// Procedures to manipulate UTF-8 encoded strings package strings import "core:io" import "core:mem" import "core:unicode" import "core:unicode/utf8" /* Clones a string *Allocates Using Provided Allocator* Inputs: - s: The string to be cloned - allocator: (default: context.allocator) - loc: The caller location for debugging purposes (default: #caller_location) Returns: - res: The cloned string - err: An optional allocator error if one occured, `nil` otherwise */ clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { c := make([]byte, len(s), allocator, loc) or_return copy(c, s) return string(c[:len(s)]), nil } /* Clones a string safely (returns early with an allocation error on failure) *Allocates Using Provided Allocator* Inputs: - s: The string to be cloned - allocator: (default: context.allocator) - loc: The caller location for debugging purposes (default: #caller_location) Returns: - res: The cloned string - err: An allocator error if one occured, `nil` otherwise */ @(deprecated="Prefer clone. It now returns an optional allocator error") clone_safe :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) { return clone(s, allocator, loc) } /* Clones a string and appends a null-byte to make it a cstring *Allocates Using Provided Allocator* Inputs: - s: The string to be cloned - allocator: (default: context.allocator) - loc: The caller location for debugging purposes (default: #caller_location) Returns: - res: A cloned cstring with an appended null-byte - err: An optional allocator error if one occured, `nil` otherwise */ clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: cstring, err: mem.Allocator_Error) #optional_allocator_error { c := make([]byte, len(s)+1, allocator, loc) or_return copy(c, s) c[len(s)] = 0 return cstring(&c[0]), nil } /* Transmutes a raw pointer into a string. Non-allocating. Inputs: - ptr: A pointer to the start of the byte sequence - len: The length of the byte sequence NOTE: The created string is only valid as long as the pointer and length are valid. Returns: - res: A string created from the byte pointer and length */ string_from_ptr :: proc(ptr: ^byte, len: int) -> (res: string) { return transmute(string)mem.Raw_String{ptr, len} } /* Transmutes a raw pointer (null-terminated) into a string. Non-allocating. Searches for a null-byte from `0.. (res: string) { s := transmute(string)mem.Raw_String{ptr, len} s = truncate_to_byte(s, 0) return s } /* Gets the raw byte pointer for the start of a string `str` Inputs: - str: The input string Returns: - res: A pointer to the start of the string's bytes */ @(deprecated="Prefer the builtin raw_data.") ptr_from_string :: proc(str: string) -> (res: ^byte) { d := transmute(mem.Raw_String)str return d.data } /* Converts a string `str` to a cstring Inputs: - str: The input string WARNING: This is unsafe because the original string may not contain a null-byte. Returns: - res: The converted cstring */ unsafe_string_to_cstring :: proc(str: string) -> (res: cstring) { d := transmute(mem.Raw_String)str return cstring(d.data) } /* Truncates a string `str` at the first occurrence of char/byte `b` Inputs: - str: The input string - b: The byte to truncate the string at NOTE: Failure to find the byte results in returning the entire string. Returns: - res: The truncated string */ truncate_to_byte :: proc(str: string, b: byte) -> (res: string) { n := index_byte(str, b) if n < 0 { n = len(str) } return str[:n] } /* Truncates a string `str` at the first occurrence of rune `r` as a slice of the original, entire string if not found Inputs: - str: The input string - r: The rune to truncate the string at Returns: - res: The truncated string */ truncate_to_rune :: proc(str: string, r: rune) -> (res: string) { n := index_rune(str, r) if n < 0 { n = len(str) } return str[:n] } /* Clones a byte array `s` and appends a null-byte *Allocates Using Provided Allocator* Inputs: - s: The byte array to be cloned - allocator: (default: context.allocator) - loc: The caller location for debugging purposes (default: `#caller_location`) Returns: - res: The cloned string from the byte array with a null-byte - err: An optional allocator error if one occured, `nil` otherwise */ clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { c := make([]byte, len(s)+1, allocator, loc) or_return copy(c, s) c[len(s)] = 0 return string(c[:len(s)]), nil } /* Clones a cstring `s` as a string *Allocates Using Provided Allocator* Inputs: - s: The cstring to be cloned - allocator: (default: context.allocator) - loc: The caller location for debugging purposes (default: `#caller_location`) Returns: - res: The cloned string from the cstring - err: An optional allocator error if one occured, `nil` otherwise */ clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { return clone(string(s), allocator, loc) } /* Clones a string from a byte pointer `ptr` and a byte length `len` *Allocates Using Provided Allocator* Inputs: - ptr: A pointer to the start of the byte sequence - len: The length of the byte sequence - allocator: (default: context.allocator) - loc: The caller location for debugging purposes (default: `#caller_location`) NOTE: Same as `string_from_ptr`, but perform an additional `clone` operation Returns: - res: The cloned string from the byte pointer and length - err: An optional allocator error if one occured, `nil` otherwise */ clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { s := string_from_ptr(ptr, len) return clone(s, allocator, loc) } // Overloaded procedure to clone from a string, `[]byte`, `cstring` or a `^byte` + length clone_from :: proc{ clone, clone_from_bytes, clone_from_cstring, clone_from_ptr, } /* Clones a string from a null-terminated cstring `ptr` and a byte length `len` *Allocates Using Provided Allocator* Inputs: - ptr: A pointer to the start of the null-terminated cstring - len: The byte length of the cstring - allocator: (default: context.allocator) - loc: The caller location for debugging purposes (default: `#caller_location`) NOTE: Truncates at the first null-byte encountered or the byte length. Returns: - res: The cloned string from the null-terminated cstring and byte length - err: An optional allocator error if one occured, `nil` otherwise */ clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { s := string_from_ptr((^u8)(ptr), len) s = truncate_to_byte(s, 0) return clone(s, allocator, loc) } /* Compares two strings, returning a value representing which one comes first lexicographically. -1 for `lhs`; 1 for `rhs`, or 0 if they are equal. Inputs: - lhs: First string for comparison - rhs: Second string for comparison Returns: - result: `-1` if `lhs` comes first, `1` if `rhs` comes first, or `0` if they are equal */ compare :: proc(lhs, rhs: string) -> (result: int) { return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs) } /* Checks if rune `r` in the string `s` Inputs: - s: The input string - r: The rune to search for Returns: - result: `true` if the rune `r` in the string `s`, `false` otherwise */ contains_rune :: proc(s: string, r: rune) -> (result: bool) { for c in s { if c == r { return true } } return false } /* Returns true when the string `substr` is contained inside the string `s` Inputs: - s: The input string - substr: The substring to search for Returns: - res: `true` if `substr` is contained inside the string `s`, `false` otherwise Example: import "core:fmt" import "core:strings" contains_example :: proc() { fmt.println(strings.contains("testing", "test")) fmt.println(strings.contains("testing", "ing")) fmt.println(strings.contains("testing", "text")) } Output: true true false */ contains :: proc(s, substr: string) -> (res: bool) { return index(s, substr) >= 0 } /* Returns `true` when the string `s` contains any of the characters inside the string `chars` Inputs: - s: The input string - chars: The characters to search for Returns: - res: `true` if the string `s` contains any of the characters in `chars`, `false` otherwise Example: import "core:fmt" import "core:strings" contains_any_example :: proc() { fmt.println(strings.contains_any("test", "test")) fmt.println(strings.contains_any("test", "ts")) fmt.println(strings.contains_any("test", "et")) fmt.println(strings.contains_any("test", "a")) } Output: true true true false */ contains_any :: proc(s, chars: string) -> (res: bool) { return index_any(s, chars) >= 0 } /* Returns the UTF-8 rune count of the string `s` Inputs: - s: The input string Returns: - res: The UTF-8 rune count of the string `s` Example: import "core:fmt" import "core:strings" rune_count_example :: proc() { fmt.println(strings.rune_count("test")) fmt.println(strings.rune_count("testö")) // where len("testö") == 6 } Output: 4 5 */ rune_count :: proc(s: string) -> (res: int) { return utf8.rune_count_in_string(s) } /* Returns whether the strings `u` and `v` are the same alpha characters, ignoring different casings Works with UTF-8 string content Inputs: - u: The first string for comparison - v: The second string for comparison Returns: - res: `true` if the strings `u` and `v` are the same alpha characters (ignoring case) Example: import "core:fmt" import "core:strings" equal_fold_example :: proc() { fmt.println(strings.equal_fold("test", "test")) fmt.println(strings.equal_fold("Test", "test")) fmt.println(strings.equal_fold("Test", "tEsT")) fmt.println(strings.equal_fold("test", "tes")) } Output: true true true false */ equal_fold :: proc(u, v: string) -> (res: bool) { s, t := u, v loop: for s != "" && t != "" { sr, tr: rune if s[0] < utf8.RUNE_SELF { sr, s = rune(s[0]), s[1:] } else { r, size := utf8.decode_rune_in_string(s) sr, s = r, s[size:] } if t[0] < utf8.RUNE_SELF { tr, t = rune(t[0]), t[1:] } else { r, size := utf8.decode_rune_in_string(t) tr, t = r, t[size:] } if tr == sr { // easy case continue loop } if tr < sr { tr, sr = sr, tr } if tr < utf8.RUNE_SELF { switch sr { case 'A'..='Z': if tr == (sr+'a')-'A' { continue loop } } return false } // TODO(bill): Unicode folding return false } return s == t } /* Returns the prefix length common between strings `a` and `b` Inputs: - a: The first input string - b: The second input string Returns: - n: The prefix length common between strings `a` and `b` Example: import "core:fmt" import "core:strings" prefix_length_example :: proc() { fmt.println(strings.prefix_length("testing", "test")) fmt.println(strings.prefix_length("testing", "te")) fmt.println(strings.prefix_length("telephone", "te")) fmt.println(strings.prefix_length("testing", "est")) } Output: 4 2 2 0 */ prefix_length :: proc(a, b: string) -> (n: int) { _len := min(len(a), len(b)) // Scan for matches including partial codepoints. #no_bounds_check for n < _len && a[n] == b[n] { n += 1 } // Now scan to ignore partial codepoints. if n > 0 { s := a[:n] n = 0 for { r0, w := utf8.decode_rune(s[n:]) if r0 != utf8.RUNE_ERROR { n += w } else { break } } } return } /* Determines if a string `s` starts with a given `prefix` Inputs: - s: The string to check for the `prefix` - prefix: The prefix to look for Returns: - result: `true` if the string `s` starts with the `prefix`, otherwise `false` Example: import "core:fmt" import "core:strings" has_prefix_example :: proc() { fmt.println(strings.has_prefix("testing", "test")) fmt.println(strings.has_prefix("testing", "te")) fmt.println(strings.has_prefix("telephone", "te")) fmt.println(strings.has_prefix("testing", "est")) } Output: true true true false */ has_prefix :: proc(s, prefix: string) -> (result: bool) { return len(s) >= len(prefix) && s[0:len(prefix)] == prefix } /* Determines if a string `s` ends with a given `suffix` Inputs: - s: The string to check for the `suffix` - suffix: The suffix to look for Returns: - result: `true` if the string `s` ends with the `suffix`, otherwise `false` Example: import "core:fmt" import "core:strings" has_suffix_example :: proc() { fmt.println(strings.has_suffix("todo.txt", ".txt")) fmt.println(strings.has_suffix("todo.doc", ".txt")) fmt.println(strings.has_suffix("todo.doc.txt", ".txt")) } Output: true false true */ has_suffix :: proc(s, suffix: string) -> (result: bool) { return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix } /* Joins a slice of strings `a` with a `sep` string *Allocates Using Provided Allocator* Inputs: - a: A slice of strings to join - sep: The separator string - allocator: (default is context.allocator) Returns: - res: A combined string from the slice of strings `a` separated with the `sep` string - err: An optional allocator error if one occured, `nil` otherwise Example: import "core:fmt" import "core:strings" join_example :: proc() { a := [?]string { "a", "b", "c" } fmt.println(strings.join(a[:], " ")) fmt.println(strings.join(a[:], "-")) fmt.println(strings.join(a[:], "...")) } Output: a b c a-b-c a...b...c */ join :: proc(a: []string, sep: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { if len(a) == 0 { return "", nil } n := len(sep) * (len(a) - 1) for s in a { n += len(s) } b := make([]byte, n, allocator, loc) or_return i := copy(b, a[0]) for s in a[1:] { i += copy(b[i:], sep) i += copy(b[i:], s) } return string(b), nil } /* Joins a slice of strings `a` with a `sep` string, returns an error on allocation failure *Allocates Using Provided Allocator* Inputs: - a: A slice of strings to join - sep: The separator string - allocator: (default is context.allocator) Returns: - str: A combined string from the slice of strings `a` separated with the `sep` string - err: An allocator error if one occured, `nil` otherwise */ @(deprecated="Prefer join. It now returns an optional allocator error") join_safe :: proc(a: []string, sep: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) { return join(a, sep, allocator) } /* Returns a combined string from the slice of strings `a` without a separator *Allocates Using Provided Allocator* Inputs: - a: A slice of strings to concatenate - allocator: (default is context.allocator) Returns: - res: The concatenated string - err: An optional allocator error if one occured, `nil` otherwise Example: import "core:fmt" import "core:strings" concatenate_example :: proc() { a := [?]string { "a", "b", "c" } fmt.println(strings.concatenate(a[:])) } Output: abc */ concatenate :: proc(a: []string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { if len(a) == 0 { return "", nil } n := 0 for s in a { n += len(s) } b := make([]byte, n, allocator, loc) or_return i := 0 for s in a { i += copy(b[i:], s) } return string(b), nil } /* Returns a combined string from the slice of strings `a` without a separator, or an error if allocation fails *Allocates Using Provided Allocator* Inputs: - a: A slice of strings to concatenate - allocator: (default is context.allocator) Returns: The concatenated string, and an error if allocation fails */ @(deprecated="Prefer concatenate. It now returns an optional allocator error") concatenate_safe :: proc(a: []string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) { return concatenate(a, allocator) } /* Returns a substring of the input string `s` with the specified rune offset and length *Allocates Using Provided Allocator* Inputs: - s: The input string to cut - rune_offset: The starting rune index (default is 0). In runes, not bytes. - rune_length: The number of runes to include in the substring (default is 0, which returns the remainder of the string). In runes, not bytes. - allocator: (default is context.allocator) Returns: - res: The substring - err: An optional allocator error if one occured, `nil` otherwise Example: import "core:fmt" import "core:strings" cut_example :: proc() { fmt.println(strings.cut("some example text", 0, 4)) // -> "some" fmt.println(strings.cut("some example text", 2, 2)) // -> "me" fmt.println(strings.cut("some example text", 5, 7)) // -> "example" } Output: some me example */ cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { s := s; rune_length := rune_length context.allocator = allocator // If we signal that we want the entire remainder (length <= 0) *and* // the offset is zero, then we can early out by cloning the input if rune_offset == 0 && rune_length <= 0 { return clone(s) } // We need to know if we have enough runes to cover offset + length. rune_count := utf8.rune_count_in_string(s) // We're asking for a substring starting after the end of the input string. // That's just an empty string. if rune_offset >= rune_count { return "", nil } // If we don't specify the length of the substring, use the remainder. if rune_length <= 0 { rune_length = rune_count - rune_offset } // We don't yet know how many bytes we need exactly. // But we do know it's bounded by the number of runes * 4 bytes, // and can be no more than the size of the input string. bytes_needed := min(rune_length * 4, len(s)) buf := make([]u8, bytes_needed, allocator, loc) or_return