// simple procedures to manipulate UTF-8 encoded strings package strings import "core:io" import "core:mem" import "core:slice" import "core:unicode" import "core:unicode/utf8" // returns a clone of the string `s` allocated using the `allocator` clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> string { c := make([]byte, len(s), allocator, loc) copy(c, s) return string(c[:len(s)]) } // returns a clone of the string `s` allocated using the `allocator` clone_safe :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (str: string, err: mem.Allocator_Error) { c := make([]byte, len(s), allocator, loc) or_return copy(c, s) return string(c[:len(s)]), nil } // returns a clone of the string `s` allocated using the `allocator` as a cstring // a nul byte is appended to the clone, to make the cstring safe clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> cstring { c := make([]byte, len(s)+1, allocator, loc) copy(c, s) c[len(s)] = 0 return cstring(&c[0]) } // returns a string from a byte pointer `ptr` and byte length `len` // the string is valid as long as the parameters stay alive string_from_ptr :: proc(ptr: ^byte, len: int) -> string { return transmute(string)mem.Raw_String{ptr, len} } // returns a string from a byte pointer `ptr and byte length `len` // searches for a nul byte from 0.. string { s := transmute(string)mem.Raw_String{ptr, len} s = truncate_to_byte(s, 0) return s } // returns the raw ^byte start of the string `str` ptr_from_string :: proc(str: string) -> ^byte { d := transmute(mem.Raw_String)str return d.data } // returns the transmute of string `str` to a cstring // not safe since the origin string may not contain a nul byte unsafe_string_to_cstring :: proc(str: string) -> cstring { d := transmute(mem.Raw_String)str return cstring(d.data) } // returns a string truncated to the first time it finds the byte `b` // uses the `len` of the string `str` when it couldn't find the input truncate_to_byte :: proc(str: string, b: byte) -> string { n := index_byte(str, b) if n < 0 { n = len(str) } return str[:n] } // returns a string truncated to the first time it finds the rune `r` // uses the `len` of the string `str` when it couldn't find the input truncate_to_rune :: proc(str: string, r: rune) -> string { n := index_rune(str, r) if n < 0 { n = len(str) } return str[:n] } // returns a cloned string of the byte array `s` using the `allocator` // appends a leading nul byte clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> string { c := make([]byte, len(s)+1, allocator, loc) copy(c, s) c[len(s)] = 0 return string(c[:len(s)]) } // returns a clone of the cstring `s` using the `allocator` as a string clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> string { return clone(string(s), allocator, loc) } // returns a cloned string from the pointer `ptr` and a byte length `len` using the `allocator` // same to `string_from_ptr` but allocates clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> string { s := string_from_ptr(ptr, len) return clone(s, allocator, loc) } // overload to clone from a `string`, `[]byte`, `cstring` or a `^byte + length` to a string clone_from :: proc{ clone, clone_from_bytes, clone_from_cstring, clone_from_ptr, } // returns a cloned string from the cstring `ptr` and a byte length `len` using the `allocator` // truncates till the first nul byte it finds or the byte len clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> string { s := string_from_ptr((^u8)(ptr), len) s = truncate_to_byte(s, 0) return clone(s, allocator, loc) } // Compares two strings, returning a value representing which one comes first lexiographically. // -1 for `lhs`; 1 for `rhs`, or 0 if they are equal. compare :: proc(lhs, rhs: string) -> int { return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs) } // returns the byte offset of the rune `r` in the string `s`, -1 when not found contains_rune :: proc(s: string, r: rune) -> int { for c, offset in s { if c == r { return offset } } return -1 } /* returns true when the string `substr` is contained inside the string `s` strings.contains("testing", "test") -> true strings.contains("testing", "ing") -> true strings.contains("testing", "text") -> false */ contains :: proc(s, substr: string) -> bool { return index(s, substr) >= 0 } /* returns true when the string `s` contains any of the characters inside the string `chars` strings.contains_any("test", "test") -> true strings.contains_any("test", "ts") -> true strings.contains_any("test", "et") -> true strings.contains_any("test", "a") -> false */ contains_any :: proc(s, chars: string) -> bool { return index_any(s, chars) >= 0 } /* returns the utf8 rune count of the string `s` strings.rune_count("test") -> 4 strings.rune_count("testö") -> 5, where len("testö") -> 6 */ rune_count :: proc(s: string) -> int { return utf8.rune_count_in_string(s) } /* returns wether the strings `u` and `v` are the same alpha characters works with utf8 string content and ignores different casings strings.equal_fold("test", "test") -> true strings.equal_fold("Test", "test") -> true strings.equal_fold("Test", "tEsT") -> true strings.equal_fold("test", "tes") -> false */ equal_fold :: proc(u, v: string) -> bool { s, t := u, v loop: for s != "" && t != "" { sr, tr: rune if s[0] < utf8.RUNE_SELF { sr, s = rune(s[0]), s[1:] } else { r, size := utf8.decode_rune_in_string(s) sr, s = r, s[size:] } if t[0] < utf8.RUNE_SELF { tr, t = rune(t[0]), t[1:] } else { r, size := utf8.decode_rune_in_string(t) tr, t = r, t[size:] } if tr == sr { // easy case continue loop } if tr < sr { tr, sr = sr, tr } if tr < utf8.RUNE_SELF { switch sr { case 'A'..='Z': if tr == (sr+'a')-'A' { continue loop } } return false } // TODO(bill): Unicode folding return false } return s == t } /* return the prefix length common between strings `a` and `b`. strings.prefix_length("testing", "test") -> 4 strings.prefix_length("testing", "te") -> 2 strings.prefix_length("telephone", "te") -> 2 strings.prefix_length("testing", "est") -> 0 */ prefix_length :: proc(a, b: string) -> (n: int) { _len := min(len(a), len(b)) // Scan for matches including partial codepoints. #no_bounds_check for n < _len && a[n] == b[n] { n += 1 } // Now scan to ignore partial codepoints. if n > 0 { s := a[:n] n = 0 for { r0, w := utf8.decode_rune(s[n:]) if r0 != utf8.RUNE_ERROR { n += w } else { break } } } return } /* return true when the string `prefix` is contained at the start of the string `s` strings.has_prefix("testing", "test") -> true strings.has_prefix("testing", "te") -> true strings.has_prefix("telephone", "te") -> true strings.has_prefix("testing", "est") -> false */ has_prefix :: proc(s, prefix: string) -> bool { return len(s) >= len(prefix) && s[0:len(prefix)] == prefix } /* returns true when the string `suffix` is contained at the end of the string `s` good example to use this is for file extensions strings.has_suffix("todo.txt", ".txt") -> true strings.has_suffix("todo.doc", ".txt") -> false strings.has_suffix("todo.doc.txt", ".txt") -> true */ has_suffix :: proc(s, suffix: string) -> bool { return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix } /* returns a combined string from the slice of strings `a` seperated with the `sep` string allocates the string using the `allocator` a := [?]string { "a", "b", "c" } b := strings.join(a[:], " ") -> "a b c" c := strings.join(a[:], "-") -> "a-b-c" d := strings.join(a[:], "...") -> "a...b...c" */ join :: proc(a: []string, sep: string, allocator := context.allocator) -> string { if len(a) == 0 { return "" } n := len(sep) * (len(a) - 1) for s in a { n += len(s) } b := make([]byte, n, allocator) i := copy(b, a[0]) for s in a[1:] { i += copy(b[i:], sep) i += copy(b[i:], s) } return string(b) } join_safe :: proc(a: []string, sep: string, allocator := context.allocator) -> (str: string, err: mem.Allocator_Error) { if len(a) == 0 { return "", nil } n := len(sep) * (len(a) - 1) for s in a { n += len(s) } b := make([]byte, n, allocator) or_return i := copy(b, a[0]) for s in a[1:] { i += copy(b[i:], sep) i += copy(b[i:], s) } return string(b), nil } /* returns a combined string from the slice of strings `a` without a seperator allocates the string using the `allocator` a := [?]string { "a", "b", "c" } b := strings.concatenate(a[:]) -> "abc" */ concatenate :: proc(a: []string, allocator := context.allocator) -> string { if len(a) == 0 { return "" } n := 0 for s in a { n += len(s) } b := make([]byte, n, allocator) i := 0 for s in a { i += copy(b[i:], s) } return string(b) } concatenate_safe :: proc(a: []string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) { if len(a) == 0 { return "", nil } n := 0 for s in a { n += len(s) } b := make([]byte, n, allocator) or_return i := 0 for s in a { i += copy(b[i:], s) } return string(b), nil } /* `rune_offset` and `rune_length` are in runes, not bytes. If `rune_length` <= 0, then it'll return the remainder of the string starting at `rune_offset`. strings.cut("some example text", 0, 4) -> "some" strings.cut("some example text", 2, 2) -> "me" strings.cut("some example text", 5, 7) -> "example" */ cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator) -> (res: string) { s := s; rune_length := rune_length context.allocator = allocator // If we signal that we want the entire remainder (length <= 0) *and* // the offset is zero, then we can early out by cloning the input if rune_offset == 0 && rune_length <= 0 { return clone(s) } // We need to know if we have enough runes to cover offset + length. rune_count := utf8.rune_count_in_string(s) // We're asking for a substring starting after the end of the input string. // That's just an empty string. if rune_offset >= rune_count { return "" } // If we don't specify the length of the substring, use the remainder. if rune_length <= 0 { rune_length = rune_count - rune_offset } // We don't yet know how many bytes we need exactly. // But we do know it's bounded by the number of runes * 4 bytes, // and can be no more than the size of the input string. bytes_needed := min(rune_length * 4, len(s)) buf := make([]u8, bytes_needed) byte_offset := 0 for i := 0; i < rune_count; i += 1 { _, w := utf8.decode_rune_in_string(s) // If the rune is part of the substring, copy it to the output buffer. if i >= rune_offset { for j := 0; j < w; j += 1 { buf[byte_offset+j] = s[j] } byte_offset += w } // We're done if we reach the end of the input string, *or* // if we've reached a specified length in runes. if rune_length > 0 { if i == rune_offset + rune_length - 1 { break } } s = s[w:] } return string(buf[:byte_offset]) } @private _split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator) -> []string { s, n := s_, n_ if n == 0 { return nil } if sep == "" { l := utf8.rune_count_in_string(s) if n < 0 || n > l { n = l } res := make([dynamic]string, n, allocator) for i := 0; i < n-1; i += 1 { _, w := utf8.decode_rune_in_string(s) res[i] = s[:w] s = s[w:] } if n > 0 { res[n-1] = s } return res[:] } if n < 0 { n = count(s, sep) + 1 } res := make([dynamic]string, n, allocator) n -= 1 i := 0 for ; i < n; i += 1 { m := index(s, sep) if m < 0 { break } res[i] = s[:m+sep_save] s = s[m+len(sep):] } res[i] = s return res[:i+1] } /* Splits a string into parts, based on a separator. Returned strings are substrings of 's'. ``` s := "aaa.bbb.ccc.ddd.eee" // 5 parts ss := split(s, ".") fmt.println(ss) // [aaa, bbb, ccc, ddd, eee] ``` */ split :: proc(s, sep: string, allocator := context.allocator) -> []string { return _split(s, sep, 0, -1, allocator) } /* Splits a string into a total of 'n' parts, based on a separator. Returns fewer parts if there wasn't enough occurrences of the separator. Returned strings are substrings of 's'. ``` s := "aaa.bbb.ccc.ddd.eee" // 5 parts present ss := split_n(s, ".", 3) // total of 3 wanted fmt.println(ss) // [aaa, bbb, ccc.ddd.eee] ``` */ split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string { return _split(s, sep, 0, n, allocator) } /* splits the string `s` after the seperator string `sep` appears returns the slice of split strings allocated using `allocator` a := "aaa.bbb.ccc.ddd.eee" aa := strings.split_after(a, ".") fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee] */ split_after :: proc(s, sep: string, allocator := context.allocator) -> []string { return _split(s, sep, len(sep), -1, allocator) } /* splits the string `s` after the seperator string `sep` appears into a total of `n` parts returns the slice of split strings allocated using `allocator` a := "aaa.bbb.ccc.ddd.eee" aa := strings.split_after(a, ".") fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee] */ split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string { return _split(s, sep, len(sep), n, allocator) } @private _split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) { // stop once the string is empty or nil if s == nil || len(s^) == 0 { return } if sep == "" { res = s[:] ok = true s^ = s[len(s):] return } m := index(s^, sep) if m < 0 { // not found res = s[:] ok = res != "" s^ = s[len(s):] } else { res = s[:m+sep_save] ok = true s^ = s[m+len(sep):] } return } /* split the ^string `s` by the byte seperator `sep` in an iterator fashion consumes the original string till the end, leaving the string `s` with len == 0 text := "a.b.c.d.e" for str in strings.split_by_byte_iterator(&text, '.') { fmt.eprintln(str) // every loop -> a b c d e } */ split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) { m := index_byte(s^, sep) if m < 0 { // not found res = s[:] ok = res != "" s^ = {} } else { res = s[:m] ok = true s^ = s[m+1:] } return } /* split the ^string `s` by the seperator string `sep` in an iterator fashion consumes the original string till the end text := "a.b.c.d.e" for str in strings.split_iterator(&text, ".") { fmt.eprintln(str) // every loop -> a b c d e } */ split_iterator :: proc(s: ^string, sep: string) -> (string, bool) { return _split_iterator(s, sep, 0) } /* split the ^string `s` after every seperator string `sep` in an iterator fashion consumes the original string till the end text := "a.b.c.d.e" for str in strings.split_after_iterator(&text, ".") { fmt.eprintln(str) // every loop -> a. b. c. d. e } */ split_after_iterator :: proc(s: ^string, sep: string) -> (string, bool) { return _split_iterator(s, sep, len(sep)) } @(private) _trim_cr :: proc(s: string) -> string { n := len(s) if n > 0 { if s[n-1] == '\r' { return s[:n-1] } } return s } /* split the string `s` at every line break '\n' return an allocated slice of strings a := "a\nb\nc\nd\ne" b := strings.split_lines(a) fmt.eprintln(b) // [a, b, c, d, e] */ split_lines :: proc(s: string, allocator := context.allocator) -> []string { sep :: "\n" lines := _split(s, sep, 0, -1, allocator) for line in &lines { line = _trim_cr(line) } return lines } /* split the string `s` at every line break '\n' for `n` parts return an allocated slice of strings a := "a\nb\nc\nd\ne" b := strings.split_lines_n(a, 3) fmt.eprintln(b) // [a, b, c, d\ne\n] */ split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> []string { sep :: "\n" lines := _split(s, sep, 0, n, allocator) for line in &lines { line = _trim_cr(line) } return lines } /* split the string `s` at every line break '\n' leaving the '\n' in the resulting strings return an allocated slice of strings a := "a\nb\nc\nd\ne" b := strings.split_lines_after(a) fmt.eprintln(b) // [a\n, b\n, c\n, d\n, e\n] */ split_lines_after :: proc(s: string, allocator := context.allocator) -> []string { sep :: "\n" lines := _split(s, sep, len(sep), -1, allocator) for line in &lines { line = _trim_cr(line) } return lines } /* split the string `s` at every line break '\n' leaving the '\n' in the resulting strings only runs for `n` parts return an allocated slice of strings a := "a\nb\nc\nd\ne" b := strings.split_lines_after_n(a, 3) fmt.eprintln(b) // [a\n, b\n, c\n, d\ne\n] */ split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> []string { sep :: "\n" lines := _split(s, sep, len(sep), n, allocator) for line in &lines { line = _trim_cr(line) } return lines } /* split the string `s` at every line break '\n' returns the current split string every iteration till the string is consumed text := "a\nb\nc\nd\ne" for str in strings.split_lines_iterator(&text) { fmt.eprintln(text) // every loop -> a b c d e } */ split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) { sep :: "\n" line = _split_iterator(s, sep, 0) or_return return _trim_cr(line), true } /* split the string `s` at every line break '\n' returns the current split string every iteration till the string is consumed text := "a\nb\nc\nd\ne" for str in strings.split_lines_after_iterator(&text) { fmt.eprintln(text) // every loop -> a\n b\n c\n d\n e\n } */ split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) { sep :: "\n" line = _split_iterator(s, sep, len(sep)) or_return return _trim_cr(line), true } /* returns the byte offset of the first byte `c` in the string `s` it finds, -1 when not found can't find utf8 based runes strings.index_byte("test", 't') -> 0 strings.index_byte("test", 'e') -> 1 strings.index_byte("test", 'x') -> -1 strings.index_byte("teäst", 'ä') -> -1 */ index_byte :: proc(s: string, c: byte) -> int { for i := 0; i < len(s); i += 1 { if s[i] == c { return i } } return -1 } /* returns the byte offset of the last byte `c` in the string `s` it finds, -1 when not found can't find utf8 based runes strings.index_byte("test", 't') -> 3 strings.index_byte("test", 'e') -> 1 strings.index_byte("test", 'x') -> -1 strings.index_byte("teäst", 'ä') -> -1 */ last_index_byte :: proc(s: string, c: byte) -> int { for i := len(s)-1; i >= 0; i -= 1 { if s[i] == c { return i } } return -1 } /* returns the byte offset of the first rune `r` in the string `s` it finds, -1 when not found avoids invalid runes strings.index_rune("abcädef", 'x') -> -1 strings.index_rune("abcädef", 'a') -> 0 strings.index_rune("abcädef", 'b') -> 1 strings.index_rune("abcädef", 'c') -> 2 strings.index_rune("abcädef", 'ä') -> 3 strings.index_rune("abcädef", 'd') -> 5 strings.index_rune("abcädef", 'e') -> 6 strings.index_rune("abcädef", 'f') -> 7 */ index_rune :: proc(s: string, r: rune) -> int { switch { case 0 <= r && r < utf8.RUNE_SELF: return index_byte(s, byte(r)) case r == utf8.RUNE_ERROR: for c, i in s { if c == utf8.RUNE_ERROR { return i } } return -1 case !utf8.valid_rune(r): return -1 } b, w := utf8.encode_rune(r) return index(s, string(b[:w])) } @private PRIME_RABIN_KARP :: 16777619 /* returns the byte offset of the string `substr` in the string `s`, -1 when not found strings.index("test", "t") -> 0 strings.index("test", "te") -> 0 strings.index("test", "st") -> 2 strings.index("test", "tt") -> -1 */ index :: proc(s, substr: string) -> int { hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) { for i := 0; i < len(s); i += 1 { hash = hash*PRIME_RABIN_KARP + u32(s[i]) } sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { pow *= sq } sq *= sq } return } n := len(substr) switch { case n == 0: return 0 case n == 1: return index_byte(s, substr[0]) case n == len(s): if s == substr { return 0 } return -1 case n > len(s): return -1 } hash, pow := hash_str_rabin_karp(substr) h: u32 for i := 0; i < n; i += 1 { h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && s[:n] == substr { return 0 } for i := n; i < len(s); /**/ { h *= PRIME_RABIN_KARP h += u32(s[i]) h -= pow * u32(s[i-n]) i += 1 if h == hash && s[i-n:i] == substr { return i - n } } return -1 } /* returns the last byte offset of the string `substr` in the string `s`, -1 when not found strings.index("test", "t") -> 3 strings.index("test", "te") -> 0 strings.index("test", "st") -> 2 strings.index("test", "tt") -> -1 */ last_index :: proc(s, substr: string) -> int { hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) { for i := len(s) - 1; i >= 0; i -= 1 { hash = hash*PRIME_RABIN_KARP + u32(s[i]) } sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { pow *= sq } sq *= sq } return } n := len(substr) switch { case n == 0: return len(s) case n == 1: return last_index_byte(s, substr[0]) case n == len(s): return 0 if substr == s else -1 case n > len(s): return -1 } hash, pow := hash_str_rabin_karp_reverse(substr) last := len(s) - n h: u32 for i := len(s)-1; i >= last; i -= 1 { h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && s[last:] == substr { return last } for i := last-1; i >= 0; i -= 1 { h *= PRIME_RABIN_KARP h += u32(s[i]) h -= pow * u32(s[i+n]) if h == hash && s[i:i+n] == substr { return i } } return -1 } /* returns the index of any first char of `chars` found in `s`, -1 if not found strings.index_any("test", "s") -> 2 strings.index_any("test", "se") -> 1 strings.index_any("test", "et") -> 0 strings.index_any("test", "set") -> 0 strings.index_any("test", "x") -> -1 */ index_any :: proc(s, chars: string) -> int { if chars == "" { return -1 } if len(chars) == 1 { r := rune(chars[0]) if r >= utf8.RUNE_SELF { r = utf8.RUNE_ERROR } return index_rune(s, r) } if len(s) > 8 { if as, ok := ascii_set_make(chars); ok { for i in 0..