package math // The original C code and the long comment below are // from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and // came with this notice. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // __ieee754_lgamma_r(x, signgamp) // Reentrant version of the logarithm of the Gamma function // with user provided pointer for the sign of Gamma(x). // // Method: // 1. Argument Reduction for 0 < x <= 8 // Since gamma(1+s)=s*gamma(s), for x in [0,8], we may // reduce x to a number in [1.5,2.5] by // lgamma(1+s) = log(s) + lgamma(s) // for example, // lgamma(7.3) = log(6.3) + lgamma(6.3) // = log(6.3*5.3) + lgamma(5.3) // = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) // 2. Polynomial approximation of lgamma around its // minimum (ymin=1.461632144968362245) to maintain monotonicity. // On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use // Let z = x-ymin; // lgamma(x) = -1.214862905358496078218 + z**2*poly(z) // poly(z) is a 14 degree polynomial. // 2. Rational approximation in the primary interval [2,3] // We use the following approximation: // s = x-2.0; // lgamma(x) = 0.5*s + s*P(s)/Q(s) // with accuracy // |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 // Our algorithms are based on the following observation // // zeta(2)-1 2 zeta(3)-1 3 // lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... // 2 3 // // where Euler = 0.5772156649... is the Euler constant, which // is very close to 0.5. // // 3. For x>=8, we have // lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... // (better formula: // lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) // Let z = 1/x, then we approximation // f(z) = lgamma(x) - (x-0.5)(log(x)-1) // by // 3 5 11 // w = w0 + w1*z + w2*z + w3*z + ... + w6*z // where // |w - f(z)| < 2**-58.74 // // 4. For negative x, since (G is gamma function) // -x*G(-x)*G(x) = pi/sin(pi*x), // we have // G(x) = pi/(sin(pi*x)*(-x)*G(-x)) // since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 // Hence, for x<0, signgam = sign(sin(pi*x)) and // lgamma(x) = log(|Gamma(x)|) // = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); // Note: one should avoid computing pi*(-x) directly in the // computation of sin(pi*(-x)). // // 5. Special Cases // lgamma(2+s) ~ s*(1-Euler) for tiny s // lgamma(1)=lgamma(2)=0 // lgamma(x) ~ -log(x) for tiny x // lgamma(0) = lgamma(inf) = inf // lgamma(-integer) = +-inf // // lgamma_f64 :: proc "contextless" (x: f64) -> (lgamma: f64, sign: int) { sin_pi :: proc "contextless" (x: f64) -> f64 { if x < 0.25 { return -sin(PI * x) } x := x // argument reduction z := floor(x) n: int if z != x { // inexact x = mod(x, 2) n = int(x * 4) } else { if x >= TWO_53 { // x must be even x = 0 n = 0 } else { if x < TWO_52 { z = x + TWO_52 // exact } n = int(1 & transmute(u64)z) x = f64(n) n <<= 2 } } switch n { case 0: x = sin(PI * x) case 1, 2: x = cos(PI * (0.5 - x)) case 3, 4: x = sin(PI * (1 - x)) case 5, 6: x = -cos(PI * (x - 1.5)) case: x = sin(PI * (x - 2)) } return -x } @static lgamA := [?]f64{ 0h3FB3C467E37DB0C8, 0h3FD4A34CC4A60FAD, 0h3FB13E001A5562A7, 0h3F951322AC92547B, 0h3F7E404FB68FEFE8, 0h3F67ADD8CCB7926B, 0h3F538A94116F3F5D, 0h3F40B6C689B99C00, 0h3F2CF2ECED10E54D, 0h3F1C5088987DFB07, 0h3EFA7074428CFA52, 0h3F07858E90A45837, } @static lgamR := [?]f64{ 1.0, 0h3FF645A762C4AB74, 0h3FE71A1893D3DCDC, 0h3FC601EDCCFBDF27, 0h3F9317EA742ED475, 0h3F497DDACA41A95B, 0h3EDEBAF7A5B38140, } @static lgamS := [?]f64{ 0hBFB3C467E37DB0C8, 0h3FCB848B36E20878, 0h3FD4D98F4F139F59, 0h3FC2BB9CBEE5F2F7, 0h3F9B481C7E939961, 0h3F5E26B67368F239, 0h3F00BFECDD17E945, } @static lgamT := [?]f64{ 0h3FDEF72BC8EE38A2, 0hBFC2E4278DC6C509, 0h3FB08B4294D5419B, 0hBFA0C9A8DF35B713, 0h3F9266E7970AF9EC, 0hBF851F9FBA91EC6A, 0h3F78FCE0E370E344, 0hBF6E2EFFB3E914D7, 0h3F6282D32E15C915, 0hBF56FE8EBF2D1AF1, 0h3F4CDF0CEF61A8E9, 0hBF41A6109C73E0EC, 0h3F34AF6D6C0EBBF7, 0hBF347F24ECC38C38, 0h3F35FD3EE8C2D3F4, } @static lgamU := [?]f64{ 0hBFB3C467E37DB0C8, 0h3FE4401E8B005DFF, 0h3FF7475CD119BD6F, 0h3FEF497644EA8450, 0h3FCD4EAEF6010924, 0h3F8B678BBF2BAB09, } @static lgamV := [?]f64{ 1.0, 0h4003A5D7C2BD619C, 0h40010725A42B18F5, 0h3FE89DFBE45050AF, 0h3FBAAE55D6537C88, 0h3F6A5ABB57D0CF61, } @static lgamW := [?]f64{ 0h3FDACFE390C97D69, 0h3FB555555555553B, 0hBF66C16C16B02E5C, 0h3F4A019F98CF38B6, 0hBF4380CB8C0FE741, 0h3F4B67BA4CDAD5D1, 0hBF5AB89D0B9E43E4, } Y_MIN :: 0h3ff762d86356be3f // 1.461632144968362245 TWO_52 :: 0h4330000000000000 // ~4.5036e+15 TWO_53 :: 0h4340000000000000 // ~9.0072e+15 TWO_58 :: 0h4390000000000000 // ~2.8823e+17 TINY :: 0h3b90000000000000 // ~8.47033e-22 Tc :: 0h3FF762D86356BE3F Tf :: 0hBFBF19B9BCC38A42 Tt :: 0hBC50C7CAA48A971F // special cases sign = 1 switch { case is_nan(x): lgamma = x return case is_inf(x): lgamma = x return case x == 0: lgamma = inf_f64(1) return } x := x neg := false if x < 0 { x = -x neg = true } if x < TINY { // if |x| < 2**-70, return -log(|x|) if neg { sign = -1 } lgamma = -ln(x) return } nadj: f64 if neg { if x >= TWO_52 { // |x| >= 2**52, must be -integer lgamma = inf_f64(1) return } t := sin_pi(x) if t == 0 { lgamma = inf_f64(1) // -integer return } nadj = ln(PI / abs(t*x)) if t < 0 { sign = -1 } } switch { case x == 1 || x == 2: // purge off 1 and 2 lgamma = 0 return case x < 2: // use lgamma(x) = lgamma(x+1) - log(x) y: f64 i: int if x <= 0.9 { lgamma = -ln(x) switch { case x >= (Y_MIN - 1 + 0.27): // 0.7316 <= x <= 0.9 y = 1 - x i = 0 case x >= (Y_MIN - 1 - 0.27): // 0.2316 <= x < 0.7316 y = x - (Tc - 1) i = 1 case: // 0 < x < 0.2316 y = x i = 2 } } else { lgamma = 0 switch { case x >= (Y_MIN + 