package math // The original C code, the long comment, and the constants // below are from http://netlib.sandia.gov/cephes/cprob/gamma.c. // // tgamma.c // // Gamma function // // SYNOPSIS: // // double x, y, tgamma(); // extern int signgam; // // y = tgamma( x ); // // DESCRIPTION: // // Returns gamma function of the argument. The result is // correctly signed, and the sign (+1 or -1) is also // returned in a global (extern) variable named signgam. // This variable is also filled in by the logarithmic gamma // function lgamma(). // // Arguments |x| <= 34 are reduced by recurrence and the function // approximated by a rational function of degree 6/7 in the // interval (2,3). Large arguments are handled by Stirling's // formula. Large negative arguments are made positive using // a reflection formula. // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC -34, 34 10000 1.3e-16 2.5e-17 // IEEE -170,-33 20000 2.3e-15 3.3e-16 // IEEE -33, 33 20000 9.4e-16 2.2e-16 // IEEE 33, 171.6 20000 2.3e-15 3.2e-16 // // Error for arguments outside the test range will be larger // owing to error amplification by the exponential function. // // Cephes Math Library Release 2.8: June, 2000 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier // // The readme file at http://netlib.sandia.gov/cephes/ says: // Some software in this archive may be from the book _Methods and // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster // International, 1989) or from the Cephes Mathematical Library, a // commercial product. In either event, it is copyrighted by the author. // What you see here may be used freely but it comes with no support or // guarantee. // // The two known misprints in the book are repaired here in the // source listings for the gamma function and the incomplete beta // integral. // // Stephen L. Moshier // moshier@na-net.ornl.gov // Gamma function computed by Stirling's formula. // The pair of results must be multiplied together to get the actual answer. // The multiplication is left to the caller so that, if careful, the caller can avoid // infinity for 172 <= x <= 180. // The polynomial is valid for 33 <= x <= 172; larger values are only used // in reciprocal and produce denormalized floats. The lower precision there // masks any imprecision in the polynomial. @(private="file", require_results) stirling :: proc "contextless" (x: f64) -> (f64, f64) { @(static) gamS := [?]f64{ +7.87311395793093628397e-04, -2.29549961613378126380e-04, -2.68132617805781232825e-03, +3.47222221605458667310e-03, +8.33333333333482257126e-02, } if x > 200 { return inf_f64(1), 1 } SQRT_TWO_PI :: 0h40040d931ff62706 // 2.506628274631000502417 MAX_STIRLING :: 143.01608 w := 1 / x w = 1 + w*((((gamS[0]*w+gamS[1])*w+gamS[2])*w+gamS[3])*w+gamS[4]) y1 := exp(x) y2 := 1.0 if x > MAX_STIRLING { // avoid pow() overflow v := pow(x, 0.5*x-0.25) y1, y2 = v, v/y1 } else { y1 = pow(x, x-0.5) / y1 } return y1, SQRT_TWO_PI * w * y2 } @(require_results) gamma_f64 :: proc "contextless" (x: f64) -> f64 { is_neg_int :: proc "contextless" (x: f64) -> bool { if x < 0 { _, xf := modf(x) return xf == 0 } return false } @(static) gamP := [?]f64{ 1.60119522476751861407e-04, 1.19135147006586384913e-03, 1.04213797561761569935e-02, 4.76367800457137231464e-02, 2.07448227648435975150e-01, 4.94214826801497100753e-01, 9.99999999999999996796e-01, } @(static) gamQ := [?]f64{ -2.31581873324120129819e-05, +5.39605580493303397842e-04, -4.45641913851797240494e-03, +1.18139785222060435552e-02, +3.58236398605498653373e-02, -2.34591795718243348568e-01, +7.14304917030273074085e-02, +1.00000000000000000320e+00, } EULER :: 0.57721566490153286060651209008240243104215933593992 // A001620 switch { case is_neg_int(x) || is_inf(x, -1) || is_nan(x): return nan_f64() case is_inf(x, 1): return inf_f64(1) case x == 0: if signbit(x) { return inf_f64(-1) } return inf_f64(1) } x := x q := abs(x) p := floor(q) if q > 33 { if x >= 0 { y1, y2 := stirling(x) return y1 * y2 } // Note: x is negative but (checked above) not a negative integer, // so x must be small enough to be in range for conversion to i64. // If |x| were >= 2⁶³ it would have to be an integer. signgam := 1 if ip := i64(p); ip&1 == 0 { signgam = -1 } z := q - p if z > 0.5 { p = p + 1 z = q - p } z = q * sin(PI*z) if z == 0 { return inf_f64(signgam) } sq1, sq2 := stirling(q) absz := abs(z) d := absz * sq1 * sq2 if is_inf(d, 0) { z = PI / absz / sq1 / sq2 } else { z = PI / d } return f64(signgam) * z } // Reduce argument z := 1.0 for x >= 3 { x = x - 1 z = z * x } for x < 0 { if x > -1e-09 { if x == 0 { return inf_f64(1) } return z / ((1 + EULER*x) * x) } z = z / x x = x + 1 } for x < 2 { if x < 1e-09 { if x == 0 { return inf_f64(1) } return z / ((1 + EULER*x) * x) } z = z / x x = x + 1 } if x == 2 { return z } x = x - 2 p = (((((x*gamP[0]+gamP[1])*x+gamP[2])*x+gamP[3])*x+gamP[4])*x+gamP[5])*x + gamP[6] q = ((((((x*gamQ[0]+gamQ[1])*x+gamQ[2])*x+gamQ[3])*x+gamQ[4])*x+gamQ[5])*x+gamQ[6])*x + gamQ[7] return z * p / q } @(require_results) gamma_f16 :: proc "contextless" (x: f16) -> f16 { return f16(gamma_f64(f64(x))) } @(require_results) gamma_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(gamma_f64(f64(x))) } @(require_results) gamma_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(gamma_f64(f64(x))) } @(require_results) gamma_f32 :: proc "contextless" (x: f32) -> f32 { return f32(gamma_f64(f64(x))) } @(require_results) gamma_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(gamma_f64(f64(x))) } @(require_results) gamma_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(gamma_f64(f64(x))) } @(require_results) gamma_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(gamma_f64(f64(x))) } @(require_results) gamma_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(gamma_f64(f64(x))) } gamma :: proc{ gamma_f16, gamma_f16le, gamma_f16be, gamma_f32, gamma_f32le, gamma_f32be, gamma_f64, gamma_f64le, gamma_f64be, }