package linalg import "core:builtin" import "core:math" F16_EPSILON :: 1e-3 F32_EPSILON :: 1e-7 F64_EPSILON :: 1e-15 Vector2f16 :: distinct [2]f16 Vector3f16 :: distinct [3]f16 Vector4f16 :: distinct [4]f16 Matrix1x1f16 :: distinct matrix[1, 1]f16 Matrix1x2f16 :: distinct matrix[1, 2]f16 Matrix1x3f16 :: distinct matrix[1, 3]f16 Matrix1x4f16 :: distinct matrix[1, 4]f16 Matrix2x1f16 :: distinct matrix[2, 1]f16 Matrix2x2f16 :: distinct matrix[2, 2]f16 Matrix2x3f16 :: distinct matrix[2, 3]f16 Matrix2x4f16 :: distinct matrix[2, 4]f16 Matrix3x1f16 :: distinct matrix[3, 1]f16 Matrix3x2f16 :: distinct matrix[3, 2]f16 Matrix3x3f16 :: distinct matrix[3, 3]f16 Matrix3x4f16 :: distinct matrix[3, 4]f16 Matrix4x1f16 :: distinct matrix[4, 1]f16 Matrix4x2f16 :: distinct matrix[4, 2]f16 Matrix4x3f16 :: distinct matrix[4, 3]f16 Matrix4x4f16 :: distinct matrix[4, 4]f16 Matrix1f16 :: Matrix1x1f16 Matrix2f16 :: Matrix2x2f16 Matrix3f16 :: Matrix3x3f16 Matrix4f16 :: Matrix4x4f16 Vector2f32 :: distinct [2]f32 Vector3f32 :: distinct [3]f32 Vector4f32 :: distinct [4]f32 Matrix1x1f32 :: distinct matrix[1, 1]f32 Matrix1x2f32 :: distinct matrix[1, 2]f32 Matrix1x3f32 :: distinct matrix[1, 3]f32 Matrix1x4f32 :: distinct matrix[1, 4]f32 Matrix2x1f32 :: distinct matrix[2, 1]f32 Matrix2x2f32 :: distinct matrix[2, 2]f32 Matrix2x3f32 :: distinct matrix[2, 3]f32 Matrix2x4f32 :: distinct matrix[2, 4]f32 Matrix3x1f32 :: distinct matrix[3, 1]f32 Matrix3x2f32 :: distinct matrix[3, 2]f32 Matrix3x3f32 :: distinct matrix[3, 3]f32 Matrix3x4f32 :: distinct matrix[3, 4]f32 Matrix4x1f32 :: distinct matrix[4, 1]f32 Matrix4x2f32 :: distinct matrix[4, 2]f32 Matrix4x3f32 :: distinct matrix[4, 3]f32 Matrix4x4f32 :: distinct matrix[4, 4]f32 Matrix1f32 :: Matrix1x1f32 Matrix2f32 :: Matrix2x2f32 Matrix3f32 :: Matrix3x3f32 Matrix4f32 :: Matrix4x4f32 Vector2f64 :: distinct [2]f64 Vector3f64 :: distinct [3]f64 Vector4f64 :: distinct [4]f64 Matrix1x1f64 :: distinct matrix[1, 1]f64 Matrix1x2f64 :: distinct matrix[1, 2]f64 Matrix1x3f64 :: distinct matrix[1, 3]f64 Matrix1x4f64 :: distinct matrix[1, 4]f64 Matrix2x1f64 :: distinct matrix[2, 1]f64 Matrix2x2f64 :: distinct matrix[2, 2]f64 Matrix2x3f64 :: distinct matrix[2, 3]f64 Matrix2x4f64 :: distinct matrix[2, 4]f64 Matrix3x1f64 :: distinct matrix[3, 1]f64 Matrix3x2f64 :: distinct matrix[3, 2]f64 Matrix3x3f64 :: distinct matrix[3, 3]f64 Matrix3x4f64 :: distinct matrix[3, 4]f64 Matrix4x1f64 :: distinct matrix[4, 1]f64 Matrix4x2f64 :: distinct matrix[4, 2]f64 Matrix4x3f64 :: distinct matrix[4, 3]f64 Matrix4x4f64 :: distinct matrix[4, 4]f64 Matrix1f64 :: Matrix1x1f64 Matrix2f64 :: Matrix2x2f64 Matrix3f64 :: Matrix3x3f64 Matrix4f64 :: Matrix4x4f64 Quaternionf16 :: distinct quaternion64 Quaternionf32 :: distinct quaternion128 Quaternionf64 :: distinct quaternion256 MATRIX1F16_IDENTITY :: Matrix1f16(1) MATRIX2F16_IDENTITY :: Matrix2f16(1) MATRIX3F16_IDENTITY :: Matrix3f16(1) MATRIX4F16_IDENTITY :: Matrix4f16(1) MATRIX1F32_IDENTITY :: Matrix1f32(1) MATRIX2F32_IDENTITY :: Matrix2f32(1) MATRIX3F32_IDENTITY :: Matrix3f32(1) MATRIX4F32_IDENTITY :: Matrix4f32(1) MATRIX1F64_IDENTITY :: Matrix1f64(1) MATRIX2F64_IDENTITY :: Matrix2f64(1) MATRIX3F64_IDENTITY :: Matrix3f64(1) MATRIX4F64_IDENTITY :: Matrix4f64(1) QUATERNIONF16_IDENTITY :: Quaternionf16(1) QUATERNIONF32_IDENTITY :: Quaternionf32(1) QUATERNIONF64_IDENTITY :: Quaternionf64(1) VECTOR3F16_X_AXIS :: Vector3f16{1, 0, 0} VECTOR3F16_Y_AXIS :: Vector3f16{0, 1, 0} VECTOR3F16_Z_AXIS :: Vector3f16{0, 0, 1} VECTOR3F32_X_AXIS :: Vector3f32{1, 0, 0} VECTOR3F32_Y_AXIS :: Vector3f32{0, 1, 0} VECTOR3F32_Z_AXIS :: Vector3f32{0, 0, 1} VECTOR3F64_X_AXIS :: Vector3f64{1, 0, 0} VECTOR3F64_Y_AXIS :: Vector3f64{0, 1, 0} VECTOR3F64_Z_AXIS :: Vector3f64{0, 0, 1} vector2_orthogonal :: proc(v: $V/[2]$E) -> V where !IS_ARRAY(E), IS_FLOAT(E) { return {-v.y, v.x} } vector3_orthogonal :: proc(v: $V/[3]$E) -> V where !IS_ARRAY(E), IS_FLOAT(E) { x := abs(v.x) y := abs(v.y) z := abs(v.z) other: V if x < y { if x < z { other = {1, 0, 0} } else { other = {0, 0, 1} } } else { if y < z { other = {0, 1, 0} } else { other = {0, 0, 1} } } return normalize(cross(v, other)) } orthogonal :: proc{vector2_orthogonal, vector3_orthogonal} vector4_srgb_to_linear_f16 :: proc(col: Vector4f16) -> Vector4f16 { r := math.pow(col.x, 2.2) g := math.pow(col.y, 2.2) b := math.pow(col.z, 2.2) a := col.w return {r, g, b, a} } vector4_srgb_to_linear_f32 :: proc(col: Vector4f32) -> Vector4f32 { r := math.pow(col.x, 2.2) g := math.pow(col.y, 2.2) b := math.pow(col.z, 2.2) a := col.w return {r, g, b, a} } vector4_srgb_to_linear_f64 :: proc(col: Vector4f64) -> Vector4f64 { r := math.pow(col.x, 2.2) g := math.pow(col.y, 2.2) b := math.pow(col.z, 2.2) a := col.w return {r, g, b, a} } vector4_srgb_to_linear :: proc{ vector4_srgb_to_linear_f16, vector4_srgb_to_linear_f32, vector4_srgb_to_linear_f64, } vector4_linear_to_srgb_f16 :: proc(col: Vector4f16) -> Vector4f16 { a :: 2.51 b :: 0.03 c :: 2.43 d :: 0.59 e :: 0.14 x := col.x y := col.y z := col.z x = (x * (a * x + b)) / (x * (c * x + d) + e) y = (y * (a * y + b)) / (y * (c * y + d) + e) z = (z * (a * z + b)) / (z * (c * z + d) + e) x = math.pow(clamp(x, 0, 1), 1.0 / 2.2) y = math.pow(clamp(y, 0, 1), 1.0 / 2.2) z = math.pow(clamp(z, 0, 1), 1.0 / 2.2) return {x, y, z, col.w} } vector4_linear_to_srgb_f32 :: proc(col: Vector4f32) -> Vector4f32 { a :: 2.51 b :: 0.03 c :: 2.43 d :: 0.59 e :: 0.14 x := col.x y := col.y z := col.z x = (x * (a * x + b)) / (x * (c * x + d) + e) y = (y * (a * y + b)) / (y * (c * y + d) + e) z = (z * (a * z + b)) / (z * (c * z + d) + e) x = math.pow(clamp(x, 0, 1), 1.0 / 2.2) y = math.pow(clamp(y, 0, 1), 1.0 / 2.2) z = math.pow(clamp(z, 0, 1), 1.0 / 2.2) return {x, y, z, col.w} } vector4_linear_to_srgb_f64 :: proc(col: Vector4f64) -> Vector4f64 { a :: 2.51 b :: 0.03 c :: 2.43 d :: 0.59 e :: 0.14 x := col.x y := col.y z := col.z x = (x * (a * x + b)) / (x * (c * x + d) + e) y = (y * (a * y + b)) / (y * (c * y + d) + e) z = (z * (a * z + b)) / (z * (c * z + d) + e) x = math.pow(clamp(x, 0, 1), 1.0 / 2.2) y = math.pow(clamp(y, 0, 1), 1.0 / 2.2) z = math.pow(clamp(z, 0, 1), 1.0 / 2.2) return {x, y, z, col.w} } vector4_linear_to_srgb :: proc{ vector4_linear_to_srgb_f16, vector4_linear_to_srgb_f32, vector4_linear_to_srgb_f64, } vector4_hsl_to_rgb_f16 :: proc(h, s, l: f16, a: f16 = 1) -> Vector4f16 { hue_to_rgb :: proc(p, q, t: f16) -> f16 { t := t if t < 0 { t += 1 } if t > 1 { t -= 1 } switch { case t < 1.0/6.0: return p + (q - p) * 6.0 * t case t < 1.0/2.0: return q case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t) } return p } r, g, b: f16 if s == 0 { r = l g = l b = l } else { q := l * (1+s) if l < 0.5 else l+s - l*s p := 2*l - q r = hue_to_rgb(p, q, h + 1.0/3.0) g = hue_to_rgb(p, q, h) b = hue_to_rgb(p, q, h - 1.0/3.0) } return {r, g, b, a} } vector4_hsl_to_rgb_f32 :: proc(h, s, l: f32, a: f32 = 1) -> Vector4f32 { hue_to_rgb :: proc(p, q, t: f32) -> f32 { t := t if t < 0 { t += 1 } if t > 1 { t -= 1 } switch { case t < 1.0/6.0: return p + (q - p) * 6.0 * t case t < 1.0/2.0: return q case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t) } return p } r, g, b: f32 if s == 0 { r = l g = l b = l } else { q := l * (1+s) if l < 0.5 else l+s - l*s p := 2*l - q r = hue_to_rgb(p, q, h + 1.0/3.0) g = hue_to_rgb(p, q, h) b = hue_to_rgb(p, q, h - 1.0/3.0) } return {r, g, b, a} } vector4_hsl_to_rgb_f64 :: proc(h, s, l: f64, a: f64 = 1) -> Vector4f64 { hue_to_rgb :: proc(p, q, t: f64) -> f64 { t := t if t < 0 { t += 1 } if t > 1 { t -= 1 } switch { case t < 1.0/6.0: return p + (q - p) * 6.0 * t case t < 1.0/2.0: return q case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t) } return p } r, g, b: f64 if s == 0 { r = l g = l b = l } else { q := l * (1+s) if l < 0.5 else l+s - l*s p := 2*l - q r = hue_to_rgb(p, q, h + 1.0/3.0) g = hue_to_rgb(p, q, h) b = hue_to_rgb(p, q, h - 1.0/3.0) } return {r, g, b, a} } vector4_hsl_to_rgb :: proc{ vector4_hsl_to_rgb_f16, vector4_hsl_to_rgb_f32, vector4_hsl_to_rgb_f64, } vector4_rgb_to_hsl_f16 :: proc(col: Vector4f16) -> Vector4f16 { r := col.x g := col.y b := col.z a := col.w v_min := min(r, g, b) v_max := max(r, g, b) h, s, l: f16 h = 0.0 s = 0.0 l = (v_min + v_max) * 0.5 if v_max != v_min { d: = v_max - v_min s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min) switch { case v_max == r: h = (g - b) / d + (6.0 if g < b else 0.0) case v_max == g: h = (b - r) / d + 2.0 case v_max == b: h = (r - g) / d + 4.0 } h *= 1.0/6.0 } return {h, s, l, a} } vector4_rgb_to_hsl_f32 :: proc(col: Vector4f32) -> Vector4f32 { r := col.x g := col.y b := col.z a := col.w v_min := min(r, g, b) v_max := max(r, g, b) h, s, l: f32 h = 0.0 s = 0.0 l = (v_min + v_max) * 0.5 if v_max != v_min { d: = v_max - v_min s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min) switch { case v_max == r: h = (g - b) / d + (6.0 if g < b else 0.0) case v_max == g: h = (b - r) / d + 2.0 case v_max == b: h = (r - g) / d + 4.0 } h *= 1.0/6.0 } return {h, s, l, a} } vector4_rgb_to_hsl_f64 :: proc(col: Vector4f64) -> Vector4f64 { r := col.x g := col.y b := col.z a := col.w v_min := min(r, g, b) v_max := max(r, g, b) h, s, l: f64 h = 0.0 s = 0.0 l = (v_min + v_max) * 0.5 if v_max != v_min { d: = v_max - v_min s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min) switch { case v_max == r: h = (g - b) / d + (6.0 if g < b else 0.0) case v_max == g: h = (b - r) / d + 2.0 case v_max == b: h = (r - g) / d + 4.0 } h *= 1.0/6.0 } return {h, s, l, a} } vector4_rgb_to_hsl :: proc{ vector4_rgb_to_hsl_f16, vector4_rgb_to_hsl_f32, vector4_rgb_to_hsl_f64, } quaternion_angle_axis_f16 :: proc(angle_radians: f16, axis: Vector3f16) -> (q: Quaternionf16) { t := angle_radians*0.5 v := normalize(axis) * math.sin(t) q.x = v.x q.y = v.y q.z = v.z q.w = math.cos(t) return } quaternion_angle_axis_f32 :: proc(angle_radians: f32, axis: Vector3f32) -> (q: Quaternionf32) { t := angle_radians*0.5 v := normalize(axis) * math.sin(t) q.x = v.x q.y = v.y q.z = v.z q.w = math.cos(t) return } quaternion_angle_axis_f64 :: proc(angle_radians: f64, axis: Vector3f64) -> (q: Quaternionf64) { t := angle_radians*0.5 v := normalize(axis) * math.sin(t) q.x = v.x q.y = v.y q.z = v.z q.w = math.cos(t) return } quaternion_angle_axis :: proc{ quaternion_angle_axis_f16, quaternion_angle_axis_f32, quaternion_angle_axis_f64, } angle_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 { if abs(q.w) > math.SQRT_THREE*0.5 { return math.asin(math.sqrt(q.x*q.x + q.y*q.y + q.z*q.z)) * 2 } return math.acos(q.w) * 2 } angle_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 { if abs(q.w) > math.SQRT_THREE*0.5 { return math.asin(math.sqrt(q.x*q.x + q.y*q.y + q.z*q.z)) * 2 } return math.acos(q.w) * 2 } angle_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 { if abs(q.w) > math.SQRT_THREE*0.5 { return math.asin(math.sqrt(q.x*q.x + q.y*q.y + q.z*q.z)) * 2 } return math.acos(q.w) * 2 } angle_from_quaternion :: proc{ angle_from_quaternion_f16, angle_from_quaternion_f32, angle_from_quaternion_f64, } axis_from_quaternion_f16 :: proc(q: Quaternionf16) -> Vector3f16 { t1 := 1 - q.w*q.w if t1 < 0 { return {0, 0, 1} } t2 := 1.0 / math.sqrt(t1) return {q.x*t2, q.y*t2, q.z*t2} } axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> Vector3f32 { t1 := 1 - q.w*q.w if t1 < 0 { return {0, 0, 1} } t2 := 1.0 / math.sqrt(t1) return {q.x*t2, q.y*t2, q.z*t2} } axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> Vector3f64 { t1 := 1 - q.w*q.w if t1 < 0 { return {0, 0, 1} } t2 := 1.0 / math.sqrt(t1) return {q.x*t2, q.y*t2, q.z*t2} } axis_from_quaternion :: proc{ axis_from_quaternion_f16, axis_from_quaternion_f32, axis_from_quaternion_f64, } angle_axis_from_quaternion_f16 :: proc(q: Quaternionf16) -> (angle: f16, axis: Vector3f16) { angle = angle_from_quaternion(q) axis = axis_from_quaternion(q) return } angle_axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> (angle: f32, axis: Vector3f32) { angle = angle_from_quaternion(q) axis = axis_from_quaternion(q) return } angle_axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> (angle: f64, axis: Vector3f64) { angle = angle_from_quaternion(q) axis = axis_from_quaternion(q) return } angle_axis_from_quaternion :: proc { angle_axis_from_quaternion_f16, angle_axis_from_quaternion_f32, angle_axis_from_quaternion_f64, } quaternion_from_forward_and_up_f16 :: proc(forward, up: Vector3f16) -> Quaternionf16 { f := normalize(forward) s := normalize(cross(f, up)) u := cross(s, f) m := Matrix3f16{ +s.x, +s.y, +s.z, +u.x, +u.y, +u.z, -f.x, -f.y, -f.z, } tr := trace(m) q: Quaternionf16 switch { case tr > 0: S := 2 * math.sqrt(1 + tr) q.w = 0.25 * S q.x = (m[1, 2] - m[2, 1]) / S q.y = (m[2, 0] - m[0, 2]) / S q.z = (m[0, 1] - m[1, 0]) / S case (m[0, 0] > m[1, 1]) && (m[0, 0] > m[2, 2]): S := 2 * math.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2]) q.w = (m[1, 2] - m[2, 1]) / S q.x = 0.25 * S q.y = (m[1, 0] + m[0, 1]) / S q.z = (m[2, 0] + m[0, 2]) / S case m[1, 1] > m[2, 2]: S := 2 * math.sqrt(1 + m[1, 1] - m[0, 0] - m[2, 2]) q.w = (m[2, 0] - m[0, 2]) / S q.x = (m[1, 0] + m[0, 1]) / S q.y = 0.25 * S q.z = (m[2, 1] + m[1, 2]) / S case: S := 2 * math.sqrt(1 + m[2, 2] - m[0, 0] - m[1, 1]) q.w = (m[0, 1] - m[1, 0]) / S q.x = (m[2, 0] - m[0, 2]) / S q.y = (m[2, 1] + m[1, 2]) / S q.z = 0.25 * S } return normalize(q) } quaternion_from_forward_and_up_f32 :: proc(forward, up: Vector3f32) -> Quaternionf32 { f := normalize(forward) s := normalize(cross(f, up)) u := cross(s, f) m := Matrix3f32{ +s.x, +s.y, +s.z, +u.x, +u.y, +u.z, -f.x, -f.y, -f.z, } tr := trace(m) q: Quaternionf32 switch { case tr > 0: S := 2 * math.sqrt(1 + tr) q.w = 0.25 * S q.x = (m[1, 2] - m[2, 1]) / S q.y = (m[2, 0] - m[0, 2]) / S q.z = (m[0, 1] - m[1, 0]) / S case (m[0, 0] > m[1, 1]) && (m[0, 0] > m[2, 2]): S := 2 * math.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2]) q.w = (m[1, 2] - m[2, 1]) / S q.x = 0.25 * S q.y = (m[1, 0] + m[0, 1]) / S q.z = (m[2, 0] + m[0, 2]) / S case m[1, 1] > m[2, 2]: S := 2 * math.sqrt(1 + m[1, 1] - m[0, 0] - m[2, 2]) q.w = (m[2, 0] - m[0, 2]) / S q.x = (m[1, 0] + m[0, 1]) / S q.y = 0.25 * S q.z = (m[2, 1] + m[1, 2]) / S case: S := 2 * math.sqrt(1 + m[2, 2] - m[0, 0] - m[1, 1]) q.w = (m[0, 1] - m[1, 0]) / S q.x = (m[2, 0] - m[0, 2]) / S q.y = (m[2, 1] + m[1, 2]) / S q.z = 0.25 * S } return normalize(q) } quaternion_from_forward_and_up_f64 :: proc(forward, up: Vector3f64) -> Quaternionf64 { f := normalize(forward) s := normalize(cross(f, up)) u := cross(s, f) m := Matrix3f64{ +s.x, +s.y, +s.z, +u.x, +u.y, +u.z, -f.x, -f.y, -f.z, } tr := trace(m) q: Quaternionf64 switch { case tr > 0: S := 2 * math.sqrt(1 + tr) q.w = 0.25 * S q.x = (m[1, 2] - m[2, 1]) / S q.y = (m[2, 0] - m[0, 2]) / S q.z = (m[0, 1] - m[1, 0]) / S case (m[0, 0] > m[1, 1]) && (m[0, 0] > m[2, 2]): S := 2 * math.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2]) q.w = (m[1, 2] - m[2, 1]) / S q.x = 0.25 * S q.y = (m[1, 0] + m[0, 1]) / S q.z = (m[2, 0] + m[0, 2]) / S case m[1, 1] > m[2, 2]: S := 2 * math.sqrt(1 + m[1, 1] - m[0, 0] - m[2, 2]) q.w = (m[2, 0] - m[0, 2]) / S q.x = (m[1, 0] + m[0, 1]) / S q.y = 0.25 * S q.z = (m[2, 1] + m[1, 2]) / S case: S := 2 * math.sqrt(1 + m[2, 2] - m[0, 0] - m[1, 1]) q.w = (m[0, 1] - m[1, 0]) / S q.x = (m[2, 0] - m[0, 2]) / S q.y = (m[2, 1] + m[1, 2]) / S q.z = 0.25 * S } return normalize(q) } quaternion_from_forward_and_up :: proc{ quaternion_from_forward_and_up_f16, quaternion_from_forward_and_up_f32, quaternion_from_forward_and_up_f64, } quaternion_look_at_f16 :: proc(eye, centre: Vector3f16, up: Vector3f16) -> Quaternionf16 { return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)) } quaternion_look_at_f32 :: proc(eye, centre: Vector3f32, up: Vector3f32) -> Quaternionf32 { return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)) } quaternion_look_at_f64 :: proc(eye, centre: Vector3f64, up: Vector3f64) -> Quaternionf64 { return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)) } quaternion_look_at :: proc{ quaternion_look_at_f16, quaternion_look_at_f32, quaternion_look_at_f64, } quaternion_nlerp_f16 :: proc(a, b: Quaternionf16, t: f16) -> (c: Quaternionf16) { c.x = a.x + (b.x-a.x)*t c.y = a.y + (b.y-a.y)*t c.z = a.z + (b.z-a.z)*t c.w = a.w + (b.w-a.w)*t return normalize(c) } quaternion_nlerp_f32 :: proc(a, b: Quaternionf32, t: f32) -> (c: Quaternionf32) { c.x = a.x + (b.x-a.x)*t c.y = a.y + (b.y-a.y)*t c.z = a.z + (b.z-a.z)*t c.w = a.w + (b.w-a.w)*t return normalize(c) } quaternion_nlerp_f64 :: proc(a, b: Quaternionf64, t: f64) -> (c: Quaternionf64) { c.x = a.x + (b.x-a.x)*t c.y = a.y + (b.y-a.y)*t c.z = a.z + (b.z-a.z)*t c.w = a.w + (b.w-a.w)*t return normalize(c) } quaternion_nlerp :: proc{ quaternion_nlerp_f16, quaternion_nlerp_f32, quaternion_nlerp_f64, } quaternion_slerp_f16 :: proc(x, y: Quaternionf16, t: f16) -> (q: Quaternionf16) { a, b := x, y cos_angle := dot(a, b) if cos_angle < 0 { b = -b cos_angle = -cos_angle } if cos_angle > 1 - F32_EPSILON { q.x = a.x + (b.x-a.x)*t q.y = a.y + (b.y-a.y)*t q.z = a.z + (b.z-a.z)*t q.w = a.w + (b.w-a.w)*t return } angle := math.acos(cos_angle) sin_angle := math.sin(angle) factor_a := math.sin((1-t) * angle) / sin_angle factor_b := math.sin(t * angle) / sin_angle q.x = factor_a * a.x + factor_b * b.x q.y = factor_a * a.y + factor_b * b.y q.z = factor_a * a.z + factor_b * b.z q.w = factor_a * a.w + factor_b * b.w return } quaternion_slerp_f32 :: proc(x, y: Quaternionf32, t: f32) -> (q: Quaternionf32) { a, b := x, y cos_angle := dot(a, b) if cos_angle < 0 { b = -b cos_angle = -cos_angle } if cos_angle > 1 - F32_EPSILON { q.x = a.x + (b.x-a.x)*t q.y = a.y + (b.y-a.y)*t q.z = a.z + (b.z-a.z)*t q.w = a.w + (b.w-a.w)*t return } angle := math.acos(cos_angle) sin_angle := math.sin(angle) factor_a := math.sin((1-t) * angle) / sin_angle factor_b := math.sin(t * angle) / sin_angle q.x = factor_a * a.x + factor_b * b.x q.y = factor_a * a.y + factor_b * b.y q.z = factor_a * a.z + factor_b * b.z q.w = factor_a * a.w + factor_b * b.w return } quaternion_slerp_f64 :: proc(x, y: Quaternionf64, t: f64) -> (q: Quaternionf64) { a, b := x, y cos_angle := dot(a, b) if cos_angle < 0 { b = -b cos_angle = -cos_angle } if cos_angle > 1 - F64_EPSILON { q.x = a.x + (b.x-a.x)*t q.y = a.y + (b.y-a.y)*t q.z = a.z + (b.z-a.z)*t q.w = a.w + (b.w-a.w)*t return } angle := math.acos(cos_angle) sin_angle := math.sin(angle) factor_a := math.sin((1-t) * angle) / sin_angle factor_b := math.sin(t * angle) / sin_angle q.x = factor_a * a.x + factor_b * b.x q.y = factor_a * a.y + factor_b * b.y q.z = factor_a * a.z + factor_b * b.z q.w = factor_a * a.w + factor_b * b.w return } quaternion_slerp :: proc{ quaternion_slerp_f16, quaternion_slerp_f32, quaternion_slerp_f64, } quaternion_squad_f16 :: proc(q1, q2, s1, s2: Quaternionf16, h: f16) -> Quaternionf16 { slerp :: quaternion_slerp return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h) } quaternion_squad_f32 :: proc(q1, q2, s1, s2: Quaternionf32, h: f32) -> Quaternionf32 { slerp :: quaternion_slerp return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h) } quaternion_squad_f64 :: proc(q1, q2, s1, s2: Quaternionf64, h: f64) -> Quaternionf64 { slerp :: quaternion_slerp return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h) } quaternion_squad :: proc{ quaternion_squad_f16, quaternion_squad_f32, quaternion_squad_f64, } quaternion_from_matrix4_f16 :: proc(m: Matrix4f16) -> (q: Quaternionf16) { m3: Matrix3f16 = --- m3[0, 0], m3[1, 0], m3[2, 0] = m[0, 0], m[1, 0], m[2, 0] m3[0, 1], m3[1, 1], m3[2, 1] = m[0, 1], m[1, 1], m[2, 1] m3[0, 2], m3[1, 2], m3[2, 2] = m[0, 2], m[1, 2], m[2, 2] return quaternion_from_matrix3(m3) } quaternion_from_matrix4_f32 :: proc(m: Matrix4f32) -> (q: Quaternionf32) { m3: Matrix3f32 = --- m3[0, 0], m3[1, 0], m3[2, 0] = m[0, 0], m[1, 0], m[2, 0] m3[0, 1], m3[1, 1], m3[2, 1] = m[0, 1], m[1, 1], m[2, 1] m3[0, 2], m3[1, 2], m3[2, 2] = m[0, 2], m[1, 2], m[2, 2] return quaternion_from_matrix3(m3) } quaternion_from_matrix4_f64 :: proc(m: Matrix4f64) -> (q: Quaternionf64) { m3: Matrix3f64 = --- m3[0, 0], m3[1, 0], m3[2, 0] = m[0, 0], m[1, 0], m[2, 0] m3[0, 1], m3[1, 1], m3[2, 1] = m[0, 1], m[1, 1], m[2, 1] m3[0, 2], m3[1, 2], m3[2, 2] = m[0, 2], m[1, 2], m[2, 2] return quaternion_from_matrix3(m3) } quaternion_from_matrix4 :: proc{ quaternion_from_matrix4_f16, quaternion_from_matrix4_f32, quaternion_from_matrix4_f64, } quaternion_from_matrix3_f16 :: proc(m: Matrix3f16) -> (q: Quaternionf16) { four_x_squared_minus_1 := m[0, 0] - m[1, 1] - m[2, 2] four_y_squared_minus_1 := m[1, 1] - m[0, 0] - m[2, 2] four_z_squared_minus_1 := m[2, 2] - m[0, 0] - m[1, 1] four_w_squared_minus_1 := m[0, 0] + m[1, 1] + m[2, 2] biggest_index := 0 four_biggest_squared_minus_1 := four_w_squared_minus_1 if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1 biggest_index = 1 } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1 biggest_index = 2 } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1 biggest_index = 3 } biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5 mult := 0.25 / biggest_val q = 1 switch biggest_index { case 0: q.w = biggest_val q.x = (m[2, 1] - m[1, 2]) * mult q.y = (m[0, 2] - m[2, 0]) * mult q.z = (m[1, 0] - m[0, 1]) * mult case 1: q.w = (m[2, 1] - m[1, 2]) * mult q.x = biggest_val q.y = (m[1, 0] + m[0, 1]) * mult q.z = (m[0, 2] + m[2, 0]) * mult case 2: q.w = (m[0, 2] - m[2, 0]) * mult q.x = (m[1, 0] + m[0, 1]) * mult q.y = biggest_val q.z = (m[2, 1] + m[1, 2]) * mult case 3: q.w = (m[1, 0] - m[0, 1]) * mult q.x = (m[0, 2] + m[2, 0]) * mult q.y = (m[2, 1] + m[1, 2]) * mult q.z = biggest_val } return } quaternion_from_matrix3_f32 :: proc(m: Matrix3f32) -> (q: Quaternionf32) { four_x_squared_minus_1 := m[0, 0] - m[1, 1] - m[2, 2] four_y_squared_minus_1 := m[1, 1] - m[0, 0] - m[2, 2] four_z_squared_minus_1 := m[2, 2] - m[0, 0] - m[1, 1] four_w_squared_minus_1 := m[0, 0] + m[1, 1] + m[2, 2] biggest_index := 0 four_biggest_squared_minus_1 := four_w_squared_minus_1 if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1 biggest_index = 1 } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1 biggest_index = 2 } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1 biggest_index = 3 } biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5 mult := 0.25 / biggest_val q = 1 switch biggest_index { case 0: q.w = biggest_val q.x = (m[2, 1] - m[1, 2]) * mult q.y = (m[0, 2] - m[2, 0]) * mult q.z = (m[1, 0] - m[0, 1]) * mult case 1: q.w = (m[2, 1] - m[1, 2]) * mult q.x = biggest_val q.y = (m[1, 0] + m[0, 1]) * mult q.z = (m[0, 2] + m[2, 0]) * mult case 2: q.w = (m[0, 2] - m[2, 0]) * mult q.x = (m[1, 0] + m[0, 1]) * mult q.y = biggest_val q.z = (m[2, 1] + m[1, 2]) * mult case 3: q.w = (m[1, 0] - m[0, 1]) * mult q.x = (m[0, 2] + m[2, 0]) * mult q.y = (m[2, 1] + m[1, 2]) * mult q.z = biggest_val } return } quaternion_from_matrix3_f64 :: proc(m: Matrix3f64) -> (q: Quaternionf64) { four_x_squared_minus_1 := m[0, 0] - m[1, 1] - m[2, 2] four_y_squared_minus_1 := m[1, 1] - m[0, 0] - m[2, 2] four_z_squared_minus_1 := m[2, 2] - m[0, 0] - m[1, 1] four_w_squared_minus_1 := m[0, 0] + m[1, 1] + m[2, 2] biggest_index := 0 four_biggest_squared_minus_1 := four_w_squared_minus_1 if four_x_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_x_squared_minus_1 biggest_index = 1 } if four_y_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_y_squared_minus_1 biggest_index = 2 } if four_z_squared_minus_1 > four_biggest_squared_minus_1 { four_biggest_squared_minus_1 = four_z_squared_minus_1 biggest_index = 3 } biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5 mult := 0.25 / biggest_val q = 1 switch biggest_index { case 0: q.w = biggest_val q.x = (m[2, 1] - m[1, 2]) * mult q.y = (m[0, 2] - m[2, 0]) * mult q.z = (m[1, 0] - m[0, 1]) * mult case 1: q.w = (m[2, 1] - m[1, 2]) * mult q.x = biggest_val q.y = (m[1, 0] + m[0, 1]) * mult q.z = (m[0, 2] + m[2, 0]) * mult case 2: q.w = (m[0, 2] - m[2, 0]) * mult q.x = (m[1, 0] + m[0, 1]) * mult q.y = biggest_val q.z = (m[2, 1] + m[1, 2]) * mult case 3: q.w = (m[1, 0] - m[0, 1]) * mult q.x = (m[0, 2] + m[2, 0]) * mult q.y = (m[2, 1] + m[1, 2]) * mult q.z = biggest_val } return } quaternion_from_matrix3 :: proc{ quaternion_from_matrix3_f16, quaternion_from_matrix3_f32, quaternion_from_matrix3_f64, } quaternion_between_two_vector3_f16 :: proc(from, to: Vector3f16) -> (q: Quaternionf16) { x := normalize(from) y := normalize(to) cos_theta := dot(x, y) if abs(cos_theta + 1) < 2*F32_EPSILON { v := vector3_orthogonal(x) q.x = v.x q.y = v.y q.z = v.z q.w = 0 return } v := cross(x, y) w := cos_theta + 1 q.w = w q.x = v.x q.y = v.y q.z = v.z return normalize(q) } quaternion_between_two_vector3_f32 :: proc(from, to: Vector3f32) -> (q: Quaternionf32) { x := normalize(from) y := normalize(to) cos_theta := dot(x, y) if abs(cos_theta + 1) < 2*F32_EPSILON { v := vector3_orthogonal(x) q.x = v.x q.y = v.y q.z = v.z q.w = 0 return } v := cross(x, y) w := cos_theta + 1 q.w = w q.x = v.x q.y = v.y q.z = v.z return normalize(q) } quaternion_between_two_vector3_f64 :: proc(from, to: Vector3f64) -> (q: Quaternionf64) { x := normalize(from) y := normalize(to) cos_theta := dot(x, y) if abs(cos_theta + 1) < 2*F64_EPSILON { v := vector3_orthogonal(x) q.x = v.x q.y = v.y q.z = v.z q.w = 0 return } v := cross(x, y) w := cos_theta + 1 q.w = w q.x = v.x q.y = v.y q.z = v.z return normalize(q) } quaternion_between_two_vector3 :: proc{ quaternion_between_two_vector3_f16, quaternion_between_two_vector3_f32, quaternion_between_two_vector3_f64, } matrix2_inverse_transpose_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) { d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] id := 1.0/d c[0, 0] = +m[1, 1] * id c[1, 0] = -m[1, 0] * id c[0, 1] = -m[0, 1] * id c[1, 1] = +m[0, 0] * id return c } matrix2_inverse_transpose_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] id := 1.0/d c[0, 0] = +m[1, 1] * id c[1, 0] = -m[1, 0] * id c[0, 1] = -m[0, 1] * id c[1, 1] = +m[0, 0] * id return c } matrix2_inverse_transpose_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] id := 1.0/d c[0, 0] = +m[1, 1] * id c[1, 0] = -m[1, 0] * id c[0, 1] = -m[0, 1] * id c[1, 1] = +m[0, 0] * id return c } matrix2_inverse_transpose :: proc{ matrix2_inverse_transpose_f16, matrix2_inverse_transpose_f32, matrix2_inverse_transpose_f64, } matrix2_determinant_f16 :: proc(m: Matrix2f16) -> f16 { return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] } matrix2_determinant_f32 :: proc(m: Matrix2f32) -> f32 { return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] } matrix2_determinant_f64 :: proc(m: Matrix2f64) -> f64 { return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] } matrix2_determinant :: proc{ matrix2_determinant_f16, matrix2_determinant_f32, matrix2_determinant_f64, } matrix2_inverse_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) { d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] id := 1.0/d c[0, 0] = +m[1, 1] * id c[0, 1] = -m[1, 0] * id c[1, 0] = -m[0, 1] * id c[1, 1] = +m[0, 0] * id return c } matrix2_inverse_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] id := 1.0/d c[0, 0] = +m[1, 1] * id c[0, 1] = -m[1, 0] * id c[1, 0] = -m[0, 1] * id c[1, 1] = +m[0, 0] * id return c } matrix2_inverse_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { d := m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0] id := 1.0/d c[0, 0] = +m[1, 1] * id c[0, 1] = -m[1, 0] * id c[1, 0] = -m[0, 1] * id c[1, 1] = +m[0, 0] * id return c } matrix2_inverse :: proc{ matrix2_inverse_f16, matrix2_inverse_f32, matrix2_inverse_f64, } matrix2_adjoint_f16 :: proc(m: Matrix2f16) -> (c: Matrix2f16) { c[0, 0] = +m[1, 1] c[1, 0] = -m[0, 1] c[0, 1] = -m[1, 0] c[1, 1] = +m[0, 0] return c } matrix2_adjoint_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { c[0, 0] = +m[1, 1] c[1, 0] = -m[0, 1] c[0, 1] = -m[1, 0] c[1, 1] = +m[0, 0] return c } matrix2_adjoint_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { c[0, 0] = +m[1, 1] c[1, 0] = -m[0, 1] c[0, 1] = -m[1, 0] c[1, 1] = +m[0, 0] return c } matrix2_adjoint :: proc{ matrix2_adjoint_f16, matrix2_adjoint_f32, matrix2_adjoint_f64, } matrix3_from_quaternion_f16 :: proc(q: Quaternionf16) -> (m: Matrix3f16) { qxx := q.x * q.x qyy := q.y * q.y qzz := q.z * q.z qxz := q.x * q.z qxy := q.x * q.y qyz := q.y * q.z qwx := q.w * q.x qwy := q.w * q.y qwz := q.w * q.z m[0, 0] = 1 - 2 * (qyy + qzz) m[1, 0] = 2 * (qxy + qwz) m[2, 0] = 2 * (qxz - qwy) m[0, 1] = 2 * (qxy - qwz) m[1, 1] = 1 - 2 * (qxx + qzz) m[2, 1] = 2 * (qyz + qwx) m[0, 2] = 2 * (qxz + qwy) m[1, 2] = 2 * (qyz - qwx) m[2, 2] = 1 - 2 * (qxx + qyy) return m } matrix3_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix3f32) { qxx := q.x * q.x qyy := q.y * q.y qzz := q.z * q.z qxz := q.x * q.z qxy := q.x * q.y qyz := q.y * q.z qwx := q.w * q.x qwy := q.w * q.y qwz := q.w * q.z m[0, 0] = 1 - 2 * (qyy + qzz) m[1, 0] = 2 * (qxy + qwz) m[2, 0] = 2 * (qxz - qwy) m[0, 1] = 2 * (qxy - qwz) m[1, 1] = 1 - 2 * (qxx + qzz) m[2, 1] = 2 * (qyz + qwx) m[0, 2] = 2 * (qxz + qwy) m[1, 2] = 2 * (qyz - qwx) m[2, 2] = 1 - 2 * (qxx + qyy) return m } matrix3_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix3f64) { qxx := q.x * q.x qyy := q.y * q.y qzz := q.z * q.z qxz := q.x * q.z qxy := q.x * q.y qyz := q.y * q.z qwx := q.w * q.x qwy := q.w * q.y qwz := q.w * q.z m[0, 0] = 1 - 2 * (qyy + qzz) m[1, 0] = 2 * (qxy + qwz) m[2, 0] = 2 * (qxz - qwy) m[0, 1] = 2 * (qxy - qwz) m[1, 1] = 1 - 2 * (qxx + qzz) m[2, 1] = 2 * (qyz + qwx) m[0, 2] = 2 * (qxz + qwy) m[1, 2] = 2 * (qyz - qwx) m[2, 2] = 1 - 2 * (qxx + qyy) return m } matrix3_from_quaternion :: proc{ matrix3_from_quaternion_f16, matrix3_from_quaternion_f32, matrix3_from_quaternion_f64, } matrix3_inverse_f16 :: proc(m: Matrix3f16) -> Matrix3f16 { return transpose(matrix3_inverse_transpose(m)) } matrix3_inverse_f32 :: proc(m: Matrix3f32) -> Matrix3f32 { return transpose(matrix3_inverse_transpose(m)) } matrix3_inverse_f64 :: proc(m: Matrix3f64) -> Matrix3f64 { return transpose(matrix3_inverse_transpose(m)) } matrix3_inverse :: proc{ matrix3_inverse_f16, matrix3_inverse_f32, matrix3_inverse_f64, } matrix3_determinant_f16 :: proc(m: Matrix3f16) -> f16 { a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1]) b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0]) c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0]) return a + b + c } matrix3_determinant_f32 :: proc(m: Matrix3f32) -> f32 { a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1]) b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0]) c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0]) return a + b + c } matrix3_determinant_f64 :: proc(m: Matrix3f64) -> f64 { a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1]) b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0]) c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0]) return a + b + c } matrix3_determinant :: proc{ matrix3_determinant_f16, matrix3_determinant_f32, matrix3_determinant_f64, } matrix3_adjoint_f16 :: proc(m: Matrix3f16) -> (adjoint: Matrix3f16) { adjoint[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2]) adjoint[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2]) adjoint[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1]) adjoint[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2]) adjoint[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2]) adjoint[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1]) adjoint[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2]) adjoint[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2]) adjoint[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) return adjoint } matrix3_adjoint_f32 :: proc(m: Matrix3f32) -> (adjoint: Matrix3f32) { adjoint[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2]) adjoint[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2]) adjoint[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1]) adjoint[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2]) adjoint[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2]) adjoint[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1]) adjoint[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2]) adjoint[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2]) adjoint[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) return adjoint } matrix3_adjoint_f64 :: proc(m: Matrix3f64) -> (adjoint: Matrix3f64) { adjoint[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2]) adjoint[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2]) adjoint[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1]) adjoint[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2]) adjoint[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2]) adjoint[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1]) adjoint[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2]) adjoint[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2]) adjoint[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1]) return adjoint } matrix3_adjoint :: proc{ matrix3_adjoint_f16, matrix3_adjoint_f32, matrix3_adjoint_f64, } matrix3_inverse_transpose_f16 :: proc(m: Matrix3f16) -> (inverse_transpose: Matrix3f16) { return builtin.inverse_transpose(m) } matrix3_inverse_transpose_f32 :: proc(m: Matrix3f32) -> (inverse_transpose: Matrix3f32) { return builtin.inverse_transpose(m) } matrix3_inverse_transpose_f64 :: proc(m: Matrix3f64) -> (inverse_transpose: Matrix3f64) { return builtin.inverse_transpose(m) } matrix3_inverse_transpose :: proc{ matrix3_inverse_transpose_f16, matrix3_inverse_transpose_f32, matrix3_inverse_transpose_f64, } matrix3_scale_f16 :: proc(s: Vector3f16) -> (m: Matrix3f16) { m[0, 0] = s[0] m[1, 1] = s[1] m[2, 2] = s[2] return m } matrix3_scale_f32 :: proc(s: Vector3f32) -> (m: Matrix3f32) { m[0, 0] = s[0] m[1, 1] = s[1] m[2, 2] = s[2] return m } matrix3_scale_f64 :: proc(s: Vector3f64) -> (m: Matrix3f64) { m[0, 0] = s[0] m[1, 1] = s[1] m[2, 2] = s[2] return m } matrix3_scale :: proc{ matrix3_scale_f16, matrix3_scale_f32, matrix3_scale_f64, } matrix3_rotate_f16 :: proc(angle_radians: f16, v: Vector3f16) -> (rot: Matrix3f16) { c := math.cos(angle_radians) s := math.sin(angle_radians) a := normalize(v) t := a * (1-c) rot[0, 0] = c + t[0]*a[0] rot[1, 0] = 0 + t[0]*a[1] + s*a[2] rot[2, 0] = 0 + t[0]*a[2] - s*a[1] rot[0, 1] = 0 + t[1]*a[0] - s*a[2] rot[1, 1] = c + t[1]*a[1] rot[2, 1] = 0 + t[1]*a[2] + s*a[0] rot[0, 2] = 0 + t[2]*a[0] + s*a[1] rot[1, 2] = 0 + t[2]*a[1] - s*a[0] rot[2, 2] = c + t[2]*a[2] return rot } matrix3_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> (rot: Matrix3f32) { c := math.cos(angle_radians) s := math.sin(angle_radians) a := normalize(v) t := a * (1-c) rot[0, 0] = c + t[0]*a[0] rot[1, 0] = 0 + t[0]*a[1] + s*a[2] rot[2, 0] = 0 + t[0]*a[2] - s*a[1] rot[0, 1] = 0 + t[1]*a[0] - s*a[2] rot[1, 1] = c + t[1]*a[1] rot[2, 1] = 0 + t[1]*a[2] + s*a[0] rot[0, 2] = 0 + t[2]*a[0] + s*a[1] rot[1, 2] = 0 + t[2]*a[1] - s*a[0] rot[2, 2] = c + t[2]*a[2] return rot } matrix3_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> (rot: Matrix3f64) { c := math.cos(angle_radians) s := math.sin(angle_radians) a := normalize(v) t := a * (1-c) rot[0, 0] = c + t[0]*a[0] rot[1, 0] = 0 + t[0]*a[1] + s*a[2] rot[2, 0] = 0 + t[0]*a[2] - s*a[1] rot[0, 1] = 0 + t[1]*a[0] - s*a[2] rot[1, 1] = c + t[1]*a[1] rot[2, 1] = 0 + t[1]*a[2] + s*a[0] rot[0, 2] = 0 + t[2]*a[0] + s*a[1] rot[1, 2] = 0 + t[2]*a[1] - s*a[0] rot[2, 2] = c + t[2]*a[2] return rot } matrix3_rotate :: proc{ matrix3_rotate_f16, matrix3_rotate_f32, matrix3_rotate_f64, } matrix3_look_at_f16 :: proc(eye, centre, up: Vector3f16) -> Matrix3f16 { f := normalize(centre - eye) s := normalize(cross(f, up)) u := cross(s, f) return Matrix3f16{ +s.x, +s.y, +s.z, +u.x, +u.y, +u.z, -f.x, -f.y, -f.z, } } matrix3_look_at_f32 :: proc(eye, centre, up: Vector3f32) -> Matrix3f32 { f := normalize(centre - eye) s := normalize(cross(f, up)) u := cross(s, f) return Matrix3f32{ +s.x, +s.y, +s.z, +u.x, +u.y, +u.z, -f.x, -f.y, -f.z, } } matrix3_look_at_f64 :: proc(eye, centre, up: Vector3f64) -> Matrix3f64 { f := normalize(centre - eye) s := normalize(cross(f, up)) u := cross(s, f) return Matrix3f64{ +s.x, +s.y, +s.z, +u.x, +u.y, +u.z, -f.x, -f.y, -f.z, } } matrix3_look_at :: proc{ matrix3_look_at_f16, matrix3_look_at_f32, matrix3_look_at_f64, } matrix4_from_quaternion_f16 :: proc(q: Quaternionf16) -> (m: Matrix4f16) { qxx := q.x * q.x qyy := q.y * q.y qzz := q.z * q.z qxz := q.x * q.z qxy := q.x * q.y qyz := q.y * q.z qwx := q.w * q.x qwy := q.w * q.y qwz := q.w * q.z m[0, 0] = 1 - 2 * (qyy + qzz) m[1, 0] = 2 * (qxy + qwz) m[2, 0] = 2 * (qxz - qwy) m[0, 1] = 2 * (qxy - qwz) m[1, 1] = 1 - 2 * (qxx + qzz) m[2, 1] = 2 * (qyz + qwx) m[0, 2] = 2 * (qxz + qwy) m[1, 2] = 2 * (qyz - qwx) m[2, 2] = 1 - 2 * (qxx + qyy) m[3, 3] = 1 return m } matrix4_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix4f32) { qxx := q.x * q.x qyy := q.y * q.y qzz := q.z * q.z qxz := q.x * q.z qxy := q.x * q.y qyz := q.y * q.z qwx := q.w * q.x qwy := q.w * q.y qwz := q.w * q.z m[0, 0] = 1 - 2 * (qyy + qzz) m[1, 0] = 2 * (qxy + qwz) m[2, 0] = 2 * (qxz - qwy) m[0, 1] = 2 * (qxy - qwz) m[1, 1] = 1 - 2 * (qxx + qzz) m[2, 1] = 2 * (qyz + qwx) m[0, 2] = 2 * (qxz + qwy) m[1, 2] = 2 * (qyz - qwx) m[2, 2] = 1 - 2 * (qxx + qyy) m[3, 3] = 1 return m } matrix4_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix4f64) { qxx := q.x * q.x qyy := q.y * q.y qzz := q.z * q.z qxz := q.x * q.z qxy := q.x * q.y qyz := q.y * q.z qwx := q.w * q.x qwy := q.w * q.y qwz := q.w * q.z m[0, 0] = 1 - 2 * (qyy + qzz) m[1, 0] = 2 * (qxy + qwz) m[2, 0] = 2 * (qxz - qwy) m[0, 1] = 2 * (qxy - qwz) m[1, 1] = 1 - 2 * (qxx + qzz) m[2, 1] = 2 * (qyz + qwx) m[0, 2] = 2 * (qxz + qwy) m[1, 2] = 2 * (qyz - qwx) m[2, 2] = 1 - 2 * (qxx + qyy) m[3, 3] = 1 return m } matrix4_from_quaternion :: proc{ matrix4_from_quaternion_f16, matrix4_from_quaternion_f32, matrix4_from_quaternion_f64, } matrix4_from_trs_f16 :: proc(t: Vector3f16, r: Quaternionf16, s: Vector3f16) -> Matrix4f16 { translation := matrix4_translate(t) rotation := matrix4_from_quaternion(r) scale := matrix4_scale(s) return mul(translation, mul(rotation, scale)) } matrix4_from_trs_f32 :: proc(t: Vector3f32, r: Quaternionf32, s: Vector3f32) -> Matrix4f32 { translation := matrix4_translate(t) rotation := matrix4_from_quaternion(r) scale := matrix4_scale(s) return mul(translation, mul(rotation, scale)) } matrix4_from_trs_f64 :: proc(t: Vector3f64, r: Quaternionf64, s: Vector3f64) -> Matrix4f64 { translation := matrix4_translate(t) rotation := matrix4_from_quaternion(r) scale := matrix4_scale(s) return mul(translation, mul(rotation, scale)) } matrix4_from_trs :: proc{ matrix4_from_trs_f16, matrix4_from_trs_f32, matrix4_from_trs_f64, } matrix4_inverse_f16 :: proc(m: Matrix4f16) -> Matrix4f16 { return transpose(matrix4_inverse_transpose(m)) } matrix4_inverse_f32 :: proc(m: Matrix4f32) -> Matrix4f32 { return transpose(matrix4_inverse_transpose(m)) } matrix4_inverse_f64 :: proc(m: Matrix4f64) -> Matrix4f64 { return transpose(matrix4_inverse_transpose(m)) } matrix4_inverse :: proc{ matrix4_inverse_f16, matrix4_inverse_f32, matrix4_inverse_f64, } matrix4_minor_f16 :: proc(m: Matrix4f16, c, r: int) -> f16 { cut_down: Matrix3f16 for i in 0..<3 { col := i if i < c else i+1 for j in 0..<3 { row := j if j < r else j+1 cut_down[i][j] = m[col][row] } } return matrix3_determinant(cut_down) } matrix4_minor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 { cut_down: Matrix3f32 for i in 0..<3 { col := i if i < c else i+1 for j in 0..<3 { row := j if j < r else j+1 cut_down[i][j] = m[col][row] } } return matrix3_determinant(cut_down) } matrix4_minor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 { cut_down: Matrix3f64 for i in 0..<3 { col := i if i < c else i+1 for j in 0..<3 { row := j if j < r else j+1 cut_down[i][j] = m[col][row] } } return matrix3_determinant(cut_down) } matrix4_minor :: proc{ matrix4_minor_f16, matrix4_minor_f32, matrix4_minor_f64, } matrix4_cofactor_f16 :: proc(m: Matrix4f16, c, r: int) -> f16 { sign, minor: f16 sign = 1 if (c + r) % 2 == 0 else -1 minor = matrix4_minor(m, c, r) return sign * minor } matrix4_cofactor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 { sign, minor: f32 sign = 1 if (c + r) % 2 == 0 else -1 minor = matrix4_minor(m, c, r) return sign * minor } matrix4_cofactor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 { sign, minor: f64 sign = 1 if (c + r) % 2 == 0 else -1 minor = matrix4_minor(m, c, r) return sign * minor } matrix4_cofactor :: proc{ matrix4_cofactor_f16, matrix4_cofactor_f32, matrix4_cofactor_f64, } matrix4_adjoint_f16 :: proc(m: Matrix4f16) -> (adjoint: Matrix4f16) { for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j) } } return } matrix4_adjoint_f32 :: proc(m: Matrix4f32) -> (adjoint: Matrix4f32) { for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j) } } return } matrix4_adjoint_f64 :: proc(m: Matrix4f64) -> (adjoint: Matrix4f64) { for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j) } } return } matrix4_adjoint :: proc{ matrix4_adjoint_f16, matrix4_adjoint_f32, matrix4_adjoint_f64, } matrix4_determinant_f16 :: proc(m: Matrix4f16) -> (determinant: f16) { adjoint := matrix4_adjoint(m) for i in 0..