package linalg import "core:math" import "core:intrinsics" // Generic TAU :: 6.28318530717958647692528676655900576 PI :: 3.14159265358979323846264338327950288 E :: 2.71828182845904523536 τ :: TAU π :: PI e :: E SQRT_TWO :: 1.41421356237309504880168872420969808 SQRT_THREE :: 1.73205080756887729352744634150587236 SQRT_FIVE :: 2.23606797749978969640917366873127623 LN2 :: 0.693147180559945309417232121458176568 LN10 :: 2.30258509299404568401799145468436421 MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64' MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32' RAD_PER_DEG :: TAU/360.0 DEG_PER_RAD :: 360.0/TAU @private IS_NUMERIC :: intrinsics.type_is_numeric @private IS_QUATERNION :: intrinsics.type_is_quaternion @private IS_ARRAY :: intrinsics.type_is_array @private IS_FLOAT :: intrinsics.type_is_float @private BASE_TYPE :: intrinsics.type_base_type @private ELEM_TYPE :: intrinsics.type_elem_type scalar_dot :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) { return a * b } vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check { for i in 0.. (c: f16) { return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z } quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) { return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z } quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) { return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z } dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot} inner_product :: dot outer_product :: proc(a: $A/[$M]$E, b: $B/[$N]E) -> (out: [M][N]E) where IS_NUMERIC(E) #no_bounds_check { for i in 0.. Q where IS_QUATERNION(Q) { return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0) } scalar_cross :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) { return a * b } vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) { return a[0]*b[1] - b[0]*a[1] } vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) { c[0] = a[1]*b[2] - b[1]*a[2] c[1] = a[2]*b[0] - b[2]*a[0] c[2] = a[0]*b[1] - b[0]*a[1] return } quaternion_cross :: proc(q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) { q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z return } vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3} cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross} vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) { return v / length(v) } quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) { return q/abs(q) } normalize :: proc{vector_normalize, quaternion_normalize} vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) { m := length(v) return 0 if m == 0 else v/m } quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) { m := abs(q) return 0 if m == 0 else q/m } normalize0 :: proc{vector_normalize0, quaternion_normalize0} vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) { return math.sqrt(dot(v, v)) } vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) { return dot(v, v) } quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) { return abs(q) } quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) { return dot(q, q) } scalar_triple_product :: proc(a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) { // a . (b x c) // b . (c x a) // c . (a x b) return dot(a, cross(b, c)) } vector_triple_product :: proc(a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) { // a x (b x c) // (a . c)b - (a . b)c return cross(a, cross(b, c)) } length :: proc{vector_length, quaternion_length} length2 :: proc{vector_length2, quaternion_length2} projection :: proc(x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) { return dot(x, normal) / dot(normal, normal) * normal } identity :: proc($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check { for i in 0.. (tr: E) { for i in 0.. (m: (T when N == M else [M][N]E)) #no_bounds_check { for j in 0.. (c: M) where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check { for i in 0.. (c: M) where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check { for j in 0.. (c: [K][I]E) where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check { for k in 0.. (c: B) where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check { for i in 0.. Q where IS_QUATERNION(Q) { return q1 * q2 } quaternion64_mul_vector3 :: proc(q: $Q/quaternion64, v: $V/[3]$F/f16) -> V { Raw_Quaternion :: struct {xyz: [3]f16, r: f16} q := transmute(Raw_Quaternion)q v := transmute([3]f16)v t := cross(2*q.xyz, v) return V(v + q.r*t + cross(q.xyz, t)) } quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V { Raw_Quaternion :: struct {xyz: [3]f32, r: f32} q := transmute(Raw_Quaternion)q v := transmute([3]f32)v t := cross(2*q.xyz, v) return V(v + q.r*t + cross(q.xyz, t)) } quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V { Raw_Quaternion :: struct {xyz: [3]f64, r: f64} q := transmute(Raw_Quaternion)q v := transmute([3]f64)v t := cross(2*q.xyz, v) return V(v + q.r*t + cross(q.xyz, t)) } quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3} mul :: proc{ matrix_mul, matrix_mul_differ, matrix_mul_vector, quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3, quaternion_mul_quaternion, } vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check { return &v[0] } matrix_to_ptr :: proc(m: ^$A/[$I][$J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check { return &m[0][0] } to_ptr :: proc{vector_to_ptr, matrix_to_ptr} // Splines vector_slerp :: proc(x, y: $T/[$N]$E, a: E) -> T { cos_alpha := dot(x, y) alpha := math.acos(cos_alpha) sin_alpha := math.sin(alpha) t1 := math.sin((1 - a) * alpha) / sin_alpha t2 := math.sin(a * alpha) / sin_alpha return x * t1 + y * t2 } catmull_rom :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T { s2 := s*s s3 := s2*s f1 := -s3 + 2 * s2 - s f2 := 3 * s3 - 5 * s2 + 2 f3 := -3 * s3 + 4 * s2 + s f4 := s3 - s2 return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5 } hermite :: proc(v1, t1, v2, t2: $T/[$N]$E, s: E) -> T { s2 := s*s s3 := s2*s f1 := 2 * s3 - 3 * s2 + 1 f2 := -2 * s3 + 3 * s2 f3 := s3 - 2 * s2 + s f4 := s3 - s2 return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2 } cubic :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T { return ((v1 * s + v2) * s + v3) * s + v4 } array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check { for i in 0.. (w: [M][N]Elem_Type) #no_bounds_check { for i in 0.. [N]f32 { return array_cast(v, f32) } to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) } to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) } to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) } to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) } to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) } to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) } to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) } to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) } to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) } to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) } to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) } to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) } to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) } to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) } to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) } to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) } to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }