package math import "core:math/bits" // The original C code, the long comment, and the constants // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, // available from http://www.netlib.org/cephes/cmath.tgz. // The go code is a simplified version of the original C. // // sin.c // // Circular sine // // SYNOPSIS: // // double x, y, sin(); // y = sin( x ); // // DESCRIPTION: // // Range reduction is into intervals of pi/4. The reduction error is nearly // eliminated by contriving an extended precision modular arithmetic. // // Two polynomial approximating functions are employed. // Between 0 and pi/4 the sine is approximated by // x + x**3 P(x**2). // Between pi/4 and pi/2 the cosine is represented as // 1 - x**2 Q(x**2). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC 0, 10 150000 3.0e-17 7.8e-18 // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 // // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may // be meaningless for x > 2**49 = 5.6e14. // // cos.c // // Circular cosine // // SYNOPSIS: // // double x, y, cos(); // y = cos( x ); // // DESCRIPTION: // // Range reduction is into intervals of pi/4. The reduction error is nearly // eliminated by contriving an extended precision modular arithmetic. // // Two polynomial approximating functions are employed. // Between 0 and pi/4 the cosine is approximated by // 1 - x**2 Q(x**2). // Between pi/4 and pi/2 the sine is represented as // x + x**3 P(x**2). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 // DEC 0,+1.07e9 17000 3.0e-17 7.2e-18 // // Cephes Math Library Release 2.8: June, 2000 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier // // The readme file at http://netlib.sandia.gov/cephes/ says: // Some software in this archive may be from the book _Methods and // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster // International, 1989) or from the Cephes Mathematical Library, a // commercial product. In either event, it is copyrighted by the author. // What you see here may be used freely but it comes with no support or // guarantee. // // The two known misprints in the book are repaired here in the // source listings for the gamma function and the incomplete beta // integral. // // Stephen L. Moshier // moshier@na-net.ornl.gov sincos :: proc{ sincos_f16, sincos_f16le, sincos_f16be, sincos_f32, sincos_f32le, sincos_f32be, sincos_f64, sincos_f64le, sincos_f64be, } sincos_f16 :: proc "contextless" (x: f16) -> (sin, cos: f16) #no_bounds_check { s, c := sincos_f64(f64(x)) return f16(s), f16(c) } sincos_f16le :: proc "contextless" (x: f16le) -> (sin, cos: f16le) #no_bounds_check { s, c := sincos_f64(f64(x)) return f16le(s), f16le(c) } sincos_f16be :: proc "contextless" (x: f16be) -> (sin, cos: f16be) #no_bounds_check { s, c := sincos_f64(f64(x)) return f16be(s), f16be(c) } sincos_f32 :: proc "contextless" (x: f32) -> (sin, cos: f32) #no_bounds_check { s, c := sincos_f64(f64(x)) return f32(s), f32(c) } sincos_f32le :: proc "contextless" (x: f32le) -> (sin, cos: f32le) #no_bounds_check { s, c := sincos_f64(f64(x)) return f32le(s), f32le(c) } sincos_f32be :: proc "contextless" (x: f32be) -> (sin, cos: f32be) #no_bounds_check { s, c := sincos_f64(f64(x)) return f32be(s), f32be(c) } sincos_f64le :: proc "contextless" (x: f64le) -> (sin, cos: f64le) #no_bounds_check { s, c := sincos_f64(f64(x)) return f64le(s), f64le(c) } sincos_f64be :: proc "contextless" (x: f64be) -> (sin, cos: f64be) #no_bounds_check { s, c := sincos_f64(f64(x)) return f64be(s), f64be(c) } sincos_f64 :: proc "contextless" (x: f64) -> (sin, cos: f64) #no_bounds_check { x := x PI4A :: 0h3fe921fb40000000 // 7.85398125648498535156e-1 PI/4 split into three parts PI4B :: 0h3e64442d00000000 // 3.77489470793079817668e-8 PI4C :: 0h3ce8469898cc5170 // 2.69515142907905952645e-15 // special cases switch { case x == 0: return x, 1 // return ±0.0, 1.0 case is_nan(x) || is_inf(x, 0): return nan_f64(), nan_f64() } // make argument positive sin_sign, cos_sign := false, false if x < 0 { x = -x sin_sign = true } j: u64 y, z: f64 if x >= REDUCE_THRESHOLD { j, z = _trig_reduce_f64(x) } else { j = u64(x * (4 / PI)) // integer part of x/(PI/4), as integer for tests on the phase angle y = f64(j) // integer part of x/(PI/4), as float if j&1 == 1 { // map zeros to origin j += 1 y += 1 } j &= 7 // octant modulo