<4 { determinant += m[i][0] * adjoint[i][0] } return } matrix4_determinant_f32 :: proc(m: Matrix4f32) -> (determinant: f32) { adjoint := matrix4_adjoint(m) for i in 0..<4 { determinant += m[i][0] * adjoint[i][0] } return } matrix4_determinant_f64 :: proc(m: Matrix4f64) -> (determinant: f64) { adjoint := matrix4_adjoint(m) for i in 0..<4 { determinant += m[i][0] * adjoint[i][0] } return } matrix4_determinant :: proc{ matrix4_determinant_f16, matrix4_determinant_f32, matrix4_determinant_f64, } matrix4_inverse_transpose_f16 :: proc(m: Matrix4f16) -> (inverse_transpose: Matrix4f16) { adjoint := matrix4_adjoint(m) determinant: f16 = 0 for i in 0..<4 { determinant += m[i][0] * adjoint[i][0] } inv_determinant := 1.0 / determinant for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant } } return } matrix4_inverse_transpose_f32 :: proc(m: Matrix4f32) -> (inverse_transpose: Matrix4f32) { adjoint := matrix4_adjoint(m) determinant: f32 = 0 for i in 0..<4 { determinant += m[i][0] * adjoint[i][0] } inv_determinant := 1.0 / determinant for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant } } return } matrix4_inverse_transpose_f64 :: proc(m: Matrix4f64) -> (inverse_transpose: Matrix4f64) { adjoint := matrix4_adjoint(m) determinant: f64 = 0 for i in 0..<4 { determinant += m[i][0] * adjoint[i][0] } inv_determinant := 1.0 / determinant for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant } } return } matrix4_inverse_transpose :: proc{ matrix4_inverse_transpose_f16, matrix4_inverse_transpose_f32, matrix4_inverse_transpose_f64, } matrix4_translate_f16 :: proc(v: Vector3f16) -> Matrix4f16 { m := MATRIX4F16_IDENTITY m[3][0] = v[0] m[3][1] = v[1] m[3][2] = v[2] return m } matrix4_translate_f32 :: proc(v: Vector3f32) -> Matrix4f32 { m := MATRIX4F32_IDENTITY m[3][0] = v[0] m[3][1] = v[1] m[3][2] = v[2] return m } matrix4_translate_f64 :: proc(v: Vector3f64) -> Matrix4f64 { m := MATRIX4F64_IDENTITY m[3][0] = v[0] m[3][1] = v[1] m[3][2] = v[2] return m } matrix4_translate :: proc{ matrix4_translate_f16, matrix4_translate_f32, matrix4_translate_f64, } matrix4_rotate_f16 :: proc(angle_radians: f16, v: Vector3f16) -> Matrix4f16 { c := math.cos(angle_radians) s := math.sin(angle_radians) a := normalize(v) t := a * (1-c) rot := MATRIX4F16_IDENTITY rot[0][0] = c + t[0]*a[0] rot[0][1] = 0 + t[0]*a[1] + s*a[2] rot[0][2] = 0 + t[0]*a[2] - s*a[1] rot[0][3] = 0 rot[1][0] = 0 + t[1]*a[0] - s*a[2] rot[1][1] = c + t[1]*a[1] rot[1][2] = 0 + t[1]*a[2] + s*a[0] rot[1][3] = 0 rot[2][0] = 0 + t[2]*a[0] + s*a[1] rot[2][1] = 0 + t[2]*a[1] - s*a[0] rot[2][2] = c + t[2]*a[2] rot[2][3] = 0 return rot } matrix4_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> Matrix4f32 { c := math.cos(angle_radians) s := math.sin(angle_radians) a := normalize(v) t := a * (1-c) rot := MATRIX4F32_IDENTITY rot[0][0] = c + t[0]*a[0] rot[0][1] = 0 + t[0]*a[1] + s*a[2] rot[0][2] = 0 + t[0]*a[2] - s*a[1] rot[0][3] = 0 rot[1][0] = 0 + t[1]*a[0] - s*a[2] rot[1][1] = c + t[1]*a[1] rot[1][2] = 0 + t[1]*a[2] + s*a[0] rot[1][3] = 0 rot[2][0] = 0 + t[2]*a[0] + s*a[1] rot[2][1] = 0 + t[2]*a[1] - s*a[0] rot[2][2] = c + t[2]*a[2] rot[2][3] = 0 return rot } matrix4_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> Matrix4f64 { c := math.cos(angle_radians) s := math.sin(angle_radians) a := normalize(v) t := a * (1-c) rot := MATRIX4F64_IDENTITY rot[0][0] = c + t[0]*a[0] rot[0][1] = 0 + t[0]*a[1] + s*a[2] rot[0][2] = 0 + t[0]*a[2] - s*a[1] rot[0][3] = 0 rot[1][0] = 0 + t[1]*a[0] - s*a[2] rot[1][1] = c + t[1]*a[1] rot[1][2] = 0 + t[1]*a[2] + s*a[0] rot[1][3] = 0 rot[2][0] = 0 + t[2]*a[0] + s*a[1] rot[2][1] = 0 + t[2]*a[1] - s*a[0] rot[2][2] = c + t[2]*a[2] rot[2][3] = 0 return rot } matrix4_rotate :: proc{ matrix4_rotate_f16, matrix4_rotate_f32, matrix4_rotate_f64, } matrix4_scale_f16 :: proc(v: Vector3f16) -> (m: Matrix4f16) { m[0][0] = v[0] m[1][1] = v[1] m[2][2] = v[2] m[3][3] = 1 return } matrix4_scale_f32 :: proc(v: Vector3f32) -> (m: Matrix4f32) { m[0][0] = v[0] m[1][1] = v[1] m[2][2] = v[2] m[3][3] = 1 return } matrix4_scale_f64 :: proc(v: Vector3f64) -> (m: Matrix4f64) { m[0][0] = v[0] m[1][1] = v[1] m[2][2] = v[2] m[3][3] = 1 return } matrix4_scale :: proc{ matrix4_scale_f16, matrix4_scale_f32, matrix4_scale_f64, } matrix4_look_at_f16 :: proc(eye, centre, up: Vector3f16, flip_z_axis := true) -> (m: Matrix4f16) { f := normalize(centre - eye) s := normalize(cross(f, up)) u := cross(s, f) fe := dot(f, eye) return { +s.x, +s.y, +s.z, -dot(s, eye), +u.x, +u.y, +u.z, -dot(u, eye), -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe, 0, 0, 0, 1, } } matrix4_look_at_f32 :: proc(eye, centre, up: Vector3f32, flip_z_axis := true) -> (m: Matrix4f32) { f := normalize(centre - eye) s := normalize(cross(f, up)) u := cross(s, f) fe := dot(f, eye) return { +s.x, +s.y, +s.z, -dot(s, eye), +u.x, +u.y, +u.z, -dot(u, eye), -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe, 0, 0, 0, 1, } } matrix4_look_at_f64 :: proc(eye, centre, up: Vector3f64, flip_z_axis := true) -> (m: Matrix4f64) { f := normalize(centre - eye) s := normalize(cross(f, up)) u := cross(s, f) fe := dot(f, eye) return { +s.x, +s.y, +s.z, -dot(s, eye), +u.x, +u.y, +u.z, -dot(u, eye), -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe, 0, 0, 0, 1, } } matrix4_look_at :: proc{ matrix4_look_at_f16, matrix4_look_at_f32, matrix4_look_at_f64, } matrix4_look_at_from_fru_f16 :: proc(eye, f, r, u: Vector3f16, flip_z_axis := true) -> (m: Matrix4f16) { f, s, u := f, r, u f = normalize(f) s = normalize(s) u = normalize(u) fe := dot(f, eye) return { +s.x, +s.y, +s.z, -dot(s, eye), +u.x, +u.y, +u.z, -dot(u, eye), -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe, 0, 0, 0, 1, } } matrix4_look_at_from_fru_f32 :: proc(eye, f, r, u: Vector3f32, flip_z_axis := true) -> (m: Matrix4f32) { f, s, u := f, r, u f = normalize(f) s = normalize(s) u = normalize(u) fe := dot(f, eye) return { +s.x, +s.y, +s.z, -dot(s, eye), +u.x, +u.y, +u.z, -dot(u, eye), -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe, 0, 0, 0, 1, } } matrix4_look_at_from_fru_f64 :: proc(eye, f, r, u: Vector3f64, flip_z_axis := true) -> (m: Matrix4f64) { f, s, u := f, r, u f = normalize(f) s = normalize(s) u = normalize(u) fe := dot(f, eye) return { +s.x, +s.y, +s.z, -dot(s, eye), +u.x, +u.y, +u.z, -dot(u, eye), -f.x, -f.y, -f.z, +fe if flip_z_axis else -fe, 0, 0, 0, 1, } } matrix4_look_at_from_fru :: proc{ matrix4_look_at_from_fru_f16, matrix4_look_at_from_fru_f32, matrix4_look_at_from_fru_f64, } matrix4_perspective_f16 :: proc(fovy, aspect, near, far: f16, flip_z_axis := true) -> (m: Matrix4f16) { tan_half_fovy := math.tan(0.5 * fovy) m[0, 0] = 1 / (aspect*tan_half_fovy) m[1, 1] = 1 / (tan_half_fovy) m[2, 2] = +(far + near) / (far - near) m[3, 2] = +1 m[2, 3] = -2*far*near / (far - near) if flip_z_axis { m[2] = -m[2] } return } matrix4_perspective_f32 :: proc(fovy, aspect, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) { tan_half_fovy := math.tan(0.5 * fovy) m[0, 0] = 1 / (aspect*tan_half_fovy) m[1, 1] = 1 / (tan_half_fovy) m[2, 2] = +(far + near) / (far - near) m[3, 2] = +1 m[2, 3] = -2*far*near / (far - near) if flip_z_axis { m[2] = -m[2] } return } matrix4_perspective_f64 :: proc(fovy, aspect, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) { tan_half_fovy := math.tan(0.5 * fovy) m[0, 0] = 1 / (aspect*tan_half_fovy) m[1, 1] = 1 / (tan_half_fovy) m[2, 2] = +(far + near) / (far - near) m[3, 2] = +1 m[2, 3] = -2*far*near / (far - near) if flip_z_axis { m[2] = -m[2] } return } matrix4_perspective :: proc{ matrix4_perspective_f16, matrix4_perspective_f32, matrix4_perspective_f64, } matrix_ortho3d_f16 :: proc(left, right, bottom, top, near, far: f16, flip_z_axis := true) -> (m: Matrix4f16) { m[0, 0] = +2 / (right - left) m[1, 1] = +2 / (top - bottom) m[2, 2] = +2 / (far - near) m[0, 3] = -(right + left) / (right - left) m[1, 3] = -(top + bottom) / (top - bottom) m[2, 3] = -(far + near) / (far- near) m[3, 3] = 1 if flip_z_axis { m[2] = -m[2] } return } matrix_ortho3d_f32 :: proc(left, right, bottom, top, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) { m[0, 0] = +2 / (right - left) m[1, 1] = +2 / (top - bottom) m[2, 2] = +2 / (far - near) m[0, 3] = -(right + left) / (right - left) m[1, 3] = -(top + bottom) / (top - bottom) m[2, 3] = -(far + near) / (far- near) m[3, 3] = 1 if flip_z_axis { m[2] = -m[2] } return } matrix_ortho3d_f64 :: proc(left, right, bottom, top, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) { m[0, 0] = +2 / (right - left) m[1, 1] = +2 / (top - bottom) m[2, 2] = +2 / (far - near) m[0, 3] = -(right + left) / (right - left) m[1, 3] = -(top + bottom) / (top - bottom) m[2, 3] = -(far + near) / (far- near) m[3, 3] = 1 if flip_z_axis { m[2] = -m[2] } return } matrix_ortho3d :: proc{ matrix_ortho3d_f16, matrix_ortho3d_f32, matrix_ortho3d_f64, } matrix4_infinite_perspective_f16 :: proc(fovy, aspect, near: f16, flip_z_axis := true) -> (m: Matrix4f16) { tan_half_fovy := math.tan(0.5 * fovy) m[0, 0] = 1 / (aspect*tan_half_fovy) m[1, 1] = 1 / (tan_half_fovy) m[2, 2] = +1 m[3, 2] = +1 m[2, 3] = -2*near if flip_z_axis { m[2] = -m[2] } return } matrix4_infinite_perspective_f32 :: proc(fovy, aspect, near: f32, flip_z_axis := true) -> (m: Matrix4f32) { tan_half_fovy := math.tan(0.5 * fovy) m[0, 0] = 1 / (aspect*tan_half_fovy) m[1, 1] = 1 / (tan_half_fovy) m[2, 2] = +1 m[3, 2] = +1 m[2, 3] = -2*near if flip_z_axis { m[2] = -m[2] } return } matrix4_infinite_perspective_f64 :: proc(fovy, aspect, near: f64, flip_z_axis := true) -> (m: Matrix4f64) { tan_half_fovy := math.tan(0.5 * fovy) m[0, 0] = 1 / (aspect*tan_half_fovy) m[1, 1] = 1 / (tan_half_fovy) m[2, 2] = +1 m[3, 2] = +1 m[2, 3] = -2*near if flip_z_axis { m[2] = -m[2] } return } matrix4_infinite_perspective :: proc{ matrix4_infinite_perspective_f16, matrix4_infinite_perspective_f32, matrix4_infinite_perspective_f64, } matrix2_from_scalar_f16 :: proc(f: f16) -> (m: Matrix2f16) { m[0, 0], m[1, 0] = f, 0 m[0, 1], m[1, 1] = 0, f return } matrix2_from_scalar_f32 :: proc(f: f32) -> (m: Matrix2f32) { m[0, 0], m[1, 0] = f, 0 m[0, 1], m[1, 1] = 0, f return } matrix2_from_scalar_f64 :: proc(f: f64) -> (m: Matrix2f64) { m[0, 0], m[1, 0] = f, 0 m[0, 1], m[1, 1] = 0, f return } matrix2_from_scalar :: proc{ matrix2_from_scalar_f16, matrix2_from_scalar_f32, matrix2_from_scalar_f64, } matrix3_from_scalar_f16 :: proc(f: f16) -> (m: Matrix3f16) { m[0, 0], m[1, 0], m[2, 0] = f, 0, 0 m[0, 1], m[1, 1], m[2, 1] = 0, f, 0 m[0, 2], m[1, 2], m[2, 2] = 0, 0, f return } matrix3_from_scalar_f32 :: proc(f: f32) -> (m: Matrix3f32) { m[0, 0], m[1, 0], m[2, 0] = f, 0, 0 m[0, 1], m[1, 1], m[2, 1] = 0, f, 0 m[0, 2], m[1, 2], m[2, 2] = 0, 0, f return } matrix3_from_scalar_f64 :: proc(f: f64) -> (m: Matrix3f64) { m[0, 0], m[1, 0], m[2, 0] = f, 0, 0 m[0, 1], m[1, 1], m[2, 1] = 0, f, 0 m[0, 2], m[1, 2], m[2, 2] = 0, 0, f return } matrix3_from_scalar :: proc{ matrix3_from_scalar_f16, matrix3_from_scalar_f32, matrix3_from_scalar_f64, } matrix4_from_scalar_f16 :: proc(f: f16) -> (m: Matrix4f16) { m[0, 0], m[1, 0], m[2, 0], m[3, 0] = f, 0, 0, 0 m[0, 1], m[1, 1], m[2, 1], m[3, 1] = 0, f, 0, 0 m[0, 2], m[1, 2], m[2, 2], m[3, 2] = 0, 0, f, 0 m[0, 3], m[1, 3], m[2, 3], m[3, 3] = 0, 0, 0, f return } matrix4_from_scalar_f32 :: proc(f: f32) -> (m: Matrix4f32) { m[0, 0], m[1, 0], m[2, 0], m[3, 0] = f, 0, 0, 0 m[0, 1], m[1, 1], m[2, 1], m[3, 1] = 0, f, 0, 0 m[0, 2], m[1, 2], m[2, 2], m[3, 2] = 0, 0, f, 0 m[0, 3], m[1, 3], m[2, 3], m[3, 3] = 0, 0, 0, f return } matrix4_from_scalar_f64 :: proc(f: f64) -> (m: Matrix4f64) { m[0, 0], m[1, 0], m[2, 0], m[3, 0] = f, 0, 0, 0 m[0, 1], m[1, 1], m[2, 1], m[3, 1] = 0, f, 0, 0 m[0, 2], m[1, 2], m[2, 2], m[3, 2] = 0, 0, f, 0 m[0, 3], m[1, 3], m[2, 3], m[3, 3] = 0, 0, 0, f return } matrix4_from_scalar :: proc{ matrix4_from_scalar_f16, matrix4_from_scalar_f32, matrix4_from_scalar_f64, } matrix2_from_matrix3_f16 :: proc(m: Matrix3f16) -> (r: Matrix2f16) { r[0, 0], r[1, 0] = m[0, 0], m[1, 0] r[0, 1], r[1, 1] = m[0, 1], m[1, 1] return } matrix2_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix2f32) { r[0, 0], r[1, 0] = m[0, 0], m[1, 0] r[0, 1], r[1, 1] = m[0, 1], m[1, 1] return } matrix2_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix2f64) { r[0, 0], r[1, 0] = m[0, 0], m[1, 0] r[0, 1], r[1, 1] = m[0, 1], m[1, 1] return } matrix2_from_matrix3 :: proc{ matrix2_from_matrix3_f16, matrix2_from_matrix3_f32, matrix2_from_matrix3_f64, } matrix2_from_matrix4_f16 :: proc(m: Matrix4f16) -> (r: Matrix2f16) { r[0, 0], r[1, 0] = m[0, 0], m[1, 0] r[0, 1], r[1, 1] = m[0, 1], m[1, 1] return } matrix2_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix2f32) { r[0, 0], r[1, 0] = m[0, 0], m[1, 0] r[0, 1], r[1, 1] = m[0, 1], m[1, 1] return } matrix2_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix2f64) { r[0, 0], r[1, 0] = m[0, 0], m[1, 0] r[0, 1], r[1, 1] = m[0, 1], m[1, 1] return } matrix2_from_matrix4 :: proc{ matrix2_from_matrix4_f16, matrix2_from_matrix4_f32, matrix2_from_matrix4_f64, } matrix3_from_matrix2_f16 :: proc(m: Matrix2f16) -> (r: Matrix3f16) { r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], 0 r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], 0 r[0, 2], r[1, 2], r[2, 2] = 0, 0, 1 return } matrix3_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix3f32) { r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], 0 r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], 0 r[0, 2], r[1, 2], r[2, 2] = 0, 0, 1 return } matrix3_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix3f64) { r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], 0 r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], 0 r[0, 2], r[1, 2], r[2, 2] = 0, 0, 1 return } matrix3_from_matrix2 :: proc{ matrix3_from_matrix2_f16, matrix3_from_matrix2_f32, matrix3_from_matrix2_f64, } matrix3_from_matrix4_f16 :: proc(m: Matrix4f16) -> (r: Matrix3f16) { r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], m[2, 0] r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], m[2, 1] r[0, 2], r[1, 2], r[2, 2] = m[0, 2], m[1, 2], m[2, 2] return } matrix3_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix3f32) { r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], m[2, 0] r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], m[2, 1] r[0, 2], r[1, 2], r[2, 2] = m[0, 2], m[1, 2], m[2, 2] return } matrix3_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix3f64) { r[0, 0], r[1, 0], r[2, 0] = m[0, 0], m[1, 0], m[2, 0] r[0, 1], r[1, 1], r[2, 1] = m[0, 1], m[1, 1], m[2, 1] r[0, 2], r[1, 2], r[2, 2] = m[0, 2], m[1, 2], m[2, 2] return } matrix3_from_matrix4 :: proc{ matrix3_from_matrix4_f16, matrix3_from_matrix4_f32, matrix3_from_matrix4_f64, } matrix4_from_matrix2_f16 :: proc(m: Matrix2f16) -> (r: Matrix4f16) { r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], 0, 0 r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], 0, 0 r[0, 2], r[1, 2], r[2, 2], r[3, 2] = 0, 0, 1, 0 r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1 return } matrix4_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix4f32) { r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], 0, 0 r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], 0, 0 r[0, 2], r[1, 2], r[2, 2], r[3, 2] = 0, 0, 1, 0 r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1 return } matrix4_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix4f64) { r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], 0, 0 r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], 0, 0 r[0, 2], r[1, 2], r[2, 2], r[3, 2] = 0, 0, 1, 0 r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1 return } matrix4_from_matrix2 :: proc{ matrix4_from_matrix2_f16, matrix4_from_matrix2_f32, matrix4_from_matrix2_f64, } matrix4_from_matrix3_f16 :: proc(m: Matrix3f16) -> (r: Matrix4f16) { r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], m[2, 0], 0 