package rand import "core:math" float64_uniform :: float64_range float32_uniform :: float32_range // Triangular Distribution // See: http://wikipedia.org/wiki/Triangular_distribution float64_triangular :: proc(lo, hi: f64, mode: Maybe(f64), r: ^Rand = nil) -> f64 { if hi-lo == 0 { return lo } lo, hi := lo, hi u := float64(r) c := f64(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1) if u > c { u = 1-u c = 1-c lo, hi = hi, lo } return lo + (hi - lo) * math.sqrt(u * c) } // Triangular Distribution // See: http://wikipedia.org/wiki/Triangular_distribution float32_triangular :: proc(lo, hi: f32, mode: Maybe(f32), r: ^Rand = nil) -> f32 { if hi-lo == 0 { return lo } lo, hi := lo, hi u := float32(r) c := f32(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1) if u > c { u = 1-u c = 1-c lo, hi = hi, lo } return lo + (hi - lo) * math.sqrt(u * c) } // Normal/Gaussian Distribution float64_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 { return norm_float64(r) * stddev + mean } // Normal/Gaussian Distribution float32_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 { return f32(float64_normal(f64(mean), f64(stddev), r)) } // Log Normal Distribution float64_log_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 { return math.exp(float64_normal(mean, stddev, r)) } // Log Normal Distribution float32_log_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 { return f32(float64_log_normal(f64(mean), f64(stddev), r)) } // Exponential Distribution // `lambda` is 1.0/(desired mean). It should be non-zero. // Return values range from // 0 to positive infinity if lambda > 0 // negative infinity to 0 if lambda <= 0 float64_exponential :: proc(lambda: f64, r: ^Rand = nil) -> f64 { return - math.ln(1 - float64(r)) / lambda } // Exponential Distribution // `lambda` is 1.0/(desired mean). It should be non-zero. // Return values range from // 0 to positive infinity if lambda > 0 // negative infinity to 0 if lambda <= 0 float32_exponential :: proc(lambda: f32, r: ^Rand = nil) -> f32 { return f32(float64_exponential(f64(lambda), r)) } // Gamma Distribution (NOT THE GAMMA FUNCTION) // // Required: alpha > 0 and beta > 0 // // math.pow(x, alpha-1) * math.exp(-x / beta) // pdf(x) = -------------------------------------------- // math.gamma(alpha) * math.pow(beta, alpha) // // mean is alpha*beta, variance is math.pow(alpha*beta, 2) float64_gamma :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 { if alpha <= 0 || beta <= 0 { panic(#procedure + ": alpha and beta must be > 0.0") } LOG4 :: 1.3862943611198906188344642429163531361510002687205105082413600189 SG_MAGIC_CONST :: 2.5040773967762740733732583523868748412194809812852436493487 switch { case alpha > 1: // R.C.H. Cheng, "The generation of Gamma variables with non-integral shape parameters", Applied Statistics, (1977), 26, No. 1, p71-74 ainv := math.sqrt(2 * alpha - 1) bbb := alpha - LOG4 ccc := alpha + ainv for { u1 := float64(r) if !(1e-7 < u1 && u1 < 0.9999999) { continue } u2 := 1 - float64(r) v := math.ln(u1 / (1 - u1)) / ainv x := alpha * math.exp(v) z := u1 * u1 * u2 t := bbb + ccc*v - x if t + SG_MAGIC_CONST - 4.5 * z >= 0 || t >= math.ln(z) { return x * beta } } case alpha == 1: // float64_exponential(1/beta) return -math.ln(1 - float64(r)) * beta case: // ALGORITHM GS of Statistical Computing - Kennedy & Gentle x: f64 for { u := float64(r) b := (math.e + alpha) / math.e p := b * u if p <= 1 { x = math.pow(p, 1/alpha) } else { x = -math.ln((b - p) / alpha) } u1 := float64(r) if p > 1 { if u1 <= math.pow(x, alpha-1) { break } } else if u1 <= math.exp(-x) { break } } return x * beta } } // Gamma Distribution (NOT THE GAMMA FUNCTION) // // Required: alpha > 0 and beta > 0 // // math.pow(x, alpha-1) * math.exp(-x / beta) // pdf(x) = -------------------------------------------- // math.gamma(alpha) * math.pow(beta, alpha) // // mean is alpha*beta, variance is math.pow(alpha*beta, 2) float32_gamma :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 { return f32(float64_gamma(f64(alpha), f64(beta), r)) } // Beta Distribution // // Required: alpha > 0 and beta > 0 // // Return values range between 0 and 1 float64_beta :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 { if alpha <= 0 || beta <= 0 { panic(#procedure + ": alpha and beta must be > 0.0") } // Knuth Vol 2 