0.27): // 1.7316 <= x < 2 y = 2 - x i = 0 case x >= (Y_MIN - 0.27): // 1.2316 <= x < 1.7316 y = x - Tc i = 1 case: // 0.9 < x < 1.2316 y = x - 1 i = 2 } } switch i { case 0: z := y * y p1 := lgamA[0] + z*(lgamA[2]+z*(lgamA[4]+z*(lgamA[6]+z*(lgamA[8]+z*lgamA[10])))) p2 := z * (lgamA[1] + z*(+lgamA[3]+z*(lgamA[5]+z*(lgamA[7]+z*(lgamA[9]+z*lgamA[11]))))) p := y*p1 + p2 lgamma += (p - 0.5*y) case 1: z := y * y w := z * y p1 := lgamT[0] + w*(lgamT[3]+w*(lgamT[6]+w*(lgamT[9]+w*lgamT[12]))) // parallel comp p2 := lgamT[1] + w*(lgamT[4]+w*(lgamT[7]+w*(lgamT[10]+w*lgamT[13]))) p3 := lgamT[2] + w*(lgamT[5]+w*(lgamT[8]+w*(lgamT[11]+w*lgamT[14]))) p := z*p1 - (Tt - w*(p2+y*p3)) lgamma += (Tf + p) case 2: p1 := y * (lgamU[0] + y*(lgamU[1]+y*(lgamU[2]+y*(lgamU[3]+y*(lgamU[4]+y*lgamU[5]))))) p2 := 1 + y*(lgamV[1]+y*(lgamV[2]+y*(lgamV[3]+y*(lgamV[4]+y*lgamV[5])))) lgamma += (-0.5*y + p1/p2) } case x < 8: // 2 <= x < 8 i := int(x) y := x - f64(i) p := y * (lgamS[0] + y*(lgamS[1]+y*(lgamS[2]+y*(lgamS[3]+y*(lgamS[4]+y*(lgamS[5]+y*lgamS[6])))))) q := 1 + y*(lgamR[1]+y*(lgamR[2]+y*(lgamR[3]+y*(lgamR[4]+y*(lgamR[5]+y*lgamR[6]))))) lgamma = 0.5*y + p/q z := 1.0 // lgamma(1+s) = ln(s) + lgamma(s) switch i { case 7: z *= (y + 6) fallthrough case 6: z *= (y + 5) fallthrough case 5: z *= (y + 4) fallthrough case 4: z *= (y + 3) fallthrough case 3: z *= (y + 2) lgamma += ln(z) } case x < TWO_58: // 8 <= x < 2**58 t := ln(x) z := 1 / x y := z * z w := lgamW[0] + z*(lgamW[1]+y*(lgamW[2]+y*(lgamW[3]+y*(lgamW[4]+y*(lgamW[5]+y*lgamW[6]))))) lgamma = (x-0.5)*(t-1) + w case: // 2**58 <= x <= Inf lgamma = x * (ln(x) - 1) } if neg { lgamma = nadj - lgamma } return } lgamma_f16 :: proc "contextless" (x: f16) -> (lgamma: f16, sign: int) { r, s := lgamma_f64(f64(x)); return f16(r), s } lgamma_f32 :: proc "contextless" (x: f32) -> (lgamma: f32, sign: int) { r, s := lgamma_f64(f64(x)); return f32(r), s } lgamma_f16le :: proc "contextless" (x: f16le) -> (lgamma: f16le, sign: int) { r, s := lgamma_f64(f64(x)); return f16le(r), s } lgamma_f16be :: proc "contextless" (x: f16be) -> (lgamma: f16be, sign: int) { r, s := lgamma_f64(f64(x)); return f16be(r), s } lgamma_f32le :: proc "contextless" (x: f32le) -> (lgamma: f32le, sign: int) { r, s := lgamma_f64(f64(x)); return f32le(r), s } lgamma_f32be :: proc "contextless" (x: f32be) -> (lgamma: f32be, sign: int) { r, s := lgamma_f64(f64(x)); return f32be(r), s } lgamma_f64le :: proc "contextless" (x: f64le) -> (lgamma: f64le, sign: int) { r, s := lgamma_f64(f64(x)); return f64le(r), s } lgamma_f64be :: proc "contextless" (x: f64be) -> (lgamma: f64be, sign: int) { r, s := lgamma_f64(f64(x)); return f64be(r), s } lgamma :: proc{ lgamma_f16, lgamma_f16le, lgamma_f16be, lgamma_f32, lgamma_f32le, lgamma_f32be, lgamma_f64, lgamma_f64le, lgamma_f64be, }