package runtime import "core:intrinsics" @builtin Maybe :: union($T: typeid) {T} @(builtin, require_results) container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T where intrinsics.type_has_field(T, field_name), intrinsics.type_field_type(T, field_name) == Field_Type { offset :: offset_of_by_string(T, field_name) return (^T)(uintptr(ptr) - offset) if ptr != nil else nil } when !NO_DEFAULT_TEMP_ALLOCATOR { @thread_local global_default_temp_allocator_data: Default_Temp_Allocator } @(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR) init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) { when !NO_DEFAULT_TEMP_ALLOCATOR { default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator) } } // `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`. // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum // of len(src) and len(dst). // // Prefer the procedure group `copy`. @builtin copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int { n := max(0, min(len(dst), len(src))) if n > 0 { intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E)) } return n } // `copy_from_string` is a built-in procedure that copies elements from a source slice `src` to a destination string `dst`. // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum // of len(src) and len(dst). // // Prefer the procedure group `copy`. @builtin copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int { n := max(0, min(len(dst), len(src))) if n > 0 { intrinsics.mem_copy(raw_data(dst), raw_data(src), n) } return n } // `copy` is a built-in procedure that copies elements from a source slice `src` to a destination slice/string `dst`. // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum // of len(src) and len(dst). @builtin copy :: proc{copy_slice, copy_from_string} // `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value // with the old value, and reducing the length of the dynamic array by 1. // // Note: This is an O(1) operation. // Note: If you the elements to remain in their order, use `ordered_remove`. // Note: If the index is out of bounds, this procedure will panic. @builtin unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { bounds_check_error_loc(loc, index, len(array)) n := len(array)-1 if index != n { array[index] = array[n] } (^Raw_Dynamic_Array)(array).len -= 1 } // `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements. // // Note: This is an O(N) operation. // Note: If you the elements do not have to remain in their order, prefer `unordered_remove`. // Note: If the index is out of bounds, this procedure will panic. @builtin ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { bounds_check_error_loc(loc, index, len(array)) if index+1 < len(array) { copy(array[index:], array[index+1:]) } (^Raw_Dynamic_Array)(array).len -= 1 } // `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements. // // Note: This is an O(N) operation. // Note: If the range is out of bounds, this procedure will panic. @builtin remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check { slice_expr_error_lo_hi_loc(loc, lo, hi, len(array)) n := max(hi-lo, 0) if n > 0 { if hi != len(array) { copy(array[lo:], array[hi:]) } (^Raw_Dynamic_Array)(array).len -= n } } // `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1. // // Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic. @builtin pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { assert(len(array) > 0, loc=loc) res = array[len(array)-1] (^Raw_Dynamic_Array)(array).len -= 1 return res } // `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1. // If the operation is not possible, it will return false. @builtin pop_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { if len(array) == 0 { return } res, ok = array[len(array)-1], true (^Raw_Dynamic_Array)(array).len -= 1 return } // `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1. // // Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic. @builtin pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { assert(len(array) > 0, loc=loc) res = array[0] if len(array) > 1 { copy(array[0:], array[1:]) } (^Raw_Dynamic_Array)(array).len -= 1 return res } // `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1. // If the operation is not possible, it will return false. @builtin pop_front_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { if len(array) == 0 { return } res, ok = array[0], true if len(array) > 1 { copy(array[0:], array[1:]) } (^Raw_Dynamic_Array)(array).len -= 1 return } // `clear` will set the length of a passed dynamic array or map to `0` @builtin clear :: proc{clear_dynamic_array, clear_map} // `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`). @builtin reserve :: proc{reserve_dynamic_array, reserve_map} // `resize` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`). @builtin resize :: proc{resize_dynamic_array} // Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity. @builtin shrink :: proc{shrink_dynamic_array, shrink_map} // `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation. @builtin free :: proc{mem_free} // `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation. @builtin free_all :: proc{mem_free_all} // `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free_with_size(raw_data(str), len(str), allocator, loc) } // `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free((^byte)(str), allocator, loc) } // `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error { return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc) } // `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc) } // `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation. // // Note: Prefer the procedure group `delete`. @builtin delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error { return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc) } // `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation. // // Note: Prefer `delete` over the specific `delete_*` procedures where possible. @builtin delete :: proc{ delete_string, delete_cstring, delete_dynamic_array, delete_slice, delete_map, } // The new built-in procedure allocates memory. The first argument is a type, not a value, and the value // return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator @(builtin, require_results) new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error { return new_aligned(T, align_of(T), allocator, loc) } @(require_results) new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) { data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return t = (^T)(raw_data(data)) return } @(builtin, require_results) new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error { t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return t = (^T)(raw_data(t_data)) if t != nil { t^ = data } return } DEFAULT_RESERVE_CAPACITY :: 16 @(require_results) make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { make_slice_error_loc(loc, len) data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc) if data == nil && size_of(E) != 0 { return nil, err } s := Raw_Slice{raw_data(data), len} return transmute(T)s, err } // `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { return make_aligned(T, len, align_of(E), allocator, loc) } // `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc) } // `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { return make_dynamic_array_len_cap(T, len, len, allocator, loc) } // `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error { make_dynamic_array_error_loc(loc, len, cap) data := mem_alloc_bytes(size_of(E)*cap, align_of(E), allocator, loc) or_return s := Raw_Dynamic_Array{raw_data(data), len, cap, allocator} if data == nil && size_of(E) != 0 { s.len, s.cap = 0, 0 } array = transmute(T)s return } // `make_map` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1< (m: T, err: Allocator_Error) #optional_allocator_error { make_map_expr_error_loc(loc, capacity) context.allocator = allocator err = reserve_map(&m, capacity, loc) return } // `make_multi_pointer` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. // // This is "similar" to doing `raw_data(make([]E, len, allocator))`. // // Note: Prefer using the procedure group `make`. @(builtin, require_results) make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error { make_slice_error_loc(loc, len) data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return if data == nil && size_of(E) != 0 { return } mp = cast(T)raw_data(data) return } // `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only). // // Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the // type of its argument, not a pointer to it. // Make uses the specified allocator, default is context.allocator, default is context.allocator @builtin make :: proc{ make_slice, make_dynamic_array, make_dynamic_array_len, make_dynamic_array_len_cap, make_map, make_multi_pointer, } // `clear_map` will set the length of a passed map to `0` // // Note: Prefer the procedure group `clear` @builtin clear_map :: proc "contextless" (m: ^$T/map[$K]$V) { if m == nil { return } map_clear_dynamic((^Raw_Map)(m), map_info(T)) } // `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`). // // Note: Prefer the procedure group `reserve` @builtin reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int, loc := #caller_location) -> Allocator_Error { return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc) if m != nil else nil } // Shrinks the capacity of a map down to the current length. // // Note: Prefer the procedure group `shrink` @builtin shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) { if m != nil { return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc) } return } // The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map. // If m is nil, or there is no such element, this procedure is a no-op @builtin delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) { if m != nil { key := key old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key)) if ok { deleted_key = (^K)(old_k)^ deleted_value = (^V)(old_v)^ } } return } @builtin append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { if array == nil { return 0, nil } when size_of(E) == 0 { array := (^Raw_Dynamic_Array)(array) array.len += 1 return 1, nil } else { if cap(array) < len(array)+1 { cap := 2 * cap(array) + max(8, 1) err = reserve(array, cap, loc) // do not 'or_return' here as it could be a partial success } if cap(array)-len(array) > 0 { a := (^Raw_Dynamic_Array)(array) when size_of(E) != 0 { data := ([^]E)(a.data) assert(data != nil, loc=loc) data[a.len] = arg } a.len += 1 return 1, err } return 0, err } } @builtin append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { if array == nil { return 0, nil } arg_len := len(args) if arg_len <= 0 { return 0, nil } when size_of(E) == 0 { array := (^Raw_Dynamic_Array)(array) array.len += arg_len return arg_len, nil } else { if cap(array) < len(array)+arg_len { cap := 2 * cap(array) + max(8, arg_len) err = reserve(array, cap, loc) // do not 'or_return' here as it could be a partial success } arg_len = min(cap(array)-len(array), arg_len) if arg_len > 0 { a := (^Raw_Dynamic_Array)(array) when size_of(E) != 0 { data := ([^]E)(a.data) assert(data != nil, loc=loc) intrinsics.mem_copy(&data[a.len], raw_data(args), size_of(E) * arg_len) } a.len += arg_len } return arg_len, err } } // The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type @builtin append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { args := transmute([]E)arg return append_elems(array, ..args, loc=loc) } // The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type @builtin append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { n_arg: int for arg in args { n_arg, err = append(array, ..transmute([]E)(arg), loc=loc) n += n_arg if err != nil { return } } return } // The append built-in procedure appends elements to the end of a dynamic array @builtin append :: proc{append_elem, append_elems, append_elem_string} @builtin append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { if array == nil { return 0, nil } prev_len := len(array) resize(array, len(array)+1, loc) or_return return len(array)-prev_len, nil } @builtin inject_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if array == nil { return } n := max(len(array), index) m :: 1 new_size := n + m resize(array, new_size, loc) or_return when size_of(E) != 0 { copy(array[index + m:], array[index:]) array[index] = arg } ok = true return } @builtin inject_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if