r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], m[2, 1], 0 r[0, 2], r[1, 2], r[2, 2], r[3, 2] = m[0, 2], m[1, 2], m[2, 2], 0 r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1 return } matrix4_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix4f32) { r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], m[2, 0], 0 r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], m[2, 1], 0 r[0, 2], r[1, 2], r[2, 2], r[3, 2] = m[0, 2], m[1, 2], m[2, 2], 0 r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1 return } matrix4_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix4f64) { r[0, 0], r[1, 0], r[2, 0], r[3, 0] = m[0, 0], m[1, 0], m[2, 0], 0 r[0, 1], r[1, 1], r[2, 1], r[3, 1] = m[0, 1], m[1, 1], m[2, 1], 0 r[0, 2], r[1, 2], r[2, 2], r[3, 2] = m[0, 2], m[1, 2], m[2, 2], 0 r[0, 3], r[1, 3], r[2, 3], r[3, 3] = 0, 0, 0, 1 return } matrix4_from_matrix3 :: proc{ matrix4_from_matrix3_f16, matrix4_from_matrix3_f32, matrix4_from_matrix3_f64, } quaternion_from_scalar_f16 :: proc(f: f16) -> (q: Quaternionf16) { q.w = f return } quaternion_from_scalar_f32 :: proc(f: f32) -> (q: Quaternionf32) { q.w = f return } quaternion_from_scalar_f64 :: proc(f: f64) -> (q: Quaternionf64) { q.w = f return } quaternion_from_scalar :: proc{ quaternion_from_scalar_f16, quaternion_from_scalar_f32, quaternion_from_scalar_f64, } to_matrix2f16 :: proc{matrix2_from_scalar_f16, matrix2_from_matrix3_f16, matrix2_from_matrix4_f16} to_matrix3f16 :: proc{matrix3_from_scalar_f16, matrix3_from_matrix2_f16, matrix3_from_matrix4_f16, matrix3_from_quaternion_f16} to_matrix4f16 :: proc{matrix4_from_scalar_f16, matrix4_from_matrix2_f16, matrix4_from_matrix3_f16, matrix4_from_quaternion_f16} to_quaternionf16 :: proc{quaternion_from_scalar_f16, quaternion_from_matrix3_f16, quaternion_from_matrix4_f16} to_matrix2f32 :: proc{matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32} to_matrix3f32 :: proc{matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32} to_matrix4f32 :: proc{matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32} to_quaternionf32 :: proc{quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32} to_matrix2f64 :: proc{matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64} to_matrix3f64 :: proc{matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64} to_matrix4f64 :: proc{matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64} to_quaternionf64 :: proc{quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64} to_matrix2f :: proc{ matrix2_from_scalar_f16, matrix2_from_matrix3_f16, matrix2_from_matrix4_f16, matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32, matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64, } to_matrix3 :: proc{ matrix3_from_scalar_f16, matrix3_from_matrix2_f16, matrix3_from_matrix4_f16, matrix3_from_quaternion_f16, matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32, matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64, } to_matrix4 :: proc{ matrix4_from_scalar_f16, matrix4_from_matrix2_f16, matrix4_from_matrix3_f16, matrix4_from_quaternion_f16, matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32, matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64, } to_quaternion :: proc{ quaternion_from_scalar_f16, quaternion_from_matrix3_f16, quaternion_from_matrix4_f16, quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32, quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64, } matrix2_orthonormalize_f16 :: proc(m: Matrix2f16) -> (r: Matrix2f16) { r[0] = normalize(m[0]) d0 := dot(r[0], r[1]) r[1] -= r[0] * d0 r[1] = normalize(r[1]) return } matrix2_orthonormalize_f32 :: proc(m: Matrix2f32) -> (r: Matrix2f32) { r[0] = normalize(m[0]) d0 := dot(r[0], r[1]) r[1] -= r[0] * d0 r[1] = normalize(r[1]) return } matrix2_orthonormalize_f64 :: proc(m: Matrix2f64) -> (r: Matrix2f64) { r[0] = normalize(m[0]) d0 := dot(r[0], r[1]) r[1] -= r[0] * d0 r[1] = normalize(r[1]) return } matrix2_orthonormalize :: proc{ matrix2_orthonormalize_f16, matrix2_orthonormalize_f32, matrix2_orthonormalize_f64, } matrix3_orthonormalize_f16 :: proc(m: Matrix3f16) -> (r: Matrix3f16) { r[0] = normalize(m[0]) d0 := dot(r[0], r[1]) r[1] -= r[0] * d0 r[1] = normalize(r[1]) d1 := dot(r[1], r[2]) d0 = dot(r[0], r[2]) r[2] -= r[0]*d0 + r[1]*d1 r[2] = normalize(r[2]) return } matrix3_orthonormalize_f32 :: proc(m: Matrix3f32) -> (r: Matrix3f32) { r[0] = normalize(m[0]) d0 := dot(r[0], r[1]) r[1] -= r[0] * d0 r[1] = normalize(r[1]) d1 := dot(r[1], r[2]) d0 = dot(r[0], r[2]) r[2] -= r[0]*d0 + r[1]*d1 r[2] = normalize(r[2]) return } matrix3_orthonormalize_f64 :: proc(m: Matrix3f64) -> (r: Matrix3f64) { r[0] = normalize(m[0]) d0 := dot(r[0], r[1]) r[1] -= r[0] * d0 r[1] = normalize(r[1]) d1 := dot(r[1], r[2]) d0 = dot(r[0], r[2]) r[2] -= r[0]*d0 + r[1]*d1 r[2] = normalize(r[2]) return } matrix3_orthonormalize :: proc{ matrix3_orthonormalize_f16, matrix3_orthonormalize_f32, matrix3_orthonormalize_f64, } vector3_orthonormalize_f16 :: proc(x, y: Vector3f16) -> (z: Vector3f16) { return normalize(x - y * dot(y, x)) } vector3_orthonormalize_f32 :: proc(x, y: Vector3f32) -> (z: Vector3f32) { return normalize(x - y * dot(y, x)) } vector3_orthonormalize_f64 :: proc(x, y: Vector3f64) -> (z: Vector3f64) { return normalize(x - y * dot(y, x)) } vector3_orthonormalize :: proc{ vector3_orthonormalize_f16, vector3_orthonormalize_f32, vector3_orthonormalize_f64, } orthonormalize :: proc{ matrix2_orthonormalize_f16, matrix3_orthonormalize_f16, vector3_orthonormalize_f16, matrix2_orthonormalize_f32, matrix3_orthonormalize_f32, vector3_orthonormalize_f32, matrix2_orthonormalize_f64, matrix3_orthonormalize_f64, vector3_orthonormalize_f64, } matrix4_orientation_f16 :: proc(normal, up: Vector3f16) -> Matrix4f16 { if all(equal(normal, up)) { return MATRIX4F16_IDENTITY } rotation_axis := cross(up, normal) angle := math.acos(dot(normal, up)) return matrix4_rotate(angle, rotation_axis) } matrix4_orientation_f32 :: proc(normal, up: Vector3f32) -> Matrix4f32 { if all(equal(normal, up)) { return MATRIX4F32_IDENTITY } rotation_axis := cross(up, normal) angle := math.acos(dot(normal, up)) return matrix4_rotate(angle, rotation_axis) } matrix4_orientation_f64 :: proc(normal, up: Vector3f64) -> Matrix4f64 { if all(equal(normal, up)) { return MATRIX4F64_IDENTITY } rotation_axis := cross(up, normal) angle := math.acos(dot(normal, up)) return matrix4_rotate(angle, rotation_axis) } matrix4_orientation :: proc{ matrix4_orientation_f16, matrix4_orientation_f32, matrix4_orientation_f64, } euclidean_from_polar_f16 :: proc(polar: Vector2f16) -> Vector3f16 { latitude, longitude := polar.x, polar.y cx, sx := math.cos(latitude), math.sin(latitude) cy, sy := math.cos(longitude), math.sin(longitude) return { cx*sy, sx, cx*cy, } } euclidean_from_polar_f32 :: proc(polar: Vector2f32) -> Vector3f32 { latitude, longitude := polar.x, polar.y cx, sx := math.cos(latitude), math.sin(latitude) cy, sy := math.cos(longitude), math.sin(longitude) return { cx*sy, sx, cx*cy, } } euclidean_from_polar_f64 :: proc(polar: Vector2f64) -> Vector3f64 { latitude, longitude := polar.x, polar.y cx, sx := math.cos(latitude), math.sin(latitude) cy, sy := math.cos(longitude), math.sin(longitude) return { cx*sy, sx, cx*cy, } } euclidean_from_polar :: proc{ euclidean_from_polar_f16, euclidean_from_polar_f32, euclidean_from_polar_f64, } polar_from_euclidean_f16 :: proc(euclidean: Vector3f16) -> Vector3f16 { n := length(euclidean) tmp := euclidean / n xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z) return { math.asin(tmp.y), math.atan2(tmp.x, tmp.z), xz_dist, } } polar_from_euclidean_f32 :: proc(euclidean: Vector3f32) -> Vector3f32 { n := length(euclidean) tmp := euclidean / n xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z) return { math.asin(tmp.y), math.atan2(tmp.x, tmp.z), xz_dist, } } polar_from_euclidean_f64 :: proc(euclidean: Vector3f64) -> Vector3f64 { n := length(euclidean) tmp := euclidean / n xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z) return { math.asin(tmp.y), math.atan2(tmp.x, tmp.z), xz_dist, } } polar_from_euclidean :: proc{ polar_from_euclidean_f16, polar_from_euclidean_f32, polar_from_euclidean_f64, }