// Tests "math.odin" in "core:math". // Must be run with `-collection:tests=` flag, e.g. // ./odin run tests/core/math/test_core_math.odin -collection:tests=./tests package test_core_math import "core:fmt" import "core:math" import "core:testing" import tc "tests:common" main :: proc() { t := testing.T{} test_classify_f16(&t) test_classify_f32(&t) test_classify_f64(&t) test_trunc_f16(&t) test_trunc_f32(&t) test_trunc_f64(&t) tc.report(&t) } @test test_classify_f16 :: proc(t: ^testing.T) { using math using Float_Class r: Float_Class Datum :: struct { i: int, v: f16, e: math.Float_Class, } @static data := []Datum{ { 0, 1.2, Normal }, { 1, 0h0001, Subnormal }, { 2, 0.0, Zero }, { 3, -0.0, Neg_Zero }, { 4, SNAN_F16, NaN }, { 5, QNAN_F16, NaN }, { 6, INF_F16, Inf }, { 7, NEG_INF_F16, Neg_Inf }, } for d, i in data { assert(i == d.i) r = classify_f16(d.v) tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e)) } /* Check all subnormals (exponent 0, 10-bit significand non-zero) */ for i :u16 = 1; i < 0x400; i += 1 { v :f16 = transmute(f16)i r = classify_f16(v) e :Float_Class: Subnormal tc.expect(t, r == e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, v, r, e)) } } @test test_classify_f32 :: proc(t: ^testing.T) { using math using Float_Class r: Float_Class Datum :: struct { i: int, v: f32, e: math.Float_Class, } @static data := []Datum{ { 0, 1.2, Normal }, { 1, 0h0000_0001, Subnormal }, { 2, 0.0, Zero }, { 3, -0.0, Neg_Zero }, { 4, SNAN_F32, NaN }, { 5, QNAN_F32, NaN }, { 6, INF_F32, Inf }, { 7, NEG_INF_F32, Neg_Inf }, } for d, i in data { assert(i == d.i) r = classify_f32(d.v) tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e)) } } @test test_classify_f64 :: proc(t: ^testing.T) { using math using Float_Class r: Float_Class Datum :: struct { i: int, v: f64, e: math.Float_Class, } @static data := []Datum{ { 0, 1.2, Normal }, { 1, 0h0000_0000_0000_0001, Subnormal }, { 2, 0.0, Zero }, { 3, -0.0, Neg_Zero }, { 4, SNAN_F64, NaN }, { 5, QNAN_F64, NaN }, { 6, INF_F64, Inf }, { 7, NEG_INF_F64, Neg_Inf }, } for d, i in data { assert(i == d.i) r = classify_f64(d.v) tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e)) } } @test test_trunc_f16 :: proc(t: ^testing.T) { using math r, v: f16 Datum :: struct { i: int, v: f16, e: f16, } @static data := []Datum{ { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken { 1, -10.5, -10 }, { 2, F16_MAX, F16_MAX }, { 3, -F16_MAX, -F16_MAX }, { 4, F16_MIN, 0.0 }, { 5, -F16_MIN, -0.0 }, { 6, 0.0, 0.0 }, { 7, -0.0, -0.0 }, { 8, 1, 1 }, { 9, -1, -1 }, { 10, INF_F16, INF_F16 }, { 11, NEG_INF_F16, NEG_INF_F16 }, /* From https://en.wikipedia.org/wiki/Half-precision_floating-point_format */ { 12, 0h3C01, 1 }, // 0x1.004p+0 (smallest > 1) { 13, -0h3C01, -1 }, { 14, 0h3BFF, 0.0 }, // 0x1.ffcp-1 (largest < 1) { 15, -0h3BFF, -0.0 }, { 16, 0h0001, 0.0 }, // 0x0.004p-14 (smallest subnormal) { 17, -0h0001, -0.0 }, { 18, 0h03FF, 0.0 }, // 0x0.ffcp-14 (largest subnormal) { 19, -0h03FF, -0.0 }, { 20, 0hC809, -8 }, // -0x1.024p+3 { 21, 0h4458, 4 }, // 0x1.16p+2 } for d, i in data { assert(i == d.i) r = trunc_f16(d.v) tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e)) } v = SNAN_F16 r = trunc_f16(v) tc.expect(t, is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r)) v = QNAN_F16 r = trunc_f16(v) tc.expect(t, is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r)) } @test test_trunc_f32 :: proc(t: ^testing.T) { using math r, v: f32 Datum :: struct { i: int, v: f32, e: f32, } @static