byte_offset := 0 for i := 0; i < rune_count; i += 1 { _, w := utf8.decode_rune_in_string(s) // If the rune is part of the substring, copy it to the output buffer. if i >= rune_offset { for j := 0; j < w; j += 1 { buf[byte_offset+j] = s[j] } byte_offset += w } // We're done if we reach the end of the input string, *or* // if we've reached a specified length in runes. if rune_length > 0 { if i == rune_offset + rune_length - 1 { break } } s = s[w:] } return string(buf[:byte_offset]), nil } /* Splits the input string `s` into a slice of substrings separated by the specified `sep` string *Allocates Using Provided Allocator* *Used Internally - Private Function* Inputs: - s: The input string to split - sep: The separator string - sep_save: A flag determining if the separator should be saved in the resulting substrings - n: The maximum number of substrings to return, returns `nil` without alloc when `n=0` - allocator: (default is context.allocator) NOTE: Allocation occurs for the array, the splits are all views of the original string. Returns: - res: The slice of substrings - err: An optional allocator error if one occured, `nil` otherwise */ @private _split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) { s, n := s_, n_ if n == 0 { return nil, nil } if sep == "" { l := utf8.rune_count_in_string(s) if n < 0 || n > l { n = l } res = make([]string, n, allocator, loc) or_return for i := 0; i < n-1; i += 1 { _, w := utf8.decode_rune_in_string(s) res[i] = s[:w] s = s[w:] } if n > 0 { res[n-1] = s } return res[:], nil } if n < 0 { n = count(s, sep) + 1 } res = make([]string, n, allocator, loc) or_return n -= 1 i := 0 for ; i < n; i += 1 { m := index(s, sep) if m < 0 { break } res[i] = s[:m+sep_save] s = s[m+len(sep):] } res[i] = s return res[:i+1], nil } /* Splits a string into parts based on a separator. *Allocates Using Provided Allocator* Inputs: - s: The string to split. - sep: The separator string used to split the input string. - allocator: (default is context.allocator). Returns: - res: The slice of strings, each representing a part of the split string. - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_example :: proc() { s := "aaa.bbb.ccc.ddd.eee" // 5 parts ss := strings.split(s, ".") fmt.println(ss) } Output: ["aaa", "bbb", "ccc", "ddd", "eee"] */ split :: proc(s, sep: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { return _split(s, sep, 0, -1, allocator) } /* Splits a string into parts based on a separator. If n < count of seperators, the remainder of the string is returned in the last entry. *Allocates Using Provided Allocator* Inputs: - s: The string to split. - sep: The separator string used to split the input string. - n: The maximum amount of parts to split the string into. - allocator: (default is context.allocator) Returns: - res: The slice of strings, each representing a part of the split string. - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_n_example :: proc() { s := "aaa.bbb.ccc.ddd.eee" // 5 parts present ss := strings.split_n(s, ".",3) // total of 3 wanted fmt.println(ss) } Output: ["aaa", "bbb", "ccc.ddd.eee"] */ split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { return _split(s, sep, 0, n, allocator) } /* Splits a string into parts after the separator, retaining it in the substrings. *Allocates Using Provided Allocator* Inputs: - s: The string to split. - sep: The separator string used to split the input string. - allocator: (default is context.allocator). Returns: - res: The slice of strings, each representing a part of the split string after the separator - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_after_example :: proc() { a := "aaa.bbb.ccc.ddd.eee" // 5 parts aa := strings.split_after(a, ".") fmt.println(aa) } Output: ["aaa.", "bbb.", "ccc.", "ddd.", "eee"] */ split_after :: proc(s, sep: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { return _split(s, sep, len(sep), -1, allocator) } /* Splits a string into a total of `n` parts after the separator. *Allocates Using Provided Allocator* Inputs: - s: The string to split. - sep: The separator string used to split the input string. - n: The maximum number of parts to split the string into. - allocator: (default is context.allocator) Returns: - res: The slice of strings with `n` parts or fewer if there weren't - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_after_n_example :: proc() { a := "aaa.bbb.ccc.ddd.eee" aa := strings.split_after_n(a, ".", 3) fmt.println(aa) } Output: ["aaa.", "bbb.", "ccc.ddd.eee"] */ split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { return _split(s, sep, len(sep), n, allocator) } /* Searches for the first occurrence of `sep` in the given string and returns the substring up to (but not including) the separator, as well as a boolean indicating success. *Used Internally - Private Function* Inputs: - s: Pointer to the input string, which is modified during the search. - sep: The separator string to search for. - sep_save: Number of characters from the separator to include in the result. Returns: - res: The resulting substring - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end */ @private _split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) { // stop once the string is empty or nil if s == nil || len(s^) == 0 { return } if sep == "" { res = s[:] ok = true s^ = s[len(s):] return } m := index(s^, sep) if m < 0 { // not found res = s[:] ok = res != "" s^ = s[len(s):] } else { res = s[:m+sep_save] ok = true s^ = s[m+len(sep):] } return } /* Splits the input string by the byte separator in an iterator fashion. Inputs: - s: Pointer to the input string, which is modified during the search. - sep: The byte separator to search for. Returns: - res: The resulting substring - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end Example: import "core:fmt" import "core:strings" split_by_byte_iterator_example :: proc() { text := "a.b.c.d.e" for str in strings.split_by_byte_iterator(&text, '.') { fmt.println(str) // every loop -> a b c d e } } Output: a b c d e */ split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) { m := index_byte(s^, sep) if m < 0 { // not found res = s[:] ok = res != "" s^ = {} } else { res = s[:m] ok = true s^ = s[m+1:] } return } /* Splits the input string by the separator string in an iterator fashion. Inputs: - s: Pointer to the input string, which is modified during the search. - sep: The separator string to search for. Returns: - res: The resulting substring - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end Example: import "core:fmt" import "core:strings" split_iterator_example :: proc() { text := "a.b.c.d.e" for str in strings.split_iterator(&text, ".") { fmt.println(str) } } Output: a b c d e */ split_iterator :: proc(s: ^string, sep: string) -> (res: string, ok: bool) { return _split_iterator(s, sep, 0) } /* Splits the input string after every separator string in an iterator fashion. Inputs: - s: Pointer to the input string, which is modified during the search. - sep: The separator string to search for. Returns: - res: The resulting substring - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end Example: import "core:fmt" import "core:strings" split_after_iterator_example :: proc() { text := "a.b.c.d.e" for str in strings.split_after_iterator(&text, ".") { fmt.println(str) } } Output: a. b. c. d. e */ split_after_iterator :: proc(s: ^string, sep: string) -> (res: string, ok: bool) { return _split_iterator(s, sep, len(sep)) } /* Trims the carriage return character from the end of the input string. *Used Internally - Private Function* Inputs: - s: The input string to trim. Returns: - res: The trimmed string as a slice of the original. */ @(private) _trim_cr :: proc(s: string) -> (res: string) { n := len(s) if n > 0 { if s[n-1] == '\r' { return s[:n-1] } } return s } /* Splits the input string at every line break `\n`. *Allocates Using Provided Allocator* Inputs: - s: The input string to split. - allocator: (default is context.allocator) Returns: - res: The slice (allocated) of the split string (slices into original string) - err: An optional allocator error if one occured, `nil` otherwise Example: import "core:fmt" import "core:strings" split_lines_example :: proc() { a := "a\nb\nc\nd\ne" b := strings.split_lines(a) fmt.println(b) } Output: ["a", "b", "c", "d", "e"] */ split_lines :: proc(s: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { sep :: "\n" lines := _split(s, sep, 0, -1, allocator) or_return for &line in lines { line = _trim_cr(line) } return lines, nil } /* Splits the input string at every line break `\n` for `n` parts. *Allocates Using Provided Allocator* Inputs: - s: The input string to split. - n: The number of parts to split into. - allocator: (default is context.allocator) Returns: - res: The slice (allocated) of the split string (slices into original string) - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_lines_n_example :: proc() { a := "a\nb\nc\nd\ne" b := strings.split_lines_n(a, 3) fmt.println(b) } Output: ["a", "b", "c\nd\ne"] */ split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { sep :: "\n" lines := _split(s, sep, 0, n, allocator) or_return for &line in lines { line = _trim_cr(line) } return lines, nil } /* Splits the input string at every line break `\n` leaving the `\n` in the resulting strings. *Allocates Using Provided Allocator* Inputs: - s: The input string to split. - allocator: (default is context.allocator) Returns: - res: The slice (allocated) of the split string (slices into original string), with `\n` included - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_lines_after_example :: proc() { a := "a\nb\nc\nd\ne" b := strings.split_lines_after(a) fmt.println(b) } Output: ["a\n", "b\n", "c\n", "d\n", "e"] */ split_lines_after :: proc(s: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { sep :: "\n" lines := _split(s, sep, len(sep), -1, allocator) or_return for &line in lines { line = _trim_cr(line) } return lines, nil } /* Splits the input string at every line break `\n` leaving the `\n` in the resulting strings. Only runs for n parts. *Allocates Using Provided Allocator* Inputs: - s: The input string to split. - n: The number of parts to split into. - allocator: (default is context.allocator) Returns: - res: The slice (allocated) of the split string (slices into original string), with `\n` included - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_lines_after_n_example :: proc() { a := "a\nb\nc\nd\ne" b := strings.split_lines_after_n(a, 3) fmt.println(b) } Output: ["a\n", "b\n", "c\nd\ne"] */ split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error { sep :: "\n" lines := _split(s, sep, len(sep), n, allocator) or_return for &line in lines { line = _trim_cr(line) } return lines, nil } /* Splits the input string at every line break `\n`. Returns the current split string every iteration until the string is consumed. Inputs: - s: Pointer to the input string, which is modified during the search. Returns: - line: The resulting substring - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end Example: import "core:fmt" import "core:strings" split_lines_iterator_example :: proc() { text := "a\nb\nc\nd\ne" for str in strings.split_lines_iterator(&text) { fmt.print(str) // every loop -> a b c d e } fmt.print("\n") } Output: abcde */ split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) { sep :: "\n" line = _split_iterator(s, sep, 0) or_return return _trim_cr(line), true } /* Splits the input string at every line break `\n`. Returns the current split string with line breaks included every iteration until the string is consumed. Inputs: - s: Pointer to the input string, which is modified during the search. Returns: - line: The resulting substring with line breaks included - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end Example: import "core:fmt" import "core:strings" split_lines_after_iterator_example :: proc() { text := "a\nb\nc\nd\ne\n" for str in strings.split_lines_after_iterator(&text) { fmt.print(str) // every loop -> a\n b\n c\n d\n e\n } } Output: a b c d e */ split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) { sep :: "\n" line = _split_iterator(s, sep, len(sep)) or_return return _trim_cr(line), true } /* Returns the byte offset of the first byte `c` in the string s it finds, -1 when not found. NOTE: Can't find UTF-8 based runes. Inputs: - s: The input string to search in. - c: The byte to search for. Returns: - res: The byte offset of the first occurrence of `c` in `s`, or -1 if not found. Example: import "core:fmt" import "core:strings" index_byte_example :: proc() { fmt.println(strings.index_byte("test", 't')) fmt.println(strings.index_byte("test", 'e')) fmt.println(strings.index_byte("test", 'x')) fmt.println(strings.index_byte("teäst", 'ä')) } Output: 0 1 -1 -1 */ index_byte :: proc(s: string, c: byte) -> (res: int) { for i := 0; i < len(s); i += 1 { if s[i] == c { return i } } return -1 } /* Returns the byte offset of the last byte `c` in the string `s`, -1 when not found. Inputs: - s: The input string to search in. - c: The byte to search for. Returns: - res: The byte offset of the last occurrence of `c` in `s`, or -1 if not found. NOTE: Can't find UTF-8 based runes. Example: import "core:fmt" import "core:strings" last_index_byte_example :: proc() { fmt.println(strings.last_index_byte("test", 't')) fmt.println(strings.last_index_byte("test", 'e')) fmt.println(strings.last_index_byte("test", 'x')) fmt.println(strings.last_index_byte("teäst", 'ä')) } Output: 3 1 -1 -1 */ last_index_byte :: proc(s: string, c: byte) -> (res: int) { for i := len(s)-1; i >= 0; i -= 1 { if s[i] == c { return i } } return -1 } /* Returns the byte offset of the first rune `r` in the string `s` it finds, -1 when not found. Invalid runes return -1 Inputs: - s: The input string to search in. - r: The rune to search for. Returns: - res: The byte offset of the first occurrence of `r` in `s`, or -1 if not found. Example: import "core:fmt" import "core:strings" index_rune_example :: proc() { fmt.println(strings.index_rune("abcädef", 'x')) fmt.println(strings.index_rune("abcädef", 'a')) fmt.println(strings.index_rune("abcädef", 'b')) fmt.println(strings.index_rune("abcädef", 'c')) fmt.println(strings.index_rune("abcädef", 'ä')) fmt.println(strings.index_rune("abcädef", 'd')) fmt.println(strings.index_rune("abcädef", 'e')) fmt.println(strings.index_rune("abcädef", 'f')) } Output: -1 0 1 2 3 5 6 7 */ index_rune :: proc(s: string, r: rune) -> (res: int) { switch { case u32(r) < utf8.RUNE_SELF: return index_byte(s, byte(r)) case r == utf8.RUNE_ERROR: for c, i in s { if c == utf8.RUNE_ERROR { return i } } return -1 case !utf8.valid_rune(r): return -1 } b, w := utf8.encode_rune(r) return index(s, string(b[:w])) } @private PRIME_RABIN_KARP :: 16777619 /* Returns the byte offset of the string `substr` in the string `s`, -1 when not found. Inputs: - s: The input string to search in. - substr: The substring to search for. Returns: - res: The byte offset of the first occurrence of `substr` in `s`, or -1 if not found. Example: import "core:fmt" import "core:strings" index_example :: proc() { fmt.println(strings.index("test", "t")) fmt.println(strings.index("test", "te")) fmt.println(strings.index("test", "st")) fmt.println(strings.index("test", "tt")) } Output: 0 0 2 -1 */ index :: proc(s, substr: string) -> (res: int) { hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) { for i := 0; i < len(s); i += 1 { hash = hash*PRIME_RABIN_KARP + u32(s[i]) } sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { pow *= sq } sq *= sq } return } n := len(substr) switch { case n == 0: return 0 case n == 1: return index_byte(s, substr[0]) case n == len(s): if s == substr { return 0 } return -1 case n > len(s): return -1 } hash, pow := hash_str_rabin_karp(substr) h: u32 for i := 0; i < n; i += 1 { h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && s[:n] == substr { return 0 } for i := n; i < len(s); /**/ { h *= PRIME_RABIN_KARP h += u32(s[i]) h -= pow * u32(s[i-n]) i += 1 if h == hash && s[i-n:i] == substr { return i - n } } return -1 } /* Returns the last byte offset of the string `substr` in the string `s`, -1 when not found. Inputs: - s: The input string to search in. - substr: The substring to search for. Returns: - res: The byte offset of the last occurrence of `substr` in `s`, or -1 if not found. Example: import "core:fmt" import "core:strings" last_index_example :: proc() { fmt.println(strings.last_index("test", "t")) fmt.println(strings.last_index("test", "te")) fmt.println(strings.last_index("test", "st")) fmt.println(strings.last_index("test", "tt")) } Output: 3 0 2 -1 */ last_index :: proc(s, substr: string) -> (res: int) { hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) { for