package net // +build linux /* Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures. For other protocols and their features, see subdirectories of this package. */ /* Copyright 2022 Tetralux Copyright 2022 Colin Davidson Copyright 2022 Jeroen van Rijn . Made available under Odin's BSD-3 license. List of contributors: Tetralux: Initial implementation Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver Jeroen van Rijn: Cross platform unification, code style, documentation flysand: Move dependency from core:os to core:sys/linux */ import "core:c" import "core:time" import "core:sys/linux" Socket_Option :: enum c.int { Reuse_Address = c.int(linux.Socket_Option.REUSEADDR), Keep_Alive = c.int(linux.Socket_Option.KEEPALIVE), Out_Of_Bounds_Data_Inline = c.int(linux.Socket_Option.OOBINLINE), TCP_Nodelay = c.int(linux.Socket_TCP_Option.NODELAY), Linger = c.int(linux.Socket_Option.LINGER), Receive_Buffer_Size = c.int(linux.Socket_Option.RCVBUF), Send_Buffer_Size = c.int(linux.Socket_Option.SNDBUF), Receive_Timeout = c.int(linux.Socket_Option.RCVTIMEO_NEW), Send_Timeout = c.int(linux.Socket_Option.SNDTIMEO_NEW), } // Wrappers and unwrappers for system-native types @(private="file") _unwrap_os_socket :: proc "contextless" (sock: Any_Socket)->linux.Fd { return linux.Fd(any_socket_to_socket(sock)) } @(private="file") _wrap_os_socket :: proc "contextless" (sock: linux.Fd, protocol: Socket_Protocol)->Any_Socket { switch protocol { case .TCP: return TCP_Socket(Socket(sock)) case .UDP: return UDP_Socket(Socket(sock)) case: unreachable() } } @(private="file") _unwrap_os_family :: proc "contextless" (family: Address_Family)->linux.Address_Family { switch family { case .IP4: return .INET case .IP6: return .INET6 case: unreachable() } } @(private="file") _unwrap_os_proto_socktype :: proc "contextless" (protocol: Socket_Protocol)->(linux.Protocol, linux.Socket_Type) { switch protocol { case .TCP: return .TCP, .STREAM case .UDP: return .UDP, .DGRAM case: unreachable() } } @(private="file") _unwrap_os_addr :: proc "contextless" (endpoint: Endpoint)->(linux.Sock_Addr_Any) { switch address in endpoint.address { case IP4_Address: return { ipv4 = { sin_family = .INET, sin_port = u16be(endpoint.port), sin_addr = transmute([4]u8) endpoint.address.(IP4_Address), }, } case IP6_Address: return { ipv6 = { sin6_port = u16be(endpoint.port), sin6_addr = transmute([16]u8) endpoint.address.(IP6_Address), sin6_family = .INET6, }, } case: unreachable() } } @(private="file") _wrap_os_addr :: proc "contextless" (addr: linux.Sock_Addr_Any)->(Endpoint) { #partial switch addr.family { case .INET: return { address = cast(IP4_Address) addr.sin_addr, port = cast(int) addr.sin_port, } case .INET6: return { port = cast(int) addr.sin6_port, address = transmute(IP6_Address) addr.sin6_addr, } case: unreachable() } } _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (Any_Socket, Network_Error) { family := _unwrap_os_family(family) proto, socktype := _unwrap_os_proto_socktype(protocol) sock, errno := linux.socket(family, socktype, {}, proto) if errno != .NONE { return {}, Create_Socket_Error(errno) } return _wrap_os_socket(sock, protocol), nil } @(private) _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (TCP_Socket, Network_Error) { errno: linux.Errno if endpoint.port == 0 { return 0, .Port_Required } // Create new TCP socket os_sock: linux.Fd os_sock, errno = linux.socket(_unwrap_os_family(family_from_endpoint(endpoint)), .STREAM, {}, .TCP) if errno != .NONE { // TODO(flysand): should return invalid file descriptor here casted as TCP_Socket return {}, Create_Socket_Error(errno) } // NOTE(tetra): This is so that if we crash while the socket is open, we can // bypass the cooldown