/* Copyright 2021 Jeroen van Rijn . Made available under Odin's BSD-3 license. ========================== Low-level routines ========================== IMPORTANT: `internal_*` procedures make certain assumptions about their input. The public functions that call them are expected to satisfy their sanity check requirements. This allows `internal_*` call `internal_*` without paying this overhead multiple times. Where errors can occur, they are of course still checked and returned as appropriate. When importing `math:core/big` to implement an involved algorithm of your own, you are welcome to use these procedures instead of their public counterparts. Most inputs and outputs are expected to be passed an initialized `Int`, for example. Exceptions include `quotient` and `remainder`, which are allowed to be `nil` when the calling code doesn't need them. Check the comments above each `internal_*` implementation to see what constraints it expects to have met. We pass the custom allocator to procedures by default using the pattern `context.allocator = allocator`. This way we don't have to add `, allocator` at the end of each call. TODO: Handle +/- Infinity and NaN. */ package math_big import "core:mem" import "core:intrinsics" import rnd "core:math/rand" import "core:builtin" /* Low-level addition, unsigned. Handbook of Applied Cryptography, algorithm 14.7. Assumptions: `dest`, `a` and `b` != `nil` and have been initalized. */ internal_int_add_unsigned :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) { dest := dest; x := a; y := b context.allocator = allocator old_used, min_used, max_used, i: int if x.used < y.used { x, y = y, x } min_used = y.used max_used = x.used old_used = dest.used internal_grow(dest, max(max_used + 1, _DEFAULT_DIGIT_COUNT)) or_return dest.used = max_used + 1 /* All parameters have been initialized. */ /* Zero the carry */ carry := DIGIT(0) #no_bounds_check for i = 0; i < min_used; i += 1 { /* Compute the sum one _DIGIT at a time. dest[i] = a[i] + b[i] + carry; */ dest.digit[i] = x.digit[i] + y.digit[i] + carry /* Compute carry */ carry = dest.digit[i] >> _DIGIT_BITS /* Mask away carry from result digit. */ dest.digit[i] &= _MASK } if min_used != max_used { /* Now copy higher words, if any, in A+B. If A or B has more digits, add those in. */ #no_bounds_check for ; i < max_used; i += 1 { dest.digit[i] = x.digit[i] + carry /* Compute carry */ carry = dest.digit[i] >> _DIGIT_BITS /* Mask away carry from result digit. */ dest.digit[i] &= _MASK } } /* Add remaining carry. */ dest.digit[i] = carry /* Zero remainder. */ internal_zero_unused(dest, old_used) /* Adjust dest.used based on leading zeroes. */ return internal_clamp(dest) } internal_add_unsigned :: proc { internal_int_add_unsigned, } /* Low-level addition, signed. Handbook of Applied Cryptography, algorithm 14.7. Assumptions: `dest`, `a` and `b` != `nil` and have been initalized. */ internal_int_add_signed :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) { x := a; y := b context.allocator = allocator /* Handle both negative or both positive. */ if x.sign == y.sign { dest.sign = x.sign return #force_inline internal_int_add_unsigned(dest, x, y) } /* One positive, the other negative. Subtract the one with the greater magnitude from the other. The result gets the sign of the one with the greater magnitude. */ if #force_inline internal_lt_abs(a, b) { x, y = y, x } dest.sign = x.sign return #force_inline internal_int_sub_unsigned(dest, x, y) } internal_add_signed :: proc { internal_int_add_signed, } /* Low-level addition Int+DIGIT, signed. Handbook of Applied Cryptography, algorithm 14.7. Assumptions: `dest` and `a` != `nil` and have been initalized. `dest` is large enough (a.used + 1) to fit result. */ internal_int_add_digit :: proc(dest, a: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) { context.allocator = allocator internal_grow(dest, a.used + 1) or_return /* Fast paths for destination and input Int being the same. */ if dest == a { /* Fast path for dest.digit[0] + digit fits in dest.digit[0] without overflow. */ if dest.sign == .Zero_or_Positive && (dest.digit[0] + digit < _DIGIT_MAX) { dest.digit[0] += digit dest.used += 1 return internal_clamp(dest) } /* Can be subtracted from dest.digit[0] without underflow. */ if a.sign == .Negative && (dest.digit[0] > digit) { dest.digit[0] -= digit dest.used += 1 return internal_clamp(dest) } } /* If `a` is negative and `|a|` >= `digit`, call `dest = |a| - digit` */ if a.sign == .Negative && (a.used > 1 || a.digit[0] >= digit) { /* Temporarily fix `a`'s sign. */ a.sign = .Zero_or_Positive /* dest = |a| - digit */ if err = #force_inline internal_int_add_digit(dest, a, digit); err != nil { /* Restore a's sign. */ a.sign = .Negative return err } /* Restore sign and set `dest` sign. */ a.sign = .Negative dest.sign = .Negative return internal_clamp(dest) } /* Remember the currently used number of digits in `dest`. */ old_used := dest.used /* If `a` is positive */ if a.sign == .Zero_or_Positive { /* Add digits, use `carry`. */ i: int carry := digit #no_bounds_check for i = 0; i < a.used; i += 1 { dest.digit[i] = a.digit[i] + carry carry = dest.digit[i] >> _DIGIT_BITS dest.digit[i] &= _MASK } /* Set final carry. */ dest.digit[i] = carry /* Set `dest` size. */ dest.used = a.used + 1 } else { /* `a` was negative and |a| < digit. */ dest.used = 1 /* The result is a single DIGIT. */ dest.digit[0] = digit - a.digit[0] if a.used == 1 else digit } /* Sign is always positive. */ dest.sign = .Zero_or_Positive /* Zero remainder. */ internal_zero_unused(dest, old_used) /* Adjust dest.used based on leading zeroes. */ return internal_clamp(dest) } internal_add :: proc { internal_int_add_signed, internal_int_add_digit, } internal_int_incr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) { return #force_inline internal_add(dest, dest, 1) } internal_incr :: proc { internal_int_incr, } /* Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|. Handbook of Applied Cryptography, algorithm 14.9. Assumptions: `dest`, `number` and `decrease` != `nil` and have been initalized. */ internal_int_sub_unsigned :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator dest := dest; x := number; y := decrease old_used := dest.used min_used := y.used max_used := x.used i: int grow(dest, max(max_used, _DEFAULT_DIGIT_COUNT)) or_return dest.used = max_used /* All parameters have been initialized. */ borrow := DIGIT(0) #no_bounds_check for i = 0; i < min_used; i += 1 { dest.digit[i] = (x.digit[i] - y.digit[i] - borrow) /* borrow = carry bit of dest[i] Note this saves performing an AND operation since if a carry does occur, it will propagate all the way to the MSB. As a result a single shift is enough to get the carry. */ borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1) /* Clear borrow from dest[i]. */ dest.digit[i] &= _MASK } /* Now copy higher words if any, e.g. if A has more digits than B */ #no_bounds_check for ; i < max_used; i += 1 { dest.digit[i] = x.digit[i] - borrow /* borrow = carry bit of dest[i] Note this saves performing an AND operation since if a carry does occur, it will propagate all the way to the MSB. As a result a single shift is enough to get the carry. */ borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1) /* Clear borrow from dest[i]. */ dest.digit[i] &= _MASK } /* Zero remainder. */ internal_zero_unused(dest, old_used) /* Adjust dest.used based on leading zeroes. */ return internal_clamp(dest) } internal_sub_unsigned :: proc { internal_int_sub_unsigned, } /* Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9. dest = number - decrease. Assumes |number| > |decrease|. Assumptions: `dest`, `number` and `decrease` != `nil` and have been initalized. */ internal_int_sub_signed :: proc(dest, number, decrease: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator number := number; decrease := decrease if number.sign != decrease.sign { /* Subtract a negative from a positive, OR subtract a positive from a negative. In either case, ADD their magnitudes and use the sign of the first number. */ dest.sign = number.sign return #force_inline internal_int_add_unsigned(dest, number, decrease) } /* Subtract a positive from a positive, OR negative from a negative. First, take the difference between their magnitudes, then... */ if #force_inline internal_lt_abs(number, decrease) { /* The second has a larger magnitude. The result has the *opposite* sign from the first number. */ dest.sign = .Negative if number.sign == .Zero_or_Positive else .Zero_or_Positive number, decrease = decrease, number } else { /* The first has a larger or equal magnitude. Copy the sign from the first. */ dest.sign = number.sign } return #force_inline internal_int_sub_unsigned(dest, number, decrease) } /* Low-level subtraction, signed. Handbook of Applied Cryptography, algorithm 14.9. dest = number - decrease. Assumes |number| > |decrease|. Assumptions: `dest`, `number` != `nil` and have been initalized. `dest` is large enough (number.used + 1) to fit result. */ internal_int_sub_digit :: proc(dest, number: ^Int, digit: DIGIT, allocator := context.allocator) -> (err: Error) { context.allocator = allocator internal_grow(dest, number.used + 1) or_return dest := dest; digit := digit /* All parameters have been initialized. Fast paths for destination and input Int being the same. */ if dest == number { /* Fast path for `dest` is negative and unsigned addition doesn't overflow the lowest digit. */ if dest.sign == .Negative && (dest.digit[0] + digit < _DIGIT_MAX) { dest.digit[0] += digit return nil } /* Can be subtracted from dest.digit[0] without underflow. */ if number.sign == .Zero_or_Positive && (dest.digit[0] > digit) { dest.digit[0] -= digit return nil } } /* If `a` is negative, just do an unsigned addition (with fudged signs). */ if number.sign == .Negative { t := number t.sign = .Zero_or_Positive err = #force_inline internal_int_add_digit(dest, t, digit) dest.sign = .Negative internal_clamp(dest) return err } old_used := dest.used /* if `a`<= digit, simply fix the single digit. */ if number.used == 1 && (number.digit[0] <= digit) || number.used == 0 { dest.digit[0] = digit - number.digit[0] if number.used == 1 else digit dest.sign = .Negative dest.used = 1 } else { dest.sign = .Zero_or_Positive dest.used = number.used /* Subtract with carry. */ carry := digit #no_bounds_check for i := 0; i < number.used; i += 1 { dest.digit[i] = number.digit[i] - carry carry = dest.digit[i] >> (_DIGIT_TYPE_BITS - 1) dest.digit[i] &= _MASK } } /* Zero remainder. */ internal_zero_unused(dest, old_used) /* Adjust dest.used based on leading zeroes. */ return internal_clamp(dest) } internal_sub :: proc { internal_int_sub_signed, internal_int_sub_digit, } internal_int_decr :: proc(dest: ^Int, allocator := context.allocator) -> (err: Error) { return #force_inline internal_sub(dest, dest, 1) } internal_decr :: proc { internal_int_decr, } /* dest = src / 2 dest = src >> 1 Assumes `dest` and `src` not to be `nil` and have been initialized. We make no allocations here. */ internal_int_shr1 :: proc(dest, src: ^Int) -> (err: Error) { old_used := dest.used; dest.used = src.used /* Carry */ fwd_carry := DIGIT(0) #no_bounds_check for x := dest.used - 1; x >= 0; x -= 1 { /* Get the carry for the next iteration. */ src_digit := src.digit[x] carry := src_digit & 1 /* Shift the current digit, add in carry and store. */ dest.digit[x] = (src_digit >> 1) | (fwd_carry << (_DIGIT_BITS - 1)) /* Forward carry to next iteration. */ fwd_carry = carry } /* Zero remainder. */ internal_zero_unused(dest, old_used) /* Adjust dest.used based on leading zeroes. */ dest.sign = src.sign return internal_clamp(dest) } /* dest = src * 2 dest = src << 1 */ internal_int_shl1 :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator internal_copy(dest, src) or_return /* Grow `dest` to accommodate the additional bits. */ digits_needed := dest.used + 1 internal_grow(dest, digits_needed) or_return dest.used = digits_needed mask := (DIGIT(1) << uint(1)) - DIGIT(1) shift := DIGIT(_DIGIT_BITS - 1) carry := DIGIT(0) #no_bounds_check for x:= 0; x < dest.used; x+= 1 { fwd_carry := (dest.digit[x] >> shift) & mask dest.digit[x] = (dest.digit[x] << uint(1) | carry) & _MASK carry = fwd_carry } /* Use final carry. */ if carry != 0 { dest.digit[dest.used] = carry dest.used += 1 } return internal_clamp(dest) } /* Multiply bigint `a` with int `d` and put the result in `dest`. Like `internal_int_mul_digit` but with an integer as the small input. */ internal_int_mul_integer :: proc(dest, a: ^Int, b: $T, allocator := context.allocator) -> (err: Error) where intrinsics.type_is_integer(T) && T != DIGIT { context.allocator = allocator t := &Int{} defer internal_destroy(t) /* DIGIT might be smaller than a long, which excludes the use of `internal_int_mul_digit` here. */ internal_set(t, b) or_return internal_mul(dest, a, t) or_return return } /* Multiply by a DIGIT. */ internal_int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) { context.allocator = allocator assert_if_nil(dest, src) if multiplier == 0 { return internal_zero(dest) } if multiplier == 1 { return internal_copy(dest, src) } /* Power of two? */ if multiplier == 2 { return #force_inline internal_int_shl1(dest, src) } if #force_inline platform_int_is_power_of_two(int(multiplier)) { ix := internal_log(multiplier, 2) or_return return internal_shl(dest, src, ix) } /* Ensure `dest` is big enough to hold `src` * `multiplier`. */ grow(dest, max(src.used + 1, _DEFAULT_DIGIT_COUNT)) or_return /* Save the original used count. */ old_used := dest.used /* Set the sign. */ dest.sign = src.sign /* Set up carry. */ carry := _WORD(0) /* Compute columns. */ ix := 0 #no_bounds_check for ; ix < src.used; ix += 1 { /* Compute product and carry sum for this term */ product := carry + _WORD(src.digit[ix]) * _WORD(multiplier) /* Mask off higher bits to get a single DIGIT. */ dest.digit[ix] = DIGIT(product & _WORD(_MASK)) /* Send carry into next iteration */ carry = product >> _DIGIT_BITS } /* Store final carry [if any] and increment used. */ dest.digit[ix] = DIGIT(carry) dest.used = src.used + 1 /* Zero remainder. */ internal_zero_unused(dest, old_used) return internal_clamp(dest) } /* High level multiplication (handles sign). */ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* Early out for `multiplier` is zero; Set `dest` to zero. */ if multiplier.used == 0 || src.used == 0 { return internal_zero(dest) } neg := src.sign != multiplier.sign if src == multiplier { /* Do we need to square? */ if src.used >= SQR_TOOM_CUTOFF { /* Use Toom-Cook? */ err = #force_inline _private_int_sqr_toom(dest, src) } else if src.used >= SQR_KARATSUBA_CUTOFF { /* Karatsuba? */ err = #force_inline _private_int_sqr_karatsuba(dest, src) } else if ((src.used * 2) + 1) < _WARRAY && src.used < (_MAX_COMBA / 2) { /* Fast comba? */ err = #force_inline _private_int_sqr_comba(dest, src) } else { err = #force_inline _private_int_sqr(dest, src) } } else { /* Can we use the balance method? Check sizes. * The smaller one needs to be larger than the Karatsuba cut-off. * The bigger one needs to be at least about one `_MUL_KARATSUBA_CUTOFF` bigger * to make some sense, but it depends on architecture, OS, position of the stars... so YMMV. * Using it to cut the input into slices small enough for _mul_comba * was actually slower on the author's machine, but YMMV. */ min_used := min(src.used, multiplier.used) max_used := max(src.used, multiplier.used) digits := src.used + multiplier.used + 1 if min_used >= MUL_KARATSUBA_CUTOFF && (max_used / 2) >= MUL_KARATSUBA_CUTOFF && max_used >= (2 * min_used) { /* Not much effect was observed below a ratio of 1:2, but again: YMMV. */ err = _private_int_mul_balance(dest, src, multiplier) } else if min_used >= MUL_TOOM_CUTOFF { /* Toom path commented out until it no longer fails Factorial 10k or 100k, as reveaved in the long test. */ err = #force_inline _private_int_mul_toom(dest, src, multiplier) } else if min_used >= MUL_KARATSUBA_CUTOFF { err = #force_inline _private_int_mul_karatsuba(dest, src, multiplier) } else if digits < _WARRAY && min_used <= _MAX_COMBA { /* Can we use the fast multiplier? * The fast multiplier can be used if the output will * have less than MP_WARRAY digits and the number of * digits won't affect carry propagation */ err = #force_inline _private_int_mul_comba(dest, src, multiplier, digits) } else { err = #force_inline _private_int_mul(dest, src, multiplier, digits) } } dest.sign = .Negative if dest.used > 0 && neg else .Zero_or_Positive return err } internal_mul :: proc { internal_int_mul, internal_int_mul_digit, internal_int_mul_integer } internal_sqr :: proc (dest, src: ^Int, allocator := context.allocator) -> (res: Error) { /* We call `internal_mul` and not e.g. `_private_int_sqr` because the former will dispatch to the optimal implementation depending on the source. */ return #force_inline internal_mul(dest, src, src, allocator) } /* divmod. Both the quotient and remainder are optional and may be passed a nil. `numerator` and `denominator` are expected not to be `nil` and have been initialized. */ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator if denominator.used == 0 { return .Division_by_Zero } /* If numerator < denominator then quotient = 0, remainder = numerator. */ if #force_inline internal_lt_abs(numerator, denominator) { if remainder != nil { internal_copy(remainder, numerator) or_return } if quotient != nil { internal_zero(quotient) } return nil } if (denominator.used > 2 * MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used / 3) * 2) { assert(denominator.used >= 160 && numerator.used >= 240, "MUL_KARATSUBA_CUTOFF global not properly set.") err = _private_int_div_recursive(quotient, remainder, numerator, denominator) } else { when true { err = #force_inline _private_int_div_school(quotient, remainder, numerator, denominator) } else { /* NOTE(Jeroen): We no longer need or use `_private_int_div_small`. We'll keep it around for a bit until we're reasonably certain div_school is bug free. */ err = _private_int_div_small(quotient, remainder, numerator, denominator) } } return } /* Single digit division (based on routine from MPI). The quotient is optional and may be passed a nil. */ internal_int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) { context.allocator = allocator /* Cannot divide by zero. */ if denominator == 0 { return 0, .Division_by_Zero } /* Quick outs. */ if denominator == 1 || numerator.used == 0 { if quotient != nil { return 0, internal_copy(quotient, numerator) } return 0, err } /* Power of two? */ if denominator == 2 { if numerator.used > 0 && numerator.digit[0] & 1 != 0 { // Remainder is 1 if numerator is odd. remainder = 1 } if quotient == nil { return remainder, nil } return remainder, internal_shr(quotient, numerator, 1) } ix: int if platform_int_is_power_of_two(int(denominator)) { ix = 1 for ix < _DIGIT_BITS && denominator != (1 << uint(ix)) { ix += 1 } remainder = numerator.digit[0] & ((1 << uint(ix)) - 1) if quotient == nil { return remainder, nil } return remainder, internal_shr(quotient, numerator, int(ix)) } /* Three? */ if denominator == 3 { return _private_int_div_3(quotient, numerator) } /* No easy answer [c'est la vie]. Just division. */ q := &Int{} internal_grow(q, numerator.used) or_return q.used = numerator.used q.sign = numerator.sign w := _WORD(0) for ix = numerator.used - 1; ix >= 0; ix -= 1 { t := DIGIT(0) w = (w << _WORD(_DIGIT_BITS) | _WORD(numerator.digit[ix])) if w >= _WORD(denominator) { t = DIGIT(w / _WORD(denominator)) w -= _WORD(t) * _WORD(denominator) } q.digit[ix] = t } remainder = DIGIT(w) if quotient != nil { internal_clamp(q) internal_swap(q, quotient) } internal_destroy(q) return remainder, nil } internal_divmod :: proc { internal_int_divmod, internal_int_divmod_digit, } /* Asssumes quotient, numerator and denominator to have been initialized and not to be nil. */ internal_int_div :: proc(quotient, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) { return #force_inline internal_int_divmod(quotient, nil, numerator, denominator, allocator) } internal_div :: proc { internal_int_div, } /* remainder = numerator % denominator. 0 <= remainder < denominator if denominator > 0 denominator < remainder <= 0 if denominator < 0 Asssumes quotient, numerator and denominator to have been initialized and not to be nil. */ internal_int_mod :: proc(remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) { #force_inline internal_int_divmod(nil, remainder, numerator, denominator, allocator) or_return if remainder.used == 0 || denominator.sign == remainder.sign { return nil } return #force_inline internal_add(remainder, remainder, denominator, allocator) } internal_int_mod_digit :: proc(numerator: ^Int, denominator: DIGIT, allocator := context.allocator) -> (remainder: DIGIT, err: Error) { return internal_int_divmod_digit(nil, numerator, denominator, allocator) } internal_mod :: proc{ internal_int_mod, internal_int_mod_digit, } /* remainder = (number + addend) % modulus. */ internal_int_addmod :: proc(remainder, number, addend, modulus: ^Int, allocator := context.allocator) -> (err: Error) { #force_inline internal_add(remainder, number, addend, allocator) or_return return #force_inline internal_mod(remainder, remainder, modulus, allocator) } internal_addmod :: proc { internal_int_addmod, } /* remainder = (number - decrease) % modulus. */ internal_int_submod :: proc(remainder, number, decrease, modulus: ^Int, allocator := context.allocator) -> (err: Error) { #force_inline internal_sub(remainder, number, decrease, allocator) or_return return #force_inline internal_mod(remainder, remainder, modulus, allocator) } internal_submod :: proc { internal_int_submod, } /* remainder = (number * multiplicand) % modulus. */ internal_int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int, allocator := context.allocator) -> (err: Error) { #force_inline internal_mul(remainder, number, multiplicand, allocator) or_return return #force_inline internal_mod(remainder, remainder, modulus, allocator) } internal_mulmod :: proc { internal_int_mulmod, } /* remainder = (number * number) % modulus. */ internal_int_sqrmod :: proc(remainder, number, modulus: ^Int, allocator := context.allocator) -> (err: Error) { #force_inline internal_sqr(remainder, number, allocator) or_return return #force_inline internal_mod(remainder, remainder, modulus, allocator) } internal_sqrmod :: proc { internal_int_sqrmod, } /* TODO: Use Sterling's Approximation to estimate log2(N!) to size the result. This way we'll have to reallocate less, possibly not at all. */ internal_int_factorial :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator if n >= FACTORIAL_BINARY_SPLIT_CUTOFF { return _private_int_factorial_binary_split(res, n) } i := len(_factorial_table) if n < i { return #force_inline internal_set(res, _factorial_table[n]) } #force_inline internal_set(res, _factorial_table[i - 1]) or_return for { if err = #force_inline internal_mul(res, res, DIGIT(i)); err != nil || i == n { return err } i += 1 } return nil } /* Returns GCD, LCM or both. Assumes `a` and `b` to have been initialized. `res_gcd` and `res_lcm` can be nil or ^Int depending on which results are desired. */ internal_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) { if res_gcd == nil && res_lcm == nil { return nil } return #force_inline _private_int_gcd_lcm(res_gcd, res_lcm, a, b, allocator) } internal_int_gcd :: proc(res_gcd, a, b: ^Int, allocator := context.allocator) -> (err: Error) { return #force_inline _private_int_gcd_lcm(res_gcd, nil, a, b, allocator) } internal_int_lcm :: proc(res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) { return #force_inline _private_int_gcd_lcm(nil, res_lcm, a, b, allocator) } /* remainder = numerator % (1 << bits) Assumes `remainder` and `numerator` both not to be `nil` and `bits` to be >= 0. */ internal_int_mod_bits :: proc(remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) { /* Everything is divisible by 1 << 0 == 1, so this returns 0. */ if bits == 0 { return internal_zero(remainder) } /* If the modulus is larger than the value, return the value. */ internal_copy(remainder, numerator) or_return if bits >= (numerator.used * _DIGIT_BITS) { return } /* Zero digits above the last digit of the modulus. */ zero_count := (bits / _DIGIT_BITS) zero_count += 0 if (bits % _DIGIT_BITS == 0) else 1 /* Zero remainder. Special case, can't use `internal_zero_unused`. */ if zero_count > 0 { mem.zero_slice(remainder.digit[zero_count:]) } /* Clear the digit that is not completely outside/inside the modulus. */ remainder.digit[bits / _DIGIT_BITS] &= DIGIT(1 << DIGIT(bits % _DIGIT_BITS)) - DIGIT(1) return internal_clamp(remainder) } /* ============================= Low-level helpers ============================= `internal_*` helpers don't return an `Error` like their public counterparts do, because they expect not to be passed `nil` or uninitialized inputs. This makes them more suitable for `internal_*` functions and some of the public ones that have already satisfied these constraints. */ /* This procedure returns the allocated capacity of an Int. Assumes `a` not to be `nil`. */ internal_int_allocated_cap :: #force_inline proc(a: ^Int) -> (cap: int) { raw := transmute(mem.Raw_Dynamic_Array)a.digit return raw.cap } /* This procedure will return `true` if the `Int` is initialized, `false` if not. Assumes `a` not to be `nil`. */ internal_int_is_initialized :: #force_inline proc(a: ^Int) -> (initialized: bool) { return internal_int_allocated_cap(a) >= _MIN_DIGIT_COUNT } internal_is_initialized :: proc { internal_int_is_initialized, } /* This procedure will return `true` if the `Int` is zero, `false` if not. Assumes `a` not to be `nil`. */ internal_int_is_zero :: #force_inline proc(a: ^Int) -> (zero: bool) { return a.used == 0 } internal_is_zero :: proc { internal_rat_is_zero, internal_int_is_zero, } /* This procedure will return `true` if the `Int` is positive, `false` if not. Assumes `a` not to be `nil`. */ internal_int_is_positive :: #force_inline proc(a: ^Int) -> (positive: bool) { return a.sign == .Zero_or_Positive } internal_is_positive :: proc { internal_int_is_positive, } /* This procedure will return `true` if the `Int` is negative, `false` if not. Assumes `a` not to be `nil`. */ internal_int_is_negative :: #force_inline proc(a: ^Int) -> (negative: bool) { return a.sign == .Negative } internal_is_negative :: proc { internal_int_is_negative, } /* This procedure will return `true` if the `Int` is even, `false` if not. Assumes `a` not to be `nil`. */ internal_int_is_even :: #force_inline proc(a: ^Int) -> (even: bool) { if internal_is_zero(a) { return true } /* `a.used` > 0 here, because the above handled `is_zero`. We don't need to explicitly test it. */ return a.digit[0] & 1 == 0 } internal_is_even :: proc { internal_int_is_even, } /* This procedure will return `true` if the `Int` is even, `false` if not. Assumes `a` not to be `nil`. */ internal_int_is_odd :: #force_inline proc(a: ^Int) -> (odd: bool) { return !internal_int_is_even(a) } internal_is_odd :: proc { internal_int_is_odd, } /* This procedure will return `true` if the `Int` is a power of two, `false` if not. Assumes `a` not to be `nil`. */ internal_int_is_power_of_two :: #force_inline proc(a: ^Int) -> (power_of_two: bool) { /* Early out for Int == 0. */ if #force_inline internal_is_zero(a) { return true } /* For an `Int` to be a power of two, its bottom limb has to be a power of two. */ if ! #force_inline platform_int_is_power_of_two(int(a.digit[a.used - 1])) { return false } /* We've established that the bottom limb is a power of two. If it's the only limb, that makes the entire Int a power of two. */ if a.used == 1 { return true } /* For an `Int` to be a power of two, all limbs except the top one have to be zero. */ for i := 1; i < a.used && a.digit[i - 1] != 0; i += 1 { return false } return true } internal_is_power_of_two :: proc { internal_int_is_power_of_two, } /* Compare two `Int`s, signed. Returns -1 if `a` < `b`, 0 if `a` == `b` and 1 if `b` > `a`. Expects `a` and `b` both to be valid `Int`s, i.e. initialized and not `nil`. */ internal_int_compare :: #force_inline proc(a, b: ^Int) -> (comparison: int) { assert_if_nil(a, b) a_is_negative := #force_inline internal_is_negative(a) /* Compare based on sign. */ if a.sign != b.sign { return -1 if a_is_negative else +1 } /* If `a` is negative, compare in the opposite direction */ if a_is_negative { return #force_inline internal_compare_magnitude(b, a) } return #force_inline internal_compare_magnitude(a, b) } internal_compare :: proc { internal_int_compare, internal_int_compare_digit, } internal_cmp :: internal_compare /* Compare an `Int` to an unsigned number upto `DIGIT & _MASK`. Returns -1 if `a` < `b`, 0 if `a` == `b` and 1 if `b` > `a`. Expects: `a` and `b` both to be valid `Int`s, i.e. initialized and not `nil`. */ internal_int_compare_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (comparison: int) { assert_if_nil(a) a_is_negative := #force_inline internal_is_negative(a) switch { /* Compare based on sign first. */ case a_is_negative: return -1 /* Then compare on magnitude. */ case a.used > 1: return +1 /* We have only one digit. Compare it against `b`. */ case a.digit[0] < b: return -1 case a.digit[0] == b: return 0 case a.digit[0] > b: return +1 /* Unreachable. Just here because Odin complains about a missing return value at the bottom of the proc otherwise. */ case: return } } internal_compare_digit :: proc { internal_int_compare_digit, } internal_cmp_digit :: internal_compare_digit /* Compare the magnitude of two `Int`s, unsigned. */ internal_int_compare_magnitude :: #force_inline proc(a, b: ^Int) -> (comparison: int) { assert_if_nil(a, b) /* Compare based on used digits. */ if a.used != b.used { if a.used > b.used { return +1 } return -1 } /* Same number of used digits, compare based on their value. */ #no_bounds_check for n := a.used - 1; n >= 0; n -= 1 { if a.digit[n] != b.digit[n] { if a.digit[n] > b.digit[n] { return +1 } return -1 } } return 0 } internal_compare_magnitude :: proc { internal_int_compare_magnitude, } internal_cmp_mag :: internal_compare_magnitude /* bool := a < b */ internal_int_less_than :: #force_inline proc(a, b: ^Int) -> (less_than: bool) { return internal_cmp(a, b) == -1 } /* bool := a < b */ internal_int_less_than_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (less_than: bool) { return internal_cmp_digit(a, b) == -1 } /* bool := |a| < |b| Compares the magnitudes only, ignores the sign. */ internal_int_less_than_abs :: #force_inline proc(a, b: ^Int) -> (less_than: bool) { return internal_cmp_mag(a, b) == -1 } internal_less_than :: proc { internal_int_less_than, internal_int_less_than_digit, } internal_lt :: internal_less_than internal_less_than_abs :: proc { internal_int_less_than_abs, } internal_lt_abs :: internal_less_than_abs /* bool := a <= b */ internal_int_less_than_or_equal :: #force_inline proc(a, b: ^Int) -> (less_than_or_equal: bool) { return internal_cmp(a, b) <= 0 } /* bool := a <= b */ internal_int_less_than_or_equal_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (less_than_or_equal: bool) { return internal_cmp_digit(a, b) <= 0 } /* bool := |a| <= |b| Compares the magnitudes only, ignores the sign. */ internal_int_less_than_or_equal_abs :: #force_inline proc(a, b: ^Int) -> (less_than_or_equal: bool) { return internal_cmp_mag(a, b) <= 0 } internal_less_than_or_equal :: proc { internal_int_less_than_or_equal, internal_int_less_than_or_equal_digit, } internal_lte :: internal_less_than_or_equal internal_less_than_or_equal_abs :: proc { internal_int_less_than_or_equal_abs, } internal_lte_abs :: internal_less_than_or_equal_abs /* bool := a == b */ internal_int_equals :: #force_inline proc(a, b: ^Int) -> (equals: bool) { return internal_cmp(a, b) == 0 } /* bool := a == b */ internal_int_equals_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (equals: bool) { return internal_cmp_digit(a, b) == 0 } /* bool := |a| == |b| Compares the magnitudes only, ignores the sign. */ internal_int_equals_abs :: #force_inline proc(a, b: ^Int) -> (equals: bool) { return internal_cmp_mag(a, b) == 0 } internal_equals :: proc { internal_int_equals, internal_int_equals_digit, } internal_eq :: internal_equals internal_equals_abs :: proc { internal_int_equals_abs, } internal_eq_abs :: internal_equals_abs /* bool := a >= b */ internal_int_greater_than_or_equal :: #force_inline proc(a, b: ^Int) -> (greater_than_or_equal: bool) { return internal_cmp(a, b) >= 0 } /* bool := a >= b */ internal_int_greater_than_or_equal_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (greater_than_or_equal: bool) { return internal_cmp_digit(a, b) >= 0 } /* bool := |a| >= |b| Compares the magnitudes only, ignores the sign. */ internal_int_greater_than_or_equal_abs :: #force_inline proc(a, b: ^Int) -> (greater_than_or_equal: bool) { return internal_cmp_mag(a, b) >= 0 } internal_greater_than_or_equal :: proc { internal_int_greater_than_or_equal, internal_int_greater_than_or_equal_digit, } internal_gte :: internal_greater_than_or_equal internal_greater_than_or_equal_abs :: proc { internal_int_greater_than_or_equal_abs, } internal_gte_abs :: internal_greater_than_or_equal_abs /* bool := a > b */ internal_int_greater_than :: #force_inline proc(a, b: ^Int) -> (greater_than: bool) { return internal_cmp(a, b) == 1 } /* bool := a > b */ internal_int_greater_than_digit :: #force_inline proc(a: ^Int, b: DIGIT) -> (greater_than: bool) { return internal_cmp_digit(a, b) == 1 } /* bool := |a| > |b| Compares the magnitudes only, ignores the sign. */ internal_int_greater_than_abs :: #force_inline proc(a, b: ^Int) -> (greater_than: bool) { return internal_cmp_mag(a, b) == 1 } internal_greater_than :: proc { internal_int_greater_than, internal_int_greater_than_digit, } internal_gt :: internal_greater_than internal_greater_than_abs :: proc { internal_int_greater_than_abs, } internal_gt_abs :: internal_greater_than_abs /* Check if remainders are possible squares - fast exclude non-squares. Returns `true` if `a` is a square, `false` if not. Assumes `a` not to be `nil` and to have been initialized. */ internal_int_is_square :: proc(a: ^Int, allocator := context.allocator) -> (square: bool, err: Error) { context.allocator = allocator /* Default to Non-square :) */ square = false if internal_is_negative(a) { return } if internal_is_zero(a) { return } /* First check mod 128 (suppose that _DIGIT_BITS is at least 7). */ if _private_int_rem_128[127 & a.digit[0]] == 1 { return } /* Next check mod 105 (3*5*7). */ c: DIGIT c, err = internal_mod(a, 105) if _private_int_rem_105[c] == 1 { return } t := &Int{} defer destroy(t) set(t, 11 * 13 * 17 * 19 * 23 * 29 * 31) or_return internal_mod(t, a, t) or_return r: u64 r, err = internal_int_get(t, u64) /* Check for other prime modules, note it's not an ERROR but we must free "t" so the easiest way is to goto LBL_ERR. We know that err is already equal to MP_OKAY from the mp_mod call */ if (1 << (r % 11) & 0x5C4) != 0 { return } if (1 << (r % 13) & 0x9E4) != 0 { return } if (1 << (r % 17) & 0x5CE8) != 0 { return } if (1 << (r % 19) & 0x4F50C) != 0 { return } if (1 << (r % 23) & 0x7ACCA0) != 0 { return } if (1 << (r % 29) & 0xC2EDD0C) != 0 { return } if (1 << (r % 31) & 0x6DE2B848) != 0 { return } /* Final check - is sqr(sqrt(arg)) == arg? */ sqrt(t, a) or_return sqr(t, t) or_return square = internal_eq_abs(t, a) return } /* ========================= Logs, powers and roots ============================ */ /* Returns log_base(a). Assumes `a` to not be `nil` and have been iniialized. */ internal_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) { if base < 2 || DIGIT(base) > _DIGIT_MAX { return -1, .Invalid_Argument } if internal_is_negative(a) { return -1, .Math_Domain_Error } if internal_is_zero(a) { return -1, .Math_Domain_Error } /* Fast path for bases that are a power of two. */ if platform_int_is_power_of_two(int(base)) { return _private_log_power_of_two(a, base) } /* Fast path for `Int`s that fit within a single `DIGIT`. */ if a.used == 1 { return internal_log(a.digit[0], DIGIT(base)) } return _private_int_log(a, base) } /* Returns log_base(a), where `a` is a DIGIT. */ internal_digit_log :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) { /* If the number is smaller than the base, it fits within a fraction. Therefore, we return 0. */ if a < base { return 0, nil } /* If a number equals the base, the log is 1. */ if a == base { return 1, nil } N := _WORD(a) bracket_low := _WORD(1) bracket_high := _WORD(base) high := 1 low := 0 for bracket_high < N { low = high bracket_low = bracket_high high <<= 1 bracket_high *= bracket_high } for high - low > 1 { mid := (low + high) >> 1 bracket_mid := bracket_low * #force_inline internal_small_pow(_WORD(base), _WORD(mid - low)) if N < bracket_mid { high = mid bracket_high = bracket_mid } if N > bracket_mid { low = mid bracket_low = bracket_mid } if N == bracket_mid { return mid, nil } } if bracket_high == N { return high, nil } else { return low, nil } } internal_log :: proc { internal_int_log, internal_digit_log, } /* Calculate dest = base^power using a square-multiply algorithm. Assumes `dest` and `base` not to be `nil` and to have been initialized. */ internal_int_pow :: proc(dest, base: ^Int, power: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator power := power /* Early outs. */ if #force_inline internal_is_zero(base) { /* A zero base is a special case. */ if power < 0 { internal_zero(dest) or_return return .Math_Domain_Error } if power == 0 { return internal_one(dest) } if power > 0 { return internal_zero(dest) } } if power < 0 { /* Fraction, so we'll return zero. */ return internal_zero(dest) } switch(power) { case 0: /* Any base to the power zero is one. */ return #force_inline internal_one(dest) case 1: /* Any base to the power one is itself. */ return copy(dest, base) case 2: return #force_inline internal_sqr(dest, base) } g := &Int{} internal_copy(g, base) or_return /* Set initial result. */ internal_one(dest) or_return defer internal_destroy(g) for power > 0 { /* If the bit is set, multiply. */ if power & 1 != 0 { internal_mul(dest, g, dest) or_return } /* Square. */ if power > 1 { internal_sqr(g, g) or_return } /* shift to next bit */ power >>= 1 } return } /* Calculate `dest = base^power`. Assumes `dest` not to be `nil` and to have been initialized. */ internal_int_pow_int :: proc(dest: ^Int, base, power: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator base_t := &Int{} defer internal_destroy(base_t) internal_set(base_t, base) or_return return #force_inline internal_int_pow(dest, base_t, power) } internal_pow :: proc { internal_int_pow, internal_int_pow_int, } internal_exp :: pow /* */ internal_small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) { exponent := exponent; base := base result = _WORD(1) for exponent != 0 { if exponent & 1 == 1 { result *= base } exponent >>= 1 base *= base } return result } /* This function is less generic than `root_n`, simpler and faster. Assumes `dest` and `src` not to be `nil` and to have been initialized. */ internal_int_sqrt :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* Must be positive. */ if #force_inline internal_is_negative(src) { return .Invalid_Argument } /* Easy out. If src is zero, so is dest. */ if #force_inline internal_is_zero(src) { return internal_zero(dest) } /* Set up temporaries. */ x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{} defer internal_destroy(x, y, t1, t2) count := #force_inline internal_count_bits(src) a, b := count >> 1, count & 1 internal_int_power_of_two(x, a+b, allocator) or_return for { /* y = (x + n // x) // 2 */ internal_div(t1, src, x) or_return internal_add(t2, t1, x) or_return internal_shr(y, t2, 1) or_return if internal_gte(y, x) { internal_swap(dest, x) return nil } internal_swap(x, y) } internal_swap(dest, x) return err } internal_sqrt :: proc { internal_int_sqrt, } /* Find the nth root of an Integer. Result found such that `(dest)**n <= src` and `(dest+1)**n > src` This algorithm uses Newton's approximation `x[i+1] = x[i] - f(x[i])/f'(x[i])`, which will find the root in `log(n)` time where each step involves a fair bit. Assumes `dest` and `src` not to be `nil` and have been initialized. */ internal_int_root_n :: proc(dest, src: ^Int, n: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* Fast path for n == 2 */ if n == 2 { return #force_inline internal_sqrt(dest, src) } if n < 0 || n > int(_DIGIT_MAX) { return .Invalid_Argument } if n & 1 == 0 && #force_inline internal_is_negative(src) { return .Invalid_Argument } /* Set up temporaries. */ t1, t2, t3, a := &Int{}, &Int{}, &Int{}, &Int{} defer internal_destroy(t1, t2, t3) /* If `src` is negative fudge the sign but keep track. */ a.sign = .Zero_or_Positive a.used = src.used a.digit = src.digit /* If "n" is larger than INT_MAX it is also larger than log_2(src) because the bit-length of the "src" is measured with an int and hence the root is always < 2 (two). */ if n > max(int) / 2 { err = set(dest, 1) dest.sign = a.sign return err } /* Compute seed: 2^(log_2(src)/n + 2) */ ilog2 := internal_count_bits(src) /* "src" is smaller than max(int), we can cast safely. */ if ilog2 < n { err = internal_one(dest) dest.sign = a.sign return err } ilog2 /= n if ilog2 == 0 { err = internal_one(dest) dest.sign = a.sign return err } /* Start value must be larger than root. */ ilog2 += 2 internal_int_power_of_two(t2, ilog2) or_return c: int iterations := 0 for { /* t1 = t2 */ internal_copy(t1, t2) or_return /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ /* t3 = t1**(b-1) */ internal_pow(t3, t1, n-1) or_return /* numerator */ /* t2 = t1**b */ internal_mul(t2, t1, t3) or_return /* t2 = t1**b - a */ internal_sub(t2, t2, a) or_return /* denominator */ /* t3 = t1**(b-1) * b */ internal_mul(t3, t3, DIGIT(n)) or_return /* t3 = (t1**b - a)/(b * t1**(b-1)) */ internal_div(t3, t2, t3) or_return internal_sub(t2, t1, t3) or_return /* Number of rounds is at most log_2(root). If it is more it got stuck, so break out of the loop and do the rest manually. */ if ilog2 -= 1; ilog2 == 0 { break } if internal_eq(t1, t2) { break } iterations += 1 if iterations == MAX_ITERATIONS_ROOT_N { return .Max_Iterations_Reached } } /* Result can be off by a few so check. */ /* Loop beneath can overshoot by one if found root is smaller than actual root. */ iterations = 0 for { internal_pow(t2, t1, n) or_return c = internal_cmp(t2, a) if c == 0 { swap(dest, t1) return nil } else if c == -1 { internal_add(t1, t1, DIGIT(1)) or_return } else { break } iterations += 1 if iterations == MAX_ITERATIONS_ROOT_N { return .Max_Iterations_Reached } } iterations = 0 /* Correct overshoot from above or from recurrence. */ for { internal_pow(t2, t1, n) or_return if internal_lt(t2, a) { break } internal_sub(t1, t1, DIGIT(1)) or_return iterations += 1 if iterations == MAX_ITERATIONS_ROOT_N { return .Max_Iterations_Reached } } /* Set the result. */ internal_swap(dest, t1) /* Set the sign of the result. */ dest.sign = src.sign return err } internal_root_n :: proc { internal_int_root_n, } /* Other internal helpers */ /* Deallocates the backing memory of one or more `Int`s. Asssumes none of the `integers` to be a `nil`. */ internal_int_destroy :: proc(integers: ..