= 0 { return i } } return -1 } /* returns the index of any first char of `chars` found in `s`, -1 if not found iterates the string in reverse strings.index_any("test", "s") -> 2 strings.index_any("test", "se") -> 2 strings.index_any("test", "et") -> 1 strings.index_any("test", "set") -> 3 strings.index_any("test", "x") -> -1 */ last_index_any :: proc(s, chars: string) -> int { if chars == "" { return -1 } if len(s) == 1 { r := rune(s[0]) if r >= utf8.RUNE_SELF { r = utf8.RUNE_ERROR } return index_rune(chars, r) } if len(s) > 8 { if as, ok := ascii_set_make(chars); ok { for i := len(s)-1; i >= 0; i -= 1 { if ascii_set_contains(as, s[i]) { return i } } return -1 } } if len(chars) == 1 { r := rune(chars[0]) if r >= utf8.RUNE_SELF { r = utf8.RUNE_ERROR } for i := len(s); i > 0; /**/ { c, w := utf8.decode_last_rune_in_string(s[:i]) i -= w if c == r { return i } } return -1 } for i := len(s); i > 0; /**/ { r, w := utf8.decode_last_rune_in_string(s[:i]) i -= w if index_rune(chars, r) >= 0 { return i } } return -1 } /* returns the count of the string `substr` found in the string `s` returns the rune_count + 1 of the string `s` on empty `substr` strings.count("abbccc", "a") -> 1 strings.count("abbccc", "b") -> 2 strings.count("abbccc", "c") -> 3 strings.count("abbccc", "ab") -> 1 strings.count("abbccc", " ") -> 0 */ count :: proc(s, substr: string) -> int { if len(substr) == 0 { // special case return rune_count(s) + 1 } if len(substr) == 1 { c := substr[0] switch len(s) { case 0: return 0 case 1: return int(s[0] == c) } n := 0 for i := 0; i < len(s); i += 1 { if s[i] == c { n += 1 } } return n } // TODO(bill): Use a non-brute for approach n := 0 str := s for { i := index(str, substr) if i == -1 { return n } n += 1 str = str[i+len(substr):] } return n } /* repeats the string `s` multiple `count` times and returns the allocated string panics when `count` is below 0 strings.repeat("abc", 2) -> "abcabc" */ repeat :: proc(s: string, count: int, allocator := context.allocator) -> string { if count < 0 { panic("strings: negative repeat count") } else if count > 0 && (len(s)*count)/count != len(s) { panic("strings: repeat count will cause an overflow") } b := make([]byte, len(s)*count, allocator) i := copy(b, s) for i < len(b) { // 2^N trick to reduce the need to copy copy(b[i:], b[:i]) i *= 2 } return string(b) } /* replaces all instances of `old` in the string `s` with the `new` string returns the `output` string and true when an a allocation through a replace happened strings.replace_all("xyzxyz", "xyz", "abc") -> "abcabc", true strings.replace_all("xyzxyz", "abc", "xyz") -> "xyzxyz", false strings.replace_all("xyzxyz", "xy", "z") -> "zzzz", true */ replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) { return replace(s, old, new, -1, allocator) } /* replaces `n` instances of `old` in the string `s` with the `new` string if n < 0, no limit on the number of replacements returns the `output` string and true when an a allocation through a replace happened strings.replace("xyzxyz", "xyz", "abc", 2) -> "abcabc", true strings.replace("xyzxyz", "xyz", "abc", 1) -> "abcxyz", true strings.replace("xyzxyz", "abc", "xyz", -1) -> "xyzxyz", false strings.replace("xyzxyz", "xy", "z", -1) -> "zzzz", true */ replace :: proc(s, old, new: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) { if old == new || n == 0 { was_allocation = false output = s return } byte_count := n if m := count(s, old); m == 0 { was_allocation = false output = s return } else if n < 0 || m < n { byte_count = m } t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator) was_allocation = true w := 0 start := 0 for i := 0; i < byte_count; i += 1 { j := start if len(old) == 0 { if i > 0 { _, width := utf8.decode_rune_in_string(s[start:]) j += width } } else { j += index(s[start:], old) } w += copy(t[w:], s[start:j]) w += copy(t[w:], new) start = j + len(old) } w += copy(t[w:], s[start:]) output = string(t[0:w]) return } /* removes the `key` string `n` times from the `s` string if n < 0, no limit on the number of removes returns the `output` string and true when an a allocation through a remove happened strings.remove("abcabc", "abc", 1) -> "abc", true strings.remove("abcabc", "abc", -1) -> "", true strings.remove("abcabc", "a", -1) -> "bcbc", true strings.remove("abcabc", "x", -1) -> "abcabc", false */ remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) { return replace(s, key, "", n, allocator) } /* removes all the `key` string instanes from the `s` string returns the `output` string and true when an a allocation through a remove happened strings.remove("abcabc", "abc") -> "", true strings.remove("abcabc", "a") -> "bcbc", true strings.remove("abcabc", "x") -> "abcabc", false */ remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) { return remove(s, key, -1, allocator) } @(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true} // return true when the `r` rune is '\t', '\n', '\v', '\f', '\r' or ' ' is_ascii_space :: proc(r: rune) -> bool { if r < utf8.RUNE_SELF { return _ascii_space[u8(r)] } return false } // returns true when the `r` rune is any asci or utf8 based whitespace is_space :: proc(r: rune) -> bool { if r < 0x2000 { switch r { case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680: return true } } else { if r <= 0x200a { return true } switch r { case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000: return true } } return false } // returns true when the `r` rune is a nul byte is_null :: proc(r: rune) -> bool { return r == 0x0000 } /* runs trough the `s` string linearly and watches wether the `p` procedure matches the `truth` bool returns the rune offset or -1 when no match was found call :: proc(r: rune) -> bool { return r == 'a' } strings.index_proc("abcabc", call) -> 0 strings.index_proc("cbacba", call) -> 2 strings.index_proc("cbacba", call, false) -> 0 strings.index_proc("abcabc", call, false) -> 1 strings.index_proc("xyz", call) -> -1 */ index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int { for r, i in s { if p(r) == truth { return i } } return -1 } // same