period, and allow the next run of the program to // use the same address immediately. reuse_addr: b32 = true _ = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &reuse_addr) addr := _unwrap_os_addr(endpoint) errno = linux.connect(linux.Fd(os_sock), &addr) if errno != .NONE { return cast(TCP_Socket) os_sock, Dial_Error(errno) } // NOTE(tetra): Not vital to succeed; error ignored no_delay: b32 = cast(b32) options.no_delay _ = linux.setsockopt(os_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &no_delay) return cast(TCP_Socket) os_sock, nil } @(private) _bind :: proc(sock: Any_Socket, endpoint: Endpoint) -> (Network_Error) { addr := _unwrap_os_addr(endpoint) errno := linux.bind(_unwrap_os_socket(sock), &addr) if errno != .NONE { return Bind_Error(errno) } return nil } @(private) _listen_tcp :: proc(endpoint: Endpoint, backlog := 1000) -> (TCP_Socket, Network_Error) { errno: linux.Errno assert(backlog > 0 && i32(backlog) < max(i32)) // Figure out the address family and address of the endpoint ep_family := _unwrap_os_family(family_from_endpoint(endpoint)) ep_address := _unwrap_os_addr(endpoint) // Create TCP socket os_sock: linux.Fd os_sock, errno = linux.socket(ep_family, .STREAM, {}, .TCP) if errno != .NONE { // TODO(flysand): should return invalid file descriptor here casted as TCP_Socket return {}, Create_Socket_Error(errno) } // NOTE(tetra): This is so that if we crash while the socket is open, we can // bypass the cooldown period, and allow the next run of the program to // use the same address immediately. // // TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address! do_reuse_addr: b32 = true errno = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &do_reuse_addr) if errno != .NONE { return cast(TCP_Socket) os_sock, Listen_Error(errno) } // Bind the socket to endpoint address errno = linux.bind(os_sock, &ep_address) if errno != .NONE { return cast(TCP_Socket) os_sock, Bind_Error(errno) } // Listen on bound socket errno = linux.listen(os_sock, cast(i32) backlog) if errno != .NONE { return cast(TCP_Socket) os_sock, Listen_Error(errno) } return cast(TCP_Socket) os_sock, nil } @(private) _accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (tcp_client: TCP_Socket, endpoint: Endpoint, err: Network_Error) { addr: linux.Sock_Addr_Any client_sock, errno := linux.accept(linux.Fd(sock), &addr) if errno != .NONE { return {}, {}, Accept_Error(errno) } // NOTE(tetra): Not vital to succeed; error ignored val: b32 = cast(b32) options.no_delay _ = linux.setsockopt(client_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &val) return TCP_Socket(client_sock), _wrap_os_addr(addr), nil } @(private) _close :: proc(sock: Any_Socket) { linux.close(_unwrap_os_socket(sock)) } @(private) _recv_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) { if len(buf) <= 0 { return 0, nil } bytes_read, errno := linux.recv(linux.Fd(tcp_sock), buf, {}) if errno != .NONE { return 0, TCP_Recv_Error(errno) } return int(bytes_read), nil } @(private) _recv_udp :: proc(udp_sock: UDP_Socket, buf: []byte) -> (int, Endpoint, Network_Error) { if len(buf) <= 0 { // NOTE(flysand): It was returning no error, I didn't change anything return 0, {}, {} } // NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded, // and no error is returned. // However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read. // We can use this fact to detect this condition and return .Buffer_Too_Small. from_addr: linux.Sock_Addr_Any bytes_read, errno := linux.recvfrom(linux.Fd(udp_sock), buf, {.TRUNC}, &from_addr) if errno != .NONE { return 0, {}, UDP_Recv_Error(errno) } if bytes_read > len(buf) { // NOTE(tetra): The buffer has been filled, with a partial message. return len(buf), {}, .Buffer_Too_Small } return bytes_read, _wrap_os_addr(from_addr), nil } @(private) _send_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) { total_written := 0 for total_written < len(buf) { limit := min(int(max(i32)), len(buf) - total_written) remaining := buf[total_written:][:limit] res, errno := linux.send(linux.Fd(tcp_sock), remaining, {}) if errno != .NONE { return total_written, TCP_Send_Error(errno) } total_written += int(res) } return total_written, nil } @(private) _send_udp :: proc(udp_sock: UDP_Socket, buf: []byte, to: Endpoint) -> (int, Network_Error) { to_addr := _unwrap_os_addr(to) bytes_written, errno := linux.sendto(linux.Fd(udp_sock), buf, {}, &to_addr) if errno != .NONE { return bytes_written, UDP_Send_Error(errno) } return int(bytes_written), nil } @(private) _shutdown :: proc(sock: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) { os_sock := _unwrap_os_socket(sock) errno := linux.shutdown(os_sock, cast(linux.Shutdown_How) manner) if errno != .NONE { return Shutdown_Error(errno) } return nil } // TODO(flysand): Figure out what we want to do with this on core:sys/ level. @(private) _set_option :: proc(sock: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error { level: int if option == .TCP_Nodelay { level = int(linux.SOL_TCP) } else { level = int(linux.SOL_SOCKET) } os_sock := _unwrap_os_socket(sock) // NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool; // it _has_ to be a b32. // I haven't tested if you can give more than that. <-- (flysand) probably not, posix explicitly specifies an int bool_value: b32 int_value: i32 timeval_value: linux.Time_Val errno: linux.Errno switch option { case .Reuse_Address, .Keep_Alive, .Out_Of_Bounds_Data_Inline, .TCP_Nodelay: // TODO: verify whether these are options or not on Linux // .Broadcast, <-- yes // .Conditional_Accept, // .Dont_Linger: switch x in value { case bool, b8: x2 := x bool_value = b32((^bool)(&x2)^) case b16: bool_value = b32(x) case b32: bool_value = b32(x) case b64: bool_value = b32(x) case: panic("set_option() value must be a boolean here", loc) } errno = linux.setsockopt(os_sock, level, int(option), &bool_value) case .Linger, .Send_Timeout, .Receive_Timeout: t, ok := value.(time.Duration) if !ok { panic("set_option() value must be a time.Duration here", loc) } micros := cast(i64) (time.duration_microseconds(t)) timeval_value.microseconds = cast(int) (micros % 1e6) timeval_value.seconds = cast(int) ((micros - i64(timeval_value.microseconds)) / 1e6) errno = linux.setsockopt(os_sock, level, int(option), &timeval_value) case .Receive_Buffer_Size, .Send_Buffer_Size: // TODO: check for out of range values and return .Value_Out_Of_Range? switch i in value { case i8, u8: i2 := i; int_value = i32((^u8)(&i2)^) case i16, u16: i2 := i; int_value = i32((^u16)(&i2)^) case i32, u32: i2 := i; int_value = i32((^u32)(&i2)^) case i64, u64: i2 := i; int_value = i32((^u64)(&i2)^) case i128, u128: i2 := i; int_value = i32((^u128)(&i2)^) case int, uint: i2 := i; int_value = i32((^uint)(&i2)^) case: panic("set_option() value must be an integer here", loc) } errno = linux.setsockopt(os_sock, level, int(option), &int_value) } if errno != .NONE { return Socket_Option_Error(errno) } return nil } @(private) _set_blocking :: proc(sock: Any_Socket, should_block: bool) -> (err: Network_Error) { errno: linux.Errno flags: linux.Open_Flags os_sock := _unwrap_os_socket(sock) flags, errno = linux.fcntl(os_sock, linux.F_GETFL) if errno != .NONE { return Set_Blocking_Error(errno) } if should_block { flags &= ~{.NONBLOCK} } else { flags |= {.NONBLOCK} } errno = linux.fcntl(os_sock, linux.F_SETFL, flags) if errno != .NONE { return Set_Blocking_Error(errno) } return nil }