i := len(s) - 1; i >= 0; i -= 1 { hash = hash*PRIME_RABIN_KARP + u32(s[i]) } sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { pow *= sq } sq *= sq } return } n := len(substr) switch { case n == 0: return len(s) case n == 1: return last_index_byte(s, substr[0]) case n == len(s): return 0 if substr == s else -1 case n > len(s): return -1 } hash, pow := hash_str_rabin_karp_reverse(substr) last := len(s) - n h: u32 for i := len(s)-1; i >= last; i -= 1 { h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && s[last:] == substr { return last } for i := last-1; i >= 0; i -= 1 { h *= PRIME_RABIN_KARP h += u32(s[i]) h -= pow * u32(s[i+n]) if h == hash && s[i:i+n] == substr { return i } } return -1 } /* Returns the index of any first char of `chars` found in `s`, -1 if not found. Inputs: - s: The input string to search in. - chars: The characters to look for Returns: - res: The index of the first character of `chars` found in `s`, or -1 if not found. Example: import "core:fmt" import "core:strings" index_any_example :: proc() { fmt.println(strings.index_any("test", "s")) fmt.println(strings.index_any("test", "se")) fmt.println(strings.index_any("test", "et")) fmt.println(strings.index_any("test", "set")) fmt.println(strings.index_any("test", "x")) } Output: 2 1 0 0 -1 */ index_any :: proc(s, chars: string) -> (res: int) { if chars == "" { return -1 } if len(chars) == 1 { r := rune(chars[0]) if r >= utf8.RUNE_SELF { r = utf8.RUNE_ERROR } return index_rune(s, r) } if len(s) > 8 { if as, ok := ascii_set_make(chars); ok { for i in 0..= 0 { return i } } return -1 } /* Finds the last occurrence of any character in `chars` within `s`. Iterates in reverse. Inputs: - s: The string to search in - chars: The characters to look for Returns: - res: The index of the last matching character, or -1 if not found Example: import "core:fmt" import "core:strings" last_index_any_example :: proc() { fmt.println(strings.last_index_any("test", "s")) fmt.println(strings.last_index_any("test", "se")) fmt.println(strings.last_index_any("test", "et")) fmt.println(strings.last_index_any("test", "set")) fmt.println(strings.last_index_any("test", "x")) } Output: 2 2 3 3 -1 */ last_index_any :: proc(s, chars: string) -> (res: int) { if chars == "" { return -1 } if len(s) == 1 { r := rune(s[0]) if r >= utf8.RUNE_SELF { r = utf8.RUNE_ERROR } i := index_rune(chars, r) return i if i < 0 else 0 } if len(s) > 8 { if as, ok := ascii_set_make(chars); ok { for i := len(s)-1; i >= 0; i -= 1 { if ascii_set_contains(as, s[i]) { return i } } return -1 } } if len(chars) == 1 { r := rune(chars[0]) if r >= utf8.RUNE_SELF { r = utf8.RUNE_ERROR } for i := len(s); i > 0; /**/ { c, w := utf8.decode_last_rune_in_string(s[:i]) i -= w if c == r { return i } } return -1 } for i := len(s); i > 0; /**/ { r, w := utf8.decode_last_rune_in_string(s[:i]) i -= w if index_rune(chars, r) >= 0 { return i } } return -1 } /* Finds the first occurrence of any substring in `substrs` within `s` Inputs: - s: The string to search in - substrs: The substrings to look for Returns: - idx: the index of the first matching substring - width: the length of the found substring */ index_multi :: proc(s: string, substrs: []string) -> (idx: int, width: int) { idx = -1 if s == "" || len(substrs) <= 0 { return } // disallow "" substr for substr in substrs { if len(substr) == 0 { return } } lowest_index := len(s) found := false for substr in substrs { if i := index(s, substr); i >= 0 { if i < lowest_index { lowest_index = i width = len(substr) found = true } } } if found { idx = lowest_index } return } /* Counts the number of non-overlapping occurrences of `substr` in `s` Inputs: - s: The string to search in - substr: The substring to count Returns: - res: The number of occurrences of `substr` in `s`, returns the rune_count + 1 of the string `s` on empty `substr` Example: import "core:fmt" import "core:strings" count_example :: proc() { fmt.println(strings.count("abbccc", "a")) fmt.println(strings.count("abbccc", "b")) fmt.println(strings.count("abbccc", "c")) fmt.println(strings.count("abbccc", "ab")) fmt.println(strings.count("abbccc", " ")) } Output: 1 2 3 1 0 */ count :: proc(s, substr: string) -> (res: int) { if len(substr) == 0 { // special case return rune_count(s) + 1 } if len(substr) == 1 { c := substr[0] switch len(s) { case 0: return 0 case 1: return int(s[0] == c) } n := 0 for i := 0; i < len(s); i += 1 { if s[i] == c { n += 1 } } return n } // TODO(bill): Use a non-brute for approach n := 0 str := s for { i := index(str, substr) if i == -1 { return n } n += 1 str = str[i+len(substr):] } return n } /* Repeats the string `s` `count` times, concatenating the result *Allocates Using Provided Allocator* Inputs: - s: The string to repeat - count: The number of times to repeat `s` - allocator: (default is context.allocator) Returns: - res: The concatenated repeated string - err: An optional allocator error if one occured, `nil` otherwise WARNING: Panics if count < 0 Example: import "core:fmt" import "core:strings" repeat_example :: proc() { fmt.println(strings.repeat("abc", 2)) } Output: abcabc */ repeat :: proc(s: string, count: int, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { if count < 0 { panic("strings: negative repeat count") } else if count > 0 && (len(s)*count)/count != len(s) { panic("strings: repeat count will cause an overflow") } b := make([]byte, len(s)*count, allocator, loc) or_return i := copy(b, s) for i < len(b) { // 2^N trick to reduce the need to copy copy(b[i:], b[:i]) i *= 2 } return string(b), nil } /* Replaces