as `index_proc` but with a `p` procedure taking a rawptr for state index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int { for r, i in s { if p(state, r) == truth { return i } } return -1 } // same as `index_proc` but runs through the string in reverse last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { r, size := utf8.decode_last_rune_in_string(s[:i]) i -= size if p(r) == truth { return i } } return -1 } // same as `index_proc_with_state` but runs through the string in reverse last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { r, size := utf8.decode_last_rune_in_string(s[:i]) i -= size if p(state, r) == truth { return i } } return -1 } /* trims the input string `s` until the procedure `p` returns false does not allocate - only returns a cut variant of the input string returns an empty string when no match was found at all find :: proc(r: rune) -> bool { return r != 'i' } strings.trim_left_proc("testing", find) -> "ing" */ trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> string { i := index_proc(s, p, false) if i == -1 { return "" } return s[i:] } /* trims the input string `s` until the procedure `p` with state returns false returns an empty string when no match was found at all */ trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string { i := index_proc_with_state(s, p, state, false) if i == -1 { return "" } return s[i:] } /* trims the input string `s` from the right until the procedure `p` returns false does not allocate - only returns a cut variant of the input string returns an empty string when no match was found at all find :: proc(r: rune) -> bool { return r != 't' } strings.trim_left_proc("testing", find) -> "test" */ trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> string { i := last_index_proc(s, p, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { _, w := utf8.decode_rune_in_string(s[i:]) i += w } else { i += 1 } return s[0:i] } /* trims the input string `s` from the right until the procedure `p` with state returns false returns an empty string when no match was found at all */ trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string { i := last_index_proc_with_state(s, p, state, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { _, w := utf8.decode_rune_in_string(s[i:]) i += w } else { i += 1 } return s[0:i] } // procedure for `trim_*_proc` variants, which has a string rawptr cast + rune comparison is_in_cutset :: proc(state: rawptr, r: rune) -> bool { if state == nil { return false } cutset := (^string)(state)^ for c in cutset { if r == c { return true } } return false } // trims the `cutset` string from the `s` string trim_left :: proc(s: string, cutset: string) -> string { if s == "" || cutset == "" { return s } state := cutset return trim_left_proc_with_state(s, is_in_cutset, &state) } // trims the `cutset` string from the `s` string from the right trim_right :: proc(s: string, cutset: string) -> string { if s == "" || cutset == "" { return s } state := cutset return trim_right_proc_with_state(s, is_in_cutset, &state) } // trims the `cutset` string from the `s` string, both from left and right trim :: proc(s: string, cutset: string) -> string { return trim_right(trim_left(s, cutset), cutset) } // trims until a valid non space rune: "\t\txyz\t\t" -> "xyz\t\t" trim_left_space :: proc(s: string) -> string { return trim_left_proc(s, is_space) } // trims from the right until a valid non space rune: "\t\txyz\t\t" -> "\t\txyz" trim_right_space :: proc(s: string) -> string { return trim_right_proc(s, is_space) } // trims from both sides until a valid non space rune: "\t\txyz\t\t" -> "xyz" trim_space :: proc(s: string) -> string { return trim_right_space(trim_left_space(s)) } // trims nul runes from the left: "\x00\x00testing\x00\x00" -> "testing\x00\x00" trim_left_null :: proc(s: string) -> string { return trim_left_proc(s, is_null) } // trims nul runes from the right: "\x00\x00testing\x00\x00" -> "\x00\x00testing" trim_right_null :: proc(s: string) -> string { return trim_right_proc(s, is_null) } // trims nul runes from both sides: "\x00\x00testing\x00\x00" -> "testing" trim_null :: proc(s: string) -> string { return trim_right_null(trim_left_null(s)) } /* trims a `prefix` string from the start of the `s` string and returns the trimmed string returns the input string `s` when no prefix was found strings.trim_prefix("testing", "test") -> "ing" strings.trim_prefix("testing", "abc") -> "testing" */ trim_prefix :: proc(s, prefix: string) -> string { if has_prefix(s, prefix) { return s[len(prefix):] } return s } /* trims a `suffix` string from the end of the `s` string and returns the trimmed string returns the input string `s` when no suffix was found strings.trim_suffix("todo.txt", ".txt") -> "todo" strings.trim_suffix("todo.doc", ".txt") -> "todo.doc" */ trim_suffix :: proc(s, suffix: string) -> string { if has_suffix(s, suffix) { return s[:len(s)-len(suffix)] } return s } /* splits the input string `s` by all possible `substrs` []string returns the allocated []string, nil on any empty substring or no matches splits := [?]string { "---", "~~~", ".", "_", "," } res := strings.split_multi("testing,this.out_nice---done~~~last", splits[:]) fmt.eprintln(res) // -> [testing, this, out, nice, done, last] */ split_multi :: proc(s: string, substrs: []string, allocator := context.allocator) -> (buf: []string) #no_bounds_check { if s == "" || len(substrs) <= 0 { return } // disallow "" substr for substr in substrs { if len(substr) == 0 { return } } // TODO maybe remove duplicate substrs // sort substrings by string size, largest to smallest temp_substrs := slice.clone(substrs, context.temp_allocator) slice.sort_by(temp_substrs, proc(a, b: string) -> bool { return len(a) > len(b) }) substrings_found: int temp := s // count substr results found in string first_pass: for len(temp) > 0 { for substr in temp_substrs { size := len(substr) // check range and compare string to substr if size <= len(temp) && temp[:size] == substr { substrings_found += 1 temp = temp[size:] continue first_pass } } // step through string _, skip := utf8.decode_rune_in_string(temp[:]) temp = temp[skip:] } // skip when no results if substrings_found < 1 { return } buf = make([]string, substrings_found + 1, allocator) buf_index: int temp = s temp_old := temp // gather results in the same fashion second_pass: for len(temp) > 0 { for substr in temp_substrs { size := len(substr) // check range and compare string to substr if size <= len(temp) && temp[:size] == substr { buf[buf_index] = temp_old[:len(temp_old) - len(temp)] buf_index += 1 temp = temp[size:] temp_old = temp continue second_pass } } // step through string _, skip := utf8.decode_rune_in_string(temp[:]) temp = temp[skip:] } buf[buf_index] = temp_old[:] return buf } // state for the split multi iterator Split_Multi :: struct { temp: string, temp_old: string, substrs: []string, } // returns split multi state with sorted `substrs` split_multi_init :: proc(s: string, substrs: []string) -> Split_Multi { // sort substrings, largest to smallest temp_substrs := slice.clone(substrs, context.temp_allocator) slice.sort_by(temp_substrs, proc(a, b: string) -> bool { return len(a) > len(b) }) return { temp = s, temp_old = s, substrs = temp_substrs, } } /* splits the input string `s` by all possible `substrs` []string in an iterator fashion returns the split string every iteration, the full string on no match splits := [?]string { "---", "~~~", ".", "_", "," } state := strings.split_multi_init("testing,this.out_nice---done~~~last", splits[:]) for str in strings.split_multi_iterate(&state) { fmt.eprintln(str) // every iteration -> [testing, this, out, nice, done, last] } */ split_multi_iterate :: proc(using sm: ^Split_Multi) -> (res: string, ok: bool) #no_bounds_check { pass: for len(temp) > 0 { for substr in substrs { size := len(substr) // check range and compare string to substr if size <= len(temp) && temp[:size] == substr { res = temp_old[:len(temp_old) - len(temp)] temp = temp[size:] temp_old = temp ok = true return } } // step through string _, skip := utf8.decode_rune_in_string(temp[:]) temp = temp[skip:] } // allow last iteration if temp_old != "" { res = temp_old[:] ok = true temp_old = "" } return } // scrub scruvs invalid utf-8 characters and replaces them with the replacement string // Adjacent invalid bytes are only replaced once scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> string { str := s b: Builder builder_init(&b, 0, len(s), allocator) has_error := false cursor := 0 origin := str for len(str) > 0 { r, w := utf8.decode_rune_in_string(str) if r == utf8.RUNE_ERROR { if !has_error { has_error = true write_string(&b, origin[:cursor]) } } else if has_error { has_error = false write_string(&b, replacement) origin = origin[cursor:] cursor = 0 } cursor += w str = str[w:] } return to_string(b) } /* returns a reversed version of the `s` string a := "abcxyz" b := strings.reverse(a) fmt.eprintln(a, b) // abcxyz zyxcba */ reverse :: proc(s: string, allocator := context.allocator) -> string { str := s n := len(str) buf := make([]byte, n) i := n for len(str) > 0 { _, w := utf8.decode_rune_in_string(str) i -= w copy(buf[i:], str[:w]) str = str[w:] } return string(buf) } /* expands the string to a grid spaced by `tab_size` whenever a `\t` character appears returns the tabbed string, panics on tab_size <= 0 strings.expand_tabs("abc1\tabc2\tabc3", 4) -> abc1 abc2 abc3 strings.expand_tabs("abc1\tabc2\tabc3", 5) -> abc1 abc2 abc3 strings.expand_tabs("abc1\tabc2\tabc3", 6) -> abc1 abc2 abc3 */ expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> string { if tab_size <= 0 { panic("tab size must be positive") } if s == "" { return "" } b: Builder builder_init(&b, allocator) writer := to_writer(&b) str := s column: int for len(str) > 0 { r, w := utf8.decode_rune_in_string(str) if r == '\t' { expand := tab_size - column%tab_size for i := 0; i < expand; i += 1 { io.write_byte(writer, ' ') } column += expand } else { if r == '\n' { column = 0 } else { column += w } io.write_rune(writer, r) } str = str[w:] } return to_string(b) } /* splits the `str` string by the seperator `sep` string and returns 3 parts `head`: before the split, `match`: the seperator, `tail`: the end of the split returns the input string when the `sep` was not found text := "testing this out" strings.partition(text, " this ") -> head: "testing", match: " this ", tail: "out" strings.partition(text, "hi") -> head: "testing t", match: "hi", tail: "s out" strings.partition(text, "xyz") -> head: "testing this out", match: "", tail: "" */ partition :: proc(str, sep: string) -> (head, match, tail: string) { i := index(str, sep) if i == -1 { head = str return } head = str[:i] match = str[i:i+len(sep)] tail = str[i+len(sep):] return } center_justify :: centre_justify // NOTE(bill): Because