^ allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr)) } else { allocated_mem = heap_alloc(space+size_of(rawptr)) } aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr))) ptr := uintptr(aligned_mem) aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a) diff := int(aligned_ptr - ptr) if (size + diff) > space { return nil, .Out_Of_Memory } aligned_mem = rawptr(aligned_ptr) mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem return mem.byte_slice(aligned_mem, size), nil } aligned_free :: proc(p: rawptr) { if p != nil { heap_free(mem.ptr_offset((^rawptr)(p), -1)^) } } aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> ([]byte, mem.Allocator_Error) { if p == nil { return nil, nil } return aligned_alloc(new_size, new_alignment, p) } switch mode { case .Alloc: return aligned_alloc(size, alignment) case .Free: aligned_free(old_memory) case .Free_All: return nil, .Mode_Not_Implemented case .Resize: if old_memory == nil { return aligned_alloc(size, alignment) } return aligned_resize(old_memory, old_size, size, alignment) case .Query_Features: set := (^mem.Allocator_Mode_Set)(old_memory) if set != nil { set^ = {.Alloc, .Free, .Resize, .Query_Features} } return nil, nil case .Query_Info: return nil, .Mode_Not_Implemented } return nil, nil } heap_allocator :: proc() -> mem.Allocator { return mem.Allocator{ procedure = heap_allocator_proc, data = nil, } }