array == nil { return } if len(args) == 0 { ok = true return } n := max(len(array), index) m := len(args) new_size := n + m resize(array, new_size, loc) or_return when size_of(E) != 0 { copy(array[index + m:], array[index:]) copy(array[index:], args) } ok = true return } @builtin inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if array == nil { return } if len(arg) == 0 { ok = true return } n := max(len(array), index) m := len(arg) new_size := n + m resize(array, new_size, loc) or_return copy(array[index+m:], array[index:]) copy(array[index:], arg) ok = true return } @builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string} @builtin assign_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if index < len(array) { array[index] = arg ok = true } else { resize(array, index+1, loc) or_return array[index] = arg ok = true } return } @builtin assign_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if index+len(args) < len(array) { copy(array[index:], args) ok = true } else { resize(array, index+1+len(args), loc) or_return copy(array[index:], args) ok = true } return } @builtin assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { if len(args) == 0 { ok = true } else if index+len(args) < len(array) { copy(array[index:], args) ok = true } else { resize(array, index+1+len(args), loc) or_return copy(array[index:], args) ok = true } return } @builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string} // `clear_dynamic_array` will set the length of a passed dynamic array to `0` // // Note: Prefer the procedure group `clear`. @builtin clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) { if array != nil { (^Raw_Dynamic_Array)(array).len = 0 } } // `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`). // // Note: Prefer the procedure group `reserve`. @builtin reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error { if array == nil { return nil } a := (^Raw_Dynamic_Array)(array) if capacity <= a.cap { return nil } if a.allocator.procedure == nil { a.allocator = context.allocator } assert(a.allocator.procedure != nil) old_size := a.cap * size_of(E) new_size := capacity * size_of(E) allocator := a.allocator new_data := mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return if new_data == nil && new_size > 0 { return .Out_Of_Memory } a.data = raw_data(new_data) a.cap = capacity return nil } // `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`). // // Note: Prefer the procedure group `resize` @builtin resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error { if array == nil { return nil } a := (^Raw_Dynamic_Array)(array) if length <= a.cap { a.len = max(length, 0) return nil } if a.allocator.procedure == nil { a.allocator = context.allocator } assert(a.allocator.procedure != nil) old_size := a.cap * size_of(E) new_size := length * size_of(E) allocator := a.allocator new_data := mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return if new_data == nil && new_size > 0 { return .Out_Of_Memory } a.data = raw_data(new_data) a.len = length a.cap = length return nil } /* Shrinks the capacity of a dynamic array down to the current length, or the given capacity. If `new_cap` is negative, then `len(array)` is used. Returns false if `cap(array) < new_cap`, or the allocator report failure. If `len(array) < new_cap`, then `len(array)` will be left unchanged. Note: Prefer the procedure group `shrink` */ shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) { if array == nil { return } a := (^Raw_Dynamic_Array)(array) new_cap := new_cap if new_cap >= 0 else a.len if new_cap > a.cap { return } if a.allocator.procedure == nil { a.allocator = context.allocator } assert(a.allocator.procedure != nil) old_size := a.cap * size_of(E) new_size := new_cap * size_of(E) new_data := mem_resize(a.data, old_size, new_size, align_of(E), a.allocator, loc) or_return a.data = raw_data(new_data) a.len = min(new_cap, a.len) a.cap = new_cap return true, nil } @builtin map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) { key, value := key, value return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc)) } @builtin incl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) { s^ |= {elem} } @builtin incl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) { for elem in elems { s^ |= {elem} } } @builtin incl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) { s^ |= other } @builtin excl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) { s^ &~= {elem} } @builtin excl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) { for elem in elems { s^ &~= {elem} } } @builtin excl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) { s^ &~= other } @builtin incl :: proc{incl_elem, incl_elems, incl_bit_set} @builtin excl :: proc{excl_elem, excl_elems, excl_bit_set} @builtin card :: proc(s: $S/bit_set[$E; $U]) -> int { when size_of(S) == 1 { return int(intrinsics.count_ones(transmute(u8)s)) } else when size_of(S) == 2 { return int(intrinsics.count_ones(transmute(u16)s)) } else when size_of(S) == 4 { return int(intrinsics.count_ones(transmute(u32)s)) } else when size_of(S) == 8 { return int(intrinsics.count_ones(transmute(u64)s)) } else when size_of(S) == 16 { return int(intrinsics.count_ones(transmute(u128)s)) } else { #panic("Unhandled card bit_set size") } } @builtin @(disabled=ODIN_DISABLE_ASSERT) assert :: proc(condition: bool, message := "", loc := #caller_location) { if !condition { // NOTE(bill): This is wrapped in a procedure call // to improve performance to make the CPU not // execute speculatively, making it about an order of // magnitude faster @(cold) internal :: proc(message: string, loc: Source_Code_Location) { p := context.assertion_failure_proc if p == nil { p = default_assertion_failure_proc } p("runtime assertion", message, loc) } internal(message, loc) } } @builtin @(disabled=ODIN_DISABLE_ASSERT) panic :: proc(message: string, loc := #caller_location) -> ! { p := context.assertion_failure_proc if p == nil { p = default_assertion_failure_proc } p("panic", message, loc) } @builtin @(disabled=ODIN_DISABLE_ASSERT) unimplemented :: proc(message := "", loc := #caller_location) -> ! { p := context.assertion_failure_proc if p == nil { p = default_assertion_failure_proc } p("not yet implemented", message, loc) }