Americans exist // centre_justify returns a string with a pad string at boths sides if the str's rune length is smaller than length centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string { n := rune_count(str) if n >= length || pad == "" { return clone(str, allocator) } remains := length-1 pad_len := rune_count(pad) b: Builder builder_init(&b, allocator) builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad)) w := to_writer(&b) write_pad_string(w, pad, pad_len, remains/2) io.write_string(w, str) write_pad_string(w, pad, pad_len, (remains+1)/2) return to_string(b) } // left_justify returns a string with a pad string at left side if the str's rune length is smaller than length left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string { n := rune_count(str) if n >= length || pad == "" { return clone(str, allocator) } remains := length-1 pad_len := rune_count(pad) b: Builder builder_init(&b, allocator) builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad)) w := to_writer(&b) io.write_string(w, str) write_pad_string(w, pad, pad_len, remains) return to_string(b) } // right_justify returns a string with a pad string at right side if the str's rune length is smaller than length right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string { n := rune_count(str) if n >= length || pad == "" { return clone(str, allocator) } remains := length-1 pad_len := rune_count(pad) b: Builder builder_init(&b, allocator) builder_grow(&b, len(str) + (remains/pad_len + 1)*len(pad)) w := to_writer(&b) write_pad_string(w, pad, pad_len, remains) io.write_string(w, str) return to_string(b) } @private write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) { repeats := remains / pad_len for i := 0; i < repeats; i += 1 { io.write_string(w, pad) } n := remains % pad_len p := pad for i := 0; i < n; i += 1 { r, width := utf8.decode_rune_in_string(p) io.write_rune(w, r) p = p[width:] } } // fields splits the string s around each instance of one or more consecutive white space character, defined by unicode.is_space // returning a slice of substrings of s or an empty slice if s only contains white space fields :: proc(s: string, allocator := context.allocator) -> []string #no_bounds_check { n := 0 was_space := 1 set_bits := u8(0) // check to see for i in 0..= utf8.RUNE_SELF { return fields_proc(s, unicode.is_space, allocator) } if n == 0 { return nil } a := make([]string, n, allocator) na := 0 field_start := 0 i := 0 for i < len(s) && _ascii_space[s[i]] { i += 1 } field_start = i for i < len(s) { if !_ascii_space[s[i]] { i += 1 continue } a[na] = s[field_start : i] na += 1 i += 1 for i < len(s) && _ascii_space[s[i]] { i += 1 } field_start = i } if field_start < len(s) { a[na] = s[field_start:] } return a } // fields_proc splits the string s at each run of unicode code points `ch` satisfying f(ch) // returns a slice of substrings of s // If all code points in s satisfy f(ch) or string is empty, an empty slice is returned // // fields_proc makes no guarantee about the order in which it calls f(ch) // it assumes that `f` always returns the same value for a given ch fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator) -> []string #no_bounds_check { substrings := make([dynamic]string, 0, 32, allocator) start, end := -1, -1 for r, offset in s { end = offset if f(r) { if start >= 0 { append(&substrings, s[start : end]) // -1 could be used, but just speed it up through bitwise not // gotta love 2's complement start = ~start } } else { if start < 0 { start = end } } } if start >= 0 { append(&substrings, s[start : len(s)]) } return substrings[:] } // `fields_iterator` returns the first run of characters in `s` that does not contain white space, defined by `unicode.is_space` // `s` will then start from any space after the substring, or be an empty string if the substring was the remaining characters fields_iterator :: proc(s: ^string) -> (field: string, ok: bool) { start, end := -1, -1 for r, offset in s { end = offset if unicode.is_space(r) { if start >= 0 { field = s[start : end] ok = true s^ = s[end:] return } } else { if start < 0 { start = end } } } // if either of these are true, the string did not contain any characters if end < 0 || start < 0 { return "", false } field = s[start:] ok = true s^ = s[len(s):] return } // `levenshtein_distance` returns the Levenshtein edit distance between 2 strings. // This is a single-row-version of the Wagner–Fischer algorithm, based on C code by Martin Ettl. // Note: allocator isn't used if the length of string b in runes is smaller than 64. levenshtein_distance :: proc(a, b: string, allocator := context.allocator) -> int { LEVENSHTEIN_DEFAULT_COSTS: []int : { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, } m, n := utf8.rune_count_in_string(a), utf8.rune_count_in_string(b) if m == 0 { return n } if n == 0 { return m } costs: []int if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) { costs = make([]int, n + 1, allocator) for k in 0..=n { costs[k] = k } } else { costs = LEVENSHTEIN_DEFAULT_COSTS } defer if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) { delete(costs, allocator) } i: int for c1 in a { costs[0] = i + 1 corner := i j: int for c2 in b { upper := costs[j + 1] if c1 == c2 { costs[j + 1] = corner } else { t := upper if upper < corner else corner costs[j + 1] = (costs[j] if costs[j] < t else t) + 1 } corner = upper j += 1 } i += 1 } return costs[n] }