^Int) { integers := integers for a in &integers { if internal_int_allocated_cap(a) > 0 { mem.zero_slice(a.digit[:]) free(&a.digit[0]) } a = &Int{} } } internal_destroy :: proc{ internal_int_destroy, internal_rat_destroy, } /* Helpers to set an `Int` to a specific value. */ internal_int_set_from_integer :: proc(dest: ^Int, src: $T, minimize := false, allocator := context.allocator) -> (err: Error) where intrinsics.type_is_integer(T) { context.allocator = allocator internal_error_if_immutable(dest) or_return /* Most internal procs asssume an Int to have already been initialize, but as this is one of the procs that initializes, we have to check the following. */ internal_clear_if_uninitialized_single(dest) or_return dest.flags = {} // We're not -Inf, Inf, NaN or Immutable. dest.used = 0 dest.sign = .Negative if src < 0 else .Zero_or_Positive temp := src is_maximally_negative := src == min(T) if is_maximally_negative { /* Prevent overflow on abs() */ temp += 1 } temp = -temp if temp < 0 else temp #no_bounds_check for temp != 0 { dest.digit[dest.used] = DIGIT(temp) & _MASK dest.used += 1 temp >>= _DIGIT_BITS } if is_maximally_negative { return internal_sub(dest, dest, 1) } internal_zero_unused(dest) return nil } internal_set :: proc { internal_int_set_from_integer, internal_int_copy, int_atoi } internal_copy_digits :: #force_inline proc(dest, src: ^Int, digits: int, offset := int(0)) -> (err: Error) { #force_inline internal_error_if_immutable(dest) or_return /* If dest == src, do nothing */ return #force_inline _private_copy_digits(dest, src, digits, offset) } /* Copy one `Int` to another. */ internal_int_copy :: proc(dest, src: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* If dest == src, do nothing */ if (dest == src) { return nil } internal_error_if_immutable(dest) or_return /* Grow `dest` to fit `src`. If `dest` is not yet initialized, it will be using `allocator`. */ needed := src.used if minimize else max(src.used, _DEFAULT_DIGIT_COUNT) internal_grow(dest, needed, minimize) or_return /* Copy everything over and zero high digits. */ internal_copy_digits(dest, src, src.used) dest.used = src.used dest.sign = src.sign dest.flags = src.flags &~ {.Immutable} internal_zero_unused(dest) return nil } internal_copy :: proc { internal_int_copy, } /* In normal code, you can also write `a, b = b, a`. However, that only swaps within the current scope. This helper swaps completely. */ internal_int_swap :: #force_inline proc(a, b: ^Int) { a.used, b.used = b.used, a.used a.sign, b.sign = b.sign, a.sign a.digit, b.digit = b.digit, a.digit } internal_swap :: proc { internal_int_swap, internal_rat_swap, } /* Set `dest` to |`src`|. */ internal_int_abs :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* If `dest == src`, just fix `dest`'s sign. */ if (dest == src) { dest.sign = .Zero_or_Positive return nil } /* Copy `src` to `dest` */ internal_copy(dest, src) or_return /* Fix sign. */ dest.sign = .Zero_or_Positive return nil } internal_platform_abs :: proc(n: $T) -> T where intrinsics.type_is_integer(T) { return n if n >= 0 else -n } internal_abs :: proc{ internal_int_abs, internal_platform_abs, } /* Set `dest` to `-src`. */ internal_int_neg :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* If `dest == src`, just fix `dest`'s sign. */ sign := Sign.Negative if #force_inline internal_is_zero(src) || #force_inline internal_is_negative(src) { sign = .Zero_or_Positive } if dest == src { dest.sign = sign return nil } /* Copy `src` to `dest` */ internal_copy(dest, src) or_return /* Fix sign. */ dest.sign = sign return nil } internal_neg :: proc { internal_int_neg, } /* hac 14.61, pp608. */ internal_int_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* For all n in N and n > 0, n = 0 mod 1. */ if internal_is_positive(a) && internal_eq(b, 1) { return internal_zero(dest) } /* `b` cannot be negative and has to be > 1 */ if internal_is_negative(b) || internal_gt(b, 1) { return .Invalid_Argument } /* If the modulus is odd we can use a faster routine instead. */ if internal_is_odd(b) { return _private_inverse_modulo_odd(dest, a, b) } return _private_inverse_modulo(dest, a, b) } internal_invmod :: proc{ internal_int_inverse_modulo, } /* Helpers to extract values from the `Int`. Offset is zero indexed. */ internal_int_bitfield_extract_bool :: proc(a: ^Int, offset: int) -> (val: bool, err: Error) { limb := offset / _DIGIT_BITS if limb < 0 || limb >= a.used { return false, .Invalid_Argument } i := _WORD(1 << _WORD((offset % _DIGIT_BITS))) return bool(_WORD(a.digit[limb]) & i), nil } internal_int_bitfield_extract_single :: proc(a: ^Int, offset: int) -> (bit: _WORD, err: Error) { limb := offset / _DIGIT_BITS if limb < 0 || limb >= a.used { return 0, .Invalid_Argument } i := _WORD(1 << _WORD((offset % _DIGIT_BITS))) return 1 if ((_WORD(a.digit[limb]) & i) != 0) else 0, nil } internal_int_bitfield_extract :: proc(a: ^Int, offset, count: int) -> (res: _WORD, err: Error) #no_bounds_check { /* Early out for single bit. */ if count == 1 { limb := offset / _DIGIT_BITS if limb < 0 || limb >= a.used { return 0, .Invalid_Argument } i := _WORD(1 << _WORD((offset % _DIGIT_BITS))) return 1 if ((_WORD(a.digit[limb]) & i) != 0) else 0, nil } if count > _WORD_BITS || count < 1 { return 0, .Invalid_Argument } /* There are 3 possible cases. - [offset:][:count] covers 1 DIGIT, e.g. offset: 0, count: 60 = bits 0..59 - [offset:][:count] covers 2 DIGITS, e.g. offset: 5, count: 60 = bits 5..59, 0..4 e.g. offset: 0, count: 120 = bits 0..59, 60..119 - [offset:][:count] covers 3 DIGITS, e.g. offset: 40, count: 100 = bits 40..59, 0..59, 0..19 e.g. offset: 40, count: 120 = bits 40..59, 0..59, 0..39 */ limb := offset / _DIGIT_BITS bits_left := count bits_offset := offset % _DIGIT_BITS num_bits := min(bits_left, _DIGIT_BITS - bits_offset) shift := offset % _DIGIT_BITS mask := (_WORD(1) << uint(num_bits)) - 1 res = (_WORD(a.digit[limb]) >> uint(shift)) & mask bits_left -= num_bits if bits_left == 0 { return res, nil } res_shift := num_bits num_bits = min(bits_left, _DIGIT_BITS) mask = (1 << uint(num_bits)) - 1 res |= (_WORD(a.digit[limb + 1]) & mask) << uint(res_shift) bits_left -= num_bits if bits_left == 0 { return res, nil } mask = (1 << uint(bits_left)) - 1 res_shift += _DIGIT_BITS res |= (_WORD(a.digit[limb + 2]) & mask) << uint(res_shift) return res, nil } /* Helpers to (un)set a bit in an Int. Offset is zero indexed. */ internal_int_bitfield_set_single :: proc(a: ^Int, offset: int) -> (err: Error) { limb := offset / _DIGIT_BITS if limb < 0 || limb >= a.used { return .Invalid_Argument } i := DIGIT(1 << uint((offset % _DIGIT_BITS))) a.digit[limb] |= i return } internal_int_bitfield_unset_single :: proc(a: ^Int, offset: int) -> (err: Error) { limb := offset / _DIGIT_BITS if limb < 0 || limb >= a.used { return .Invalid_Argument } i := DIGIT(1 << uint((offset % _DIGIT_BITS))) a.digit[limb] &= _MASK - i return } internal_int_bitfield_toggle_single :: proc(a: ^Int, offset: int) -> (err: Error) { limb := offset / _DIGIT_BITS if limb < 0 || limb >= a.used { return .Invalid_Argument } i := DIGIT(1 << uint((offset % _DIGIT_BITS))) a.digit[limb] ~= i return } /* Resize backing store. We don't need to pass the allocator, because the storage itself stores it. Assumes `a` not to be `nil`, and to have already been initialized. */ internal_int_shrink :: proc(a: ^Int) -> (err: Error) { needed := max(_MIN_DIGIT_COUNT, a.used) if a.used != needed { return internal_grow(a, needed, true) } return nil } internal_shrink :: proc { internal_int_shrink, } internal_int_grow :: proc(a: ^Int, digits: int, allow_shrink := false, allocator := context.allocator) -> (err: Error) { /* We need at least _MIN_DIGIT_COUNT or a.used digits, whichever is bigger. The caller is asking for `digits`. Let's be accomodating. */ cap := internal_int_allocated_cap(a) needed := max(_MIN_DIGIT_COUNT, a.used, digits) if !allow_shrink { needed = max(needed, cap) } /* If not yet iniialized, initialize the `digit` backing with the allocator we were passed. */ if cap == 0 { a.digit = make([dynamic]DIGIT, needed, allocator) } else if cap != needed { /* `[dynamic]DIGIT` already knows what allocator was used for it, so resize will do the right thing. */ resize(&a.digit, needed) } /* Let's see if the allocation/resize worked as expected. */ if len(a.digit) != needed { return .Out_Of_Memory } return nil } internal_grow :: proc { internal_int_grow, } /* Clear `Int` and resize it to the default size. Assumes `a` not to be `nil`. */ internal_int_clear :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) { raw := transmute(mem.Raw_Dynamic_Array)a.digit if raw.cap != 0 { mem.zero_slice(a.digit[:a.used]) } a.sign = .Zero_or_Positive a.used = 0 return #force_inline internal_grow(a, a.used, minimize, allocator) } internal_clear :: proc { internal_int_clear, } internal_zero :: internal_clear /* Set the `Int` to 1 and optionally shrink it to the minimum backing size. */ internal_int_one :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) { return internal_copy(a, INT_ONE, minimize, allocator) } internal_one :: proc { internal_int_one, } /* Set the `Int` to -1 and optionally shrink it to the minimum backing size. */ internal_int_minus_one :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) { return internal_copy(a, INT_MINUS_ONE, minimize, allocator) } internal_minus_one :: proc { internal_int_minus_one, } /* Set the `Int` to Inf and optionally shrink it to the minimum backing size. */ internal_int_inf :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) { return internal_copy(a, INT_INF, minimize, allocator) } internal_inf :: proc { internal_int_inf, } /* Set the `Int` to -Inf and optionally shrink it to the minimum backing size. */ internal_int_minus_inf :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) { return internal_copy(a, INT_MINUS_INF, minimize, allocator) } internal_minus_inf :: proc { internal_int_inf, } /* Set the `Int` to NaN and optionally shrink it to the minimum backing size. */ internal_int_nan :: proc(a: ^Int, minimize := false, allocator := context.allocator) -> (err: Error) { return internal_copy(a, INT_NAN, minimize, allocator) } internal_nan :: proc { internal_int_nan, } internal_int_power_of_two :: proc(a: ^Int, power: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator if power < 0 || power > _MAX_BIT_COUNT { return .Invalid_Argument } /* Grow to accomodate the single bit. */ a.used = (power / _DIGIT_BITS) + 1 internal_grow(a, a.used) or_return /* Zero the entirety. */ mem.zero_slice(a.digit[:]) /* Set the bit. */ a.digit[power / _DIGIT_BITS] = 1 << uint((power % _DIGIT_BITS)) return nil } internal_int_get_u128 :: proc(a: ^Int) -> (res: u128, err: Error) { return internal_int_get(a, u128) } internal_get_u128 :: proc { internal_int_get_u128, } internal_int_get_i128 :: proc(a: ^Int) -> (res: i128, err: Error) { return internal_int_get(a, i128) } internal_get_i128 :: proc { internal_int_get_i128, } internal_int_get_u64 :: proc(a: ^Int) -> (res: u64, err: Error) { return internal_int_get(a, u64) } internal_get_u64 :: proc { internal_int_get_u64, } internal_int_get_i64 :: proc(a: ^Int) -> (res: i64, err: Error) { return internal_int_get(a, i64) } internal_get_i64 :: proc { internal_int_get_i64, } internal_int_get_u32 :: proc(a: ^Int) -> (res: u32, err: Error) { return internal_int_get(a, u32) } internal_get_u32 :: proc { internal_int_get_u32, } internal_int_get_i32 :: proc(a: ^Int) -> (res: i32, err: Error) { return internal_int_get(a, i32) } internal_get_i32 :: proc { internal_int_get_i32, } internal_get_low_u32 :: proc(a: ^Int) -> u32 #no_bounds_check { if a == nil { return 0 } if a.used == 0 { return 0 } return u32(a.digit[0]) } internal_get_low_u64 :: proc(a: ^Int) -> u64 #no_bounds_check { if a == nil { return 0 } if a.used == 0 { return 0 } v := u64(a.digit[0]) when size_of(DIGIT) == 4 { if a.used > 1 { return u64(a.digit[1])<<32 | v } } return v } /* TODO: Think about using `count_bits` to check if the value could be returned completely, and maybe return max(T), .Integer_Overflow if not? */ internal_int_get :: proc(a: ^Int, $T: typeid) -> (res: T, err: Error) where intrinsics.type_is_integer(T) { /* Calculate target bit size. */ target_bit_size := int(size_of(T) * 8) when !intrinsics.type_is_unsigned(T) { if a.sign == .Zero_or_Positive { target_bit_size -= 1 } } else { if a.sign == .Negative { return 0, .Integer_Underflow } } bits_used := internal_count_bits(a) if bits_used > target_bit_size { if a.sign == .Negative { return min(T), .Integer_Underflow } return max(T), .Integer_Overflow } for i := a.used; i > 0; i -= 1 { res <<= _DIGIT_BITS res |= T(a.digit[i - 1]) } when !intrinsics.type_is_unsigned(T) { /* Set the sign. */ if a.sign == .Negative { res = -res } } return } internal_get :: proc { internal_int_get, } internal_int_get_float :: proc(a: ^Int) -> (res: f64, err: Error) { /* log2(max(f64)) is approximately 1020, or 17 legs with the 64-bit storage. */ legs :: 1020 / _DIGIT_BITS l := min(a.used, legs) fac := f64(1 << _DIGIT_BITS) d := 0.0 #no_bounds_check for i := l; i >= 0; i -= 1 { d = (d * fac) + f64(a.digit[i]) } res = -d if a.sign == .Negative else d return } /* The `and`, `or` and `xor` binops differ in two lines only. We could handle those with a switch, but that adds overhead. TODO: Implement versions that take a DIGIT immediate. */ /* 2's complement `and`, returns `dest = a & b;` */ internal_int_and :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator used := max(a.used, b.used) + 1 /* Grow the destination to accomodate the result. */ internal_grow(dest, used) or_return neg_a := #force_inline internal_is_negative(a) neg_b := #force_inline internal_is_negative(b) neg := neg_a && neg_b ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1) #no_bounds_check for i := 0; i < used; i += 1 { x, y: DIGIT /* Convert to 2's complement if negative. */ if neg_a { ac += _MASK if i >= a.used else (~a.digit[i] & _MASK) x = ac & _MASK ac >>= _DIGIT_BITS } else { x = 0 if i >= a.used else a.digit[i] } /* Convert to 2's complement if negative. */ if neg_b { bc += _MASK if i >= b.used else (~b.digit[i] & _MASK) y = bc & _MASK bc >>= _DIGIT_BITS } else { y = 0 if i >= b.used else b.digit[i] } dest.digit[i] = x & y /* Convert to to sign-magnitude if negative. */ if neg { cc += ~dest.digit[i] & _MASK dest.digit[i] = cc & _MASK cc >>= _DIGIT_BITS } } dest.used = used dest.sign = .Negative if neg else .Zero_or_Positive return internal_clamp(dest) } internal_and :: proc { internal_int_and, } /* 2's complement `or`, returns `dest = a | b;` */ internal_int_or :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator used := max(a.used, b.used) + 1 /* Grow the destination to accomodate the result. */ internal_grow(dest, used) or_return neg_a := #force_inline internal_is_negative(a) neg_b := #force_inline internal_is_negative(b) neg := neg_a || neg_b ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1) #no_bounds_check for i := 0; i < used; i += 1 { x, y: DIGIT /* Convert to 2's complement if negative. */ if neg_a { ac += _MASK if i >= a.used else (~a.digit[i] & _MASK) x = ac & _MASK ac >>= _DIGIT_BITS } else { x = 0 if i >= a.used else a.digit[i] } /* Convert to 2's complement if negative. */ if neg_b { bc += _MASK if i >= b.used else (~b.digit[i] & _MASK) y = bc & _MASK bc >>= _DIGIT_BITS } else { y = 0 if i >= b.used else b.digit[i] } dest.digit[i] = x | y /* Convert to to sign-magnitude if negative. */ if neg { cc += ~dest.digit[i] & _MASK dest.digit[i] = cc & _MASK cc >>= _DIGIT_BITS } } dest.used = used dest.sign = .Negative if neg else .Zero_or_Positive return internal_clamp(dest) } internal_or :: proc { internal_int_or, } /* 2's complement `xor`, returns `dest = a ~ b;` */ internal_int_xor :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator used := max(a.used, b.used) + 1 /* Grow the destination to accomodate the result. */ internal_grow(dest, used) or_return neg_a := #force_inline internal_is_negative(a) neg_b := #force_inline internal_is_negative(b) neg := neg_a != neg_b ac, bc, cc := DIGIT(1), DIGIT(1), DIGIT(1) #no_bounds_check for i := 0; i < used; i += 1 { x, y: DIGIT /* Convert to 2's complement if negative. */ if neg_a { ac += _MASK if i >= a.used else (~a.digit[i] & _MASK) x = ac & _MASK ac >>= _DIGIT_BITS } else { x = 0 if i >= a.used else a.digit[i] } /* Convert to 2's complement if negative. */ if neg_b { bc += _MASK if i >= b.used else (~b.digit[i] & _MASK) y = bc & _MASK bc >>= _DIGIT_BITS } else { y = 0 if i >= b.used else b.digit[i] } dest.digit[i] = x ~ y /* Convert to to sign-magnitude if negative. */ if neg { cc += ~dest.digit[i] & _MASK dest.digit[i] = cc & _MASK cc >>= _DIGIT_BITS } } dest.used = used dest.sign = .Negative if neg else .Zero_or_Positive return internal_clamp(dest) } internal_xor :: proc { internal_int_xor, } /* dest = ~src */ internal_int_complement :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator /* Temporarily fix sign. */ old_sign := src.sign neg := #force_inline internal_is_zero(src) || #force_inline internal_is_positive(src) src.sign = .Negative if neg else .Zero_or_Positive err = #force_inline internal_sub(dest, src, 1) /* Restore sign. */ src.sign = old_sign return err } internal_complement :: proc { internal_int_complement, } /* quotient, remainder := numerator >> bits; `remainder` is allowed to be passed a `nil`, in which case `mod` won't be computed. */ internal_int_shrmod :: proc(quotient, remainder, numerator: ^Int, bits: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator bits := bits if bits < 0 { return .Invalid_Argument } internal_copy(quotient, numerator) or_return /* Shift right by a certain bit count (store quotient and optional remainder.) `numerator` should not be used after this. */ if remainder != nil { internal_int_mod_bits(remainder, numerator, bits) or_return } /* Shift by as many digits in the bit count. */ if bits >= _DIGIT_BITS { _private_int_shr_leg(quotient, bits / _DIGIT_BITS) or_return } /* Shift any bit count < _DIGIT_BITS. */ bits %= _DIGIT_BITS if bits != 0 { mask := DIGIT(1 << uint(bits)) - 1 shift := DIGIT(_DIGIT_BITS - bits) carry := DIGIT(0) #no_bounds_check for x := quotient.used - 1; x >= 0; x -= 1 { /* Get the lower bits of this word in a temp. */ fwd_carry := quotient.digit[x] & mask /* Shift the current word and mix in the carry bits from the previous word. */ quotient.digit[x] = (quotient.digit[x] >> uint(bits)) | (carry << shift) /* Update carry from forward carry. */ carry = fwd_carry } } return internal_clamp(numerator) } internal_shrmod :: proc { internal_int_shrmod, } internal_int_shr :: proc(dest, source: ^Int, bits: int, allocator := context.allocator) -> (err: Error) { return #force_inline internal_shrmod(dest, nil, source, bits, allocator) } internal_shr :: proc { internal_int_shr, } /* Shift right by a certain bit count with sign extension. */ internal_int_shr_signed :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator if src.sign == .Zero_or_Positive { return internal_shr(dest, src, bits) } internal_int_add_digit(dest, src, DIGIT(1)) or_return internal_shr(dest, dest, bits) or_return return internal_sub(dest, src, DIGIT(1)) } internal_shr_signed :: proc { internal_int_shr_signed, } /* Shift left by a certain bit count. */ internal_int_shl :: proc(dest, src: ^Int, bits: int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator bits := bits if bits < 0 { return .Invalid_Argument } internal_copy(dest, src) or_return /* Grow `dest` to accommodate the additional bits. */ digits_needed := dest.used + (bits / _DIGIT_BITS) + 1 internal_grow(dest, digits_needed) or_return dest.used = digits_needed /* Shift by as many digits in the bit count as we have. */ if bits >= _DIGIT_BITS { _private_int_shl_leg(dest, bits / _DIGIT_BITS) or_return } /* Shift any remaining bit count < _DIGIT_BITS */ bits %= _DIGIT_BITS if bits != 0 { mask := (DIGIT(1) << uint(bits)) - DIGIT(1) shift := DIGIT(_DIGIT_BITS - bits) carry := DIGIT(0) #no_bounds_check for x:= 0; x < dest.used; x+= 1 { fwd_carry := (dest.digit[x] >> shift) & mask dest.digit[x] = (dest.digit[x] << uint(bits) | carry) & _MASK carry = fwd_carry } /* Use final carry. */ if carry != 0 { dest.digit[dest.used] = carry dest.used += 1 } } return internal_clamp(dest) } internal_shl :: proc { internal_int_shl, } /* Count bits in an `Int`. Assumes `a` not to be `nil` and to have been initialized. */ internal_count_bits :: proc(a: ^Int) -> (count: int) { /* Fast path for zero. */ if #force_inline internal_is_zero(a) { return {} } /* Get the number of DIGITs and use it. */ count = (a.used - 1) * _DIGIT_BITS /* Take the last DIGIT and count the bits in it. */ clz := int(intrinsics.count_leading_zeros(a.digit[a.used - 1])) count += (_DIGIT_TYPE_BITS - clz) return } /* Returns the number of trailing zeroes before the first one. Differs from regular `ctz` in that 0 returns 0. Assumes `a` not to be `nil` and have been initialized. */ internal_int_count_lsb :: proc(a: ^Int) -> (count: int, err: Error) { /* Easy out. */ if #force_inline internal_is_zero(a) { return {}, nil } /* Scan lower digits until non-zero. */ x: int #no_bounds_check for x = 0; x < a.used && a.digit[x] == 0; x += 1 {} when true { q := a.digit[x] x *= _DIGIT_BITS x += internal_count_lsb(q) } else { lnz := []int{ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, } q := a.digit[x] x *= _DIGIT_BITS if q & 1 == 0 { p: DIGIT for { p = q & 15 x += lnz[p] q >>= 4 if p != 0 { break } } } } return x, nil } internal_platform_count_lsb :: #force_inline proc(a: $T) -> (count: int) where intrinsics.type_is_integer(T) && intrinsics.type_is_unsigned(T) { return int(intrinsics.count_trailing_zeros(a)) if a > 0 else 0 } internal_count_lsb :: proc { internal_int_count_lsb, internal_platform_count_lsb, } internal_int_random_digit :: proc(r: ^rnd.Rand = nil) -> (res: DIGIT) { when _DIGIT_BITS == 60 { // DIGIT = u64 return DIGIT(rnd.uint64(r)) & _MASK } else when _DIGIT_BITS == 28 { // DIGIT = u32 return DIGIT(rnd.uint32(r)) & _MASK } else { panic("Unsupported DIGIT size.") } return 0 // We shouldn't get here. } internal_int_random :: proc(dest: ^Int, bits: int, r: ^rnd.Rand = nil, allocator := context.allocator) -> (err: Error) { context.allocator = allocator bits := bits if bits <= 0 { return .Invalid_Argument } digits := bits / _DIGIT_BITS bits %= _DIGIT_BITS if bits > 0 { digits += 1 } #force_inline internal_grow(dest, digits) or_return for i := 0; i < digits; i += 1 { dest.digit[i] = int_random_digit(r) & _MASK } if bits > 0 { dest.digit[digits - 1] &= ((1 << uint(bits)) - 1) } dest.used = digits return nil } internal_random :: proc { internal_int_random, } /* Internal helpers. */ internal_assert_initialized :: proc(a: ^Int, loc := #caller_location) { assert(internal_is_initialized(a), "`Int` was not properly initialized.", loc) } internal_clear_if_uninitialized_single :: proc(arg: ^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator if ! #force_inline internal_is_initialized(arg) { return #force_inline internal_grow(arg, _DEFAULT_DIGIT_COUNT) } return err } internal_clear_if_uninitialized_multi :: proc(args: ..^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator for i in args { if ! #force_inline internal_is_initialized(i) { e := #force_inline internal_grow(i, _DEFAULT_DIGIT_COUNT) if e != nil { err = e } } } return err } internal_clear_if_uninitialized :: proc {internal_clear_if_uninitialized_single, internal_clear_if_uninitialized_multi, } internal_error_if_immutable_single :: proc(arg: ^Int) -> (err: Error) { if arg != nil && .Immutable in arg.flags { return .Assignment_To_Immutable } return nil } internal_error_if_immutable_multi :: proc(args: ..^Int) -> (err: Error) { for i in args { if i != nil && .Immutable in i.flags { return .Assignment_To_Immutable } } return nil } internal_error_if_immutable :: proc {internal_error_if_immutable_single, internal_error_if_immutable_multi, } /* Allocates several `Int`s at once. */ internal_int_init_multi :: proc(integers: ..^Int, allocator := context.allocator) -> (err: Error) { context.allocator = allocator integers := integers for a in &integers { internal_clear(a) or_return } return nil } internal_init_multi :: proc { internal_int_init_multi, } /* Trim unused digits. This is used to ensure that leading zero digits are trimmed and the leading "used" digit will be non-zero. Typically very fast. Also fixes the sign if there are no more leading digits. */ internal_clamp :: proc(a: ^Int) -> (err: Error) { for a.used > 0 && a.digit[a.used - 1] == 0 { a.used -= 1 } if #force_inline internal_is_zero(a) { a.sign = .Zero_or_Positive } return nil } internal_int_zero_unused :: #force_inline proc(dest: ^Int, old_used := -1) { /* If we don't pass the number of previously used DIGITs, we zero all remaining ones. */ zero_count: int if old_used == -1 { zero_count = len(dest.digit) - dest.used } else { zero_count = old_used - dest.used } /* Zero remainder. */ if zero_count > 0 && dest.used < len(dest.digit) { mem.zero_slice(dest.digit[dest.used:][:zero_count]) } } internal_zero_unused :: proc { internal_int_zero_unused, } /* ========================== End of low-level routines ========================== */