data := []Datum{ { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken { 1, -10.5, -10 }, { 2, F32_MAX, F32_MAX }, { 3, -F32_MAX, -F32_MAX }, { 4, F32_MIN, 0.0 }, { 5, -F32_MIN, -0.0 }, { 6, 0.0, 0.0 }, { 7, -0.0, -0.0 }, { 8, 1, 1 }, { 9, -1, -1 }, { 10, INF_F32, INF_F32 }, { 11, NEG_INF_F32, NEG_INF_F32 }, /* From https://en.wikipedia.org/wiki/Single-precision_floating-point_format */ { 12, 0h3F80_0001, 1 }, // 0x1.000002p+0 (smallest > 1) { 13, -0h3F80_0001, -1 }, { 14, 0h3F7F_FFFF, 0.0 }, // 0x1.fffffep-1 (largest < 1) { 15, -0h3F7F_FFFF, -0.0 }, { 16, 0h0000_0001, 0.0 }, // 0x0.000002p-126 (smallest subnormal) { 17, -0h0000_0001, -0.0 }, { 18, 0h007F_FFFF, 0.0 }, // 0x0.fffffep-126 (largest subnormal) { 19, -0h007F_FFFF, -0.0 }, /* From libc-test src/math/sanity/truncf.h */ { 20, 0hC101_11D0, -8 }, // -0x1.0223ap+3 { 21, 0h408B_0C34, 4 }, // 0x1.161868p+2 { 22, 0hC106_1A5A, -8 }, // -0x1.0c34b4p+3 { 23, 0hC0D1_0378, -6 }, // -0x1.a206fp+2 { 24, 0h4114_45DE, 9 }, // 0x1.288bbcp+3 { 25, 0h3F29_77E8, 0.0 }, // 0x1.52efdp-1 { 26, 0hBED0_2E64, -0.0 }, // -0x1.a05cc8p-2 { 27, 0h3F0F_CF7D, 0.0 }, // 0x1.1f9efap-1 { 28, 0h3F46_2ED8, 0.0 }, // 0x1.8c5dbp-1 { 29, 0hBF2D_C375, -0.0 }, // -0x1.5b86eap-1 } for d, i in data { assert(i == d.i) r = trunc_f32(d.v) tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e)) } v = SNAN_F32 r = trunc_f32(v) tc.expect(t, is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r)) v = QNAN_F32 r = trunc_f32(v) tc.expect(t, is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r)) } @test test_trunc_f64 :: proc(t: ^testing.T) { using math r, v: f64 Datum :: struct { i: int, v: f64, e: f64, } data := []Datum{ { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken { 1, -10.5, -10 }, { 2, F64_MAX, F64_MAX }, { 3, -F64_MAX, -F64_MAX }, { 4, F64_MIN, 0.0 }, { 5, -F64_MIN, -0.0 }, { 6, 0.0, 0.0 }, { 7, -0.0, -0.0 }, { 8, 1, 1 }, { 9, -1, -1 }, { 10, INF_F64, INF_F64 }, { 11, NEG_INF_F64, NEG_INF_F64 }, /* From https://en.wikipedia.org/wiki/Double-precision_floating-point_format */ { 12, 0h3FF0_0000_0000_0001, 1 }, // 0x1.0000000000001p+0 (smallest > 1) { 13, -0h3FF0_0000_0000_0001, -1 }, { 14, 0h3FEF_FFFF_FFFF_FFFF, 0.0 }, // 0x1.fffffffffffffp-1 (largest < 1) { 15, -0h3FEF_FFFF_FFFF_FFFF, -0.0 }, { 16, 0h0000_0000_0000_0001, 0.0 }, // 0x0.0000000000001p-1022 (smallest subnormal) { 17, -0h0000_0000_0000_0001, -0.0 }, { 18, 0h000F_FFFF_FFFF_FFFF, 0.0 }, // 0x0.fffffffffffffp-1022 (largest subnormal) { 19, -0h000F_FFFF_FFFF_FFFF, -0.0 }, /* From libc-test src/math/sanity/trunc.h */ { 20, 0hC020_2239_F3C6_A8F1, -8 }, // -0x1.02239f3c6a8f1p+3 { 21, 0h4011_6186_8E18_BC67, 4 }, // 0x1.161868e18bc67p+2 { 22, 0hC020_C34B_3E01_E6E7, -8 }, // -0x1.0c34b3e01e6e7p+3 { 23, 0hC01A_206F_0A19_DCC4, -6 }, // -0x1.a206f0a19dcc4p+2 { 24, 0h4022_88BB_B0D6_A1E6, 9 }, // 0x1.288bbb0d6a1e6p+3 { 25, 0h3FE5_2EFD_0CD8_0497, 0.0 }, // 0x1.52efd0cd80497p-1 { 26, 0hBFDA_05CC_7544_81D1, -0.0 }, // -0x1.a05cc754481d1p-2 { 27, 0h3FE1_F9EF_9347_45CB, 0.0 }, // 0x1.1f9ef934745cbp-1 { 28, 0h3FE8_C5DB_097F_7442, 0.0 }, // 0x1.8c5db097f7442p-1 { 29, 0hBFE5_B86E_A811_8A0E, -0.0 }, // -0x1.5b86ea8118a0ep-1 } for d, i in data { assert(i == d.i) r = trunc_f64(d.v) tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e)) } v = SNAN_F64 r = trunc_f64(v) tc.expect(t, is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r)) v = QNAN_F64 r = trunc_f64(v) tc.expect(t, is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r)) }