TAU radians (360 degrees) z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic } if j > 3 { // reflect in x axis j -= 4 sin_sign, cos_sign = !sin_sign, !cos_sign } if j > 1 { cos_sign = !cos_sign } zz := z * z cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) if j == 1 || j == 2 { sin, cos = cos, sin } if cos_sign { cos = -cos } if sin_sign { sin = -sin } return } // sin coefficients @(private="file") _sin := [?]f64{ 0h3de5d8fd1fd19ccd, // 1.58962301576546568060e-10 0hbe5ae5e5a9291f5d, // -2.50507477628578072866e-8 0h3ec71de3567d48a1, // 2.75573136213857245213e-6 0hbf2a01a019bfdf03, // -1.98412698295895385996e-4 0h3f8111111110f7d0, // 8.33333333332211858878e-3 0hbfc5555555555548, // -1.66666666666666307295e-1 } // cos coefficients @(private="file") _cos := [?]f64{ 0hbda8fa49a0861a9b, // -1.13585365213876817300e-11, 0h3e21ee9d7b4e3f05, // 2.08757008419747316778e-9, 0hbe927e4f7eac4bc6, // -2.75573141792967388112e-7, 0h3efa01a019c844f5, // 2.48015872888517045348e-5, 0hbf56c16c16c14f91, // -1.38888888888730564116e-3, 0h3fa555555555554b, // 4.16666666666665929218e-2, } // REDUCE_THRESHOLD is the maximum value of x where the reduction using Pi/4 // in 3 f64 parts still gives accurate results. This threshold // is set by y*C being representable as a f64 without error // where y is given by y = floor(x * (4 / Pi)) and C is the leading partial // terms of 4/Pi. Since the leading terms (PI4A and PI4B in sin.go) have 30 // and 32 trailing zero bits, y should have less than 30 significant bits. // // y < 1<<30 -> floor(x*4/Pi) < 1<<30 -> x < (1<<30 - 1) * Pi/4 // // So, conservatively we can take x < 1<<29. // Above this threshold Payne-Hanek range reduction must be used. @(private="file") REDUCE_THRESHOLD :: 1 << 29 // _trig_reduce_f64 implements Payne-Hanek range reduction by Pi/4 // for x > 0. It returns the integer part mod 8 (j) and // the fractional part (z) of x / (Pi/4). // The implementation is based on: // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit" // K. C. Ng et al, March 24, 1992 // The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic. _trig_reduce_f64 :: proc "contextless" (x: f64) -> (j: u64, z: f64) #no_bounds_check { // bd_pi4 is the binary digits of 4/pi as a u64 array, // that is, 4/pi = Sum bd_pi4[i]*2^(-64*i) // 19 64-bit digits and the leading one bit give 1217 bits // of precision to handle the largest possible f64 exponent. @static bd_pi4 := [?]u64{ 0x0000000000000001, 0x45f306dc9c882a53, 0xf84eafa3ea69bb81, 0xb6c52b3278872083, 0xfca2c757bd778ac3, 0x6e48dc74849ba5c0, 0x0c925dd413a32439, 0xfc3bd63962534e7d, 0xd1046bea5d768909, 0xd338e04d68befc82, 0x7323ac7306a673e9, 0x3908bf177bf25076, 0x3ff12fffbc0b301f, 0xde5e2316b414da3e, 0xda6cfd9e4f96136e, 0x9e8c7ecd3cbfd45a, 0xea4f758fd7cbe2f6, 0x7a0e73ef14a525d4, 0xd7f6bf623f1aba10, 0xac06608df8f6d757, } PI4 :: PI / 4 if x < PI4 { return 0, x } MASK :: 0x7FF SHIFT :: 64 - 11 - 1 BIAS :: 1023 // Extract out the integer and exponent such that, // x = ix * 2 ** exp. ix := transmute(u64)x exp := int(ix>>SHIFT&MASK) - BIAS - SHIFT ix &~= MASK << SHIFT ix |= 1 << SHIFT // Use the exponent to extract the 3 appropriate u64 digits from bd_pi4, // B ~ (z0, z1, z2), such that the product leading digit has the exponent -61. // Note, exp >= -53 since x >= PI4 and exp < 971 for maximum f64. digit, bitshift := uint(exp+61)/64, uint(exp+61)%64 z0 := (bd_pi4[digit] << bitshift) | (bd_pi4[digit+1] >> (64 - bitshift)) z1 := (bd_pi4[digit+1] << bitshift) | (bd_pi4[digit+2] >> (64 - bitshift)) z2 := (bd_pi4[digit+2] << bitshift) | (bd_pi4[digit+3] >> (64 - bitshift)) // Multiply mantissa by the digits and extract the upper two digits (hi, lo). z2hi, _ := bits.mul(z2, ix) z1hi, z1lo := bits.mul(z1, ix) z0lo := z0 * ix lo, c := bits.add(z1lo, z2hi, 0) hi, _ := bits.add(z0lo, z1hi, c) // The top 3 bits are j. j = hi >> 61 // Extract the fraction and find its magnitude. hi = hi<<3 | lo>>61 lz := uint(bits.leading_zeros(hi)) e := u64(BIAS - (lz + 1)) // Clear implicit mantissa bit and shift into place. hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1))) hi >>= 64 - SHIFT // Include the exponent and convert to a float. hi |= e << SHIFT z = transmute(f64)hi // Map zeros to origin. if j&1 == 1 { j += 1 j &= 7 z -= 1 } // Multiply the fractional part by pi/4. return j, z * PI4 }