Ed 3 pg 134 "the beta distribution" y := float64_gamma(alpha, 1.0, r) if y != 0 { return y / (y + float64_gamma(beta, 1.0, r)) } return 0 } // Beta Distribution // // Required: alpha > 0 and beta > 0 // // Return values range between 0 and 1 float32_beta :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 { return f32(float64_beta(f64(alpha), f64(beta), r)) } // Pareto distribution, `alpha` is the shape parameter. // https://wikipedia.org/wiki/Pareto_distribution float64_pareto :: proc(alpha: f64, r: ^Rand = nil) -> f64 { return math.pow(1 - float64(r), -1.0 / alpha) } // Pareto distribution, `alpha` is the shape parameter. // https://wikipedia.org/wiki/Pareto_distribution float32_pareto :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 { return f32(float64_pareto(f64(alpha), r)) } // Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter. float64_weibull :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 { u := 1 - float64(r) return alpha * math.pow(-math.ln(u), 1.0/beta) } // Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter. float32_weibull :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 { return f32(float64_weibull(f64(alpha), f64(beta), r)) } // Circular Data (von Mises) Distribution // `mean_angle` is the in mean angle between 0 and 2pi radians // `kappa` is the concentration parameter which must be >= 0 // When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi float64_von_mises :: proc(mean_angle, kappa: f64, r: ^Rand = nil) -> f64 { // Fisher, N.I., "Statistical Analysis of Circular Data", Cambridge University Press, 1993. mu := mean_angle if kappa <= 1e-6 { return math.TAU * float64(r) } s := 0.5 / kappa t := s + math.sqrt(1 + s*s) z: f64 for { u1 := float64(r) z = math.cos(math.TAU * 0.5 * u1) d := z / (t + z) u2 := float64(r) if u2 < 1 - d*d || u2 <= (1-d)*math.exp(d) { break } } q := 1.0 / t f := (q + z) / (1 + q*z) u3 := float64(r) if u3 > 0.5 { return math.mod(mu + math.acos(f), math.TAU) } else { return math.mod(mu - math.acos(f), math.TAU) } } // Circular Data (von Mises) Distribution // `mean_angle` is the in mean angle between 0 and 2pi radians // `kappa` is the concentration parameter which must be >= 0 // When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi float32_von_mises :: proc(mean_angle, kappa: f32, r: ^Rand = nil) -> f32 { return f32(float64_von_mises(f64(mean_angle), f64(kappa), r)) } // Cauchy-Lorentz Distribution // `x_0` is the location, `gamma` is the scale where `gamma` > 0 float64_cauchy_lorentz :: proc(x_0, gamma: f64, r: ^Rand = nil) -> f64 { assert(gamma > 0) // Calculated from the inverse CDF return math.tan(math.PI * (float64(r) - 0.5))*gamma + x_0 } // Cauchy-Lorentz Distribution // `x_0` is the location, `gamma` is the scale where `gamma` > 0 float32_cauchy_lorentz :: proc(x_0, gamma: f32, r: ^Rand = nil) -> f32 { return f32(float64_cauchy_lorentz(f64(x_0), f64(gamma), r)) } // Log Cauchy-Lorentz Distribution // `x_0` is the location, `gamma` is the scale where `gamma` > 0 float64_log_cauchy_lorentz :: proc(x_0, gamma: f64, r: ^Rand = nil) -> f64 { assert(gamma > 0) return math.exp(math.tan(math.PI * (float64(r) - 0.5))*gamma + x_0) } // Log Cauchy-Lorentz Distribution // `x_0` is the location, `gamma` is the scale where `gamma` > 0 float32_log_cauchy_lorentz :: proc(x_0, gamma: f32, r: ^Rand = nil) -> f32 { return f32(float64_log_cauchy_lorentz(f64(x_0), f64(gamma), r)) } // Laplace Distribution // `b` is the scale where `b` > 0 float64_laplace :: proc(mean, b: f64, r: ^Rand = nil) -> f64 { assert(b > 0) p := float64(r)-0.5 return -math.sign(p)*math.ln(1 - 2*abs(p))*b + mean } // Laplace Distribution // `b` is the scale where `b` > 0 float32_laplace :: proc(mean, b: f32, r: ^Rand = nil) -> f32 { return f32(float64_laplace(f64(mean), f64(b), r)) } // Gompertz Distribution // `eta` is the shape, `b` is the scale // Both `eta` and `b` must be > 0 float64_gompertz :: proc(eta, b: f64, r: ^Rand = nil) -> f64 { if eta <= 0 || b <= 0 { panic(#procedure + ": eta and b must be > 0.0") } p := float64(r) return math.ln(1 - math.ln(1 - p)/eta)/b } // Gompertz Distribution // `eta` is the shape, `b` is the scale // Both `eta` and `b` must be > 0 float32_gompertz :: proc(eta, b: f32, r: ^Rand = nil) -> f32 { return f32(float64_gompertz(f64(eta), f64(b), r)) }