all occurrences of `old` in `s` with `new` *Allocates Using Provided Allocator* Inputs: - s: The string to modify - old: The substring to replace - new: The substring to replace `old` with - allocator: The allocator to use for the new string (default is context.allocator) Returns: - output: The modified string - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise Example: import "core:fmt" import "core:strings" replace_all_example :: proc() { fmt.println(strings.replace_all("xyzxyz", "xyz", "abc")) fmt.println(strings.replace_all("xyzxyz", "abc", "xyz")) fmt.println(strings.replace_all("xyzxyz", "xy", "z")) } Output: abcabc true xyzxyz false zzzz true */ replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) { return replace(s, old, new, -1, allocator) } /* Replaces n instances of old in the string s with the new string *Allocates Using Provided Allocator* Inputs: - s: The input string - old: The substring to be replaced - new: The replacement string - n: The number of instances to replace (if `n < 0`, no limit on the number of replacements) - allocator: (default: context.allocator) Returns: - output: The modified string - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise Example: import "core:fmt" import "core:strings" replace_example :: proc() { fmt.println(strings.replace("xyzxyz", "xyz", "abc", 2)) fmt.println(strings.replace("xyzxyz", "xyz", "abc", 1)) fmt.println(strings.replace("xyzxyz", "abc", "xyz", -1)) fmt.println(strings.replace("xyzxyz", "xy", "z", -1)) } Output: abcabc true abcxyz true xyzxyz false zzzz true */ replace :: proc(s, old, new: string, n: int, allocator := context.allocator, loc := #caller_location) -> (output: string, was_allocation: bool) { if old == new || n == 0 { was_allocation = false output = s return } byte_count := n if m := count(s, old); m == 0 { was_allocation = false output = s return } else if n < 0 || m < n { byte_count = m } t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator, loc) was_allocation = true w := 0 start := 0 for i := 0; i < byte_count; i += 1 { j := start if len(old) == 0 { if i > 0 { _, width := utf8.decode_rune_in_string(s[start:]) j += width } } else { j += index(s[start:], old) } w += copy(t[w:], s[start:j]) w += copy(t[w:], new) start = j + len(old) } w += copy(t[w:], s[start:]) output = string(t[0:w]) return } /* Removes the key string `n` times from the `s` string *Allocates Using Provided Allocator* Inputs: - s: The input string - key: The substring to be removed - n: The number of instances to remove (if `n < 0`, no limit on the number of removes) - allocator: (default: context.allocator) Returns: - output: The modified string - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise Example: import "core:fmt" import "core:strings" remove_example :: proc() { fmt.println(strings.remove("abcabc", "abc", 1)) fmt.println(strings.remove("abcabc", "abc", -1)) fmt.println(strings.remove("abcabc", "a", -1)) fmt.println(strings.remove("abcabc", "x", -1)) } Output: abc true true bcbc true abcabc false */ remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) { return replace(s, key, "", n, allocator) } /* Removes all the `key` string instances from the `s` string *Allocates Using Provided Allocator* Inputs: - s: The input string - key: The substring to be removed - allocator: (default: context.allocator) Returns: - output: The modified string - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise Example: import "core:fmt" import "core:strings" remove_all_example :: proc() { fmt.println(strings.remove_all("abcabc", "abc")) fmt.println(strings.remove_all("abcabc", "a")) fmt.println(strings.remove_all("abcabc", "x")) } Output: true bcbc true abcabc false */ remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) { return remove(s, key, -1, allocator) } // Returns true if is an ASCII space character ('\t', '\n', '\v', '\f', '\r', ' ') @(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true} /* Returns true when the `r` rune is an ASCII whitespace character. Inputs: - r: the rune to test Returns: -res: `true` if `r` is a whitespace character, `false` if otherwise */ is_ascii_space :: proc(r: rune) -> (res: bool) { if r < utf8.RUNE_SELF { return _ascii_space[u8(r)] } return false } /* Returns true when the `r` rune is an ASCII or UTF-8 whitespace character. Inputs: - r: the rune to test Returns: -res: `true` if `r` is a whitespace character, `false` if otherwise */ is_space :: proc(r: rune) -> (res: bool) { if r < 0x2000 { switch r { case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680: return true } } else { if r <= 0x200a { return true } switch r { case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000: return true } } return false } /* Returns true when the `r` rune is `0x0` Inputs: - r: the rune to test Returns: -res: `true` if `r` is `0x0`, `false` if otherwise */ is_null :: proc(r: rune) -> (res: bool) { return r == 0x0000 } /* Find the index of the first rune `r` in string `s` for which procedure `p` returns the same as truth, or -1 if no such rune appears. Inputs: - s: The input string - p: A procedure that takes a rune and returns a boolean - truth: The boolean value to be matched (default: `true`) Returns: - res: The index of the first matching rune, or -1 if no match was found Example: import "core:fmt" import "core:strings" index_proc_example :: proc() { call :: proc(r: rune) -> bool { return r == 'a' } fmt.println(strings.index_proc("abcabc", call)) fmt.println(strings.index_proc("cbacba", call)) fmt.println(strings.index_proc("cbacba", call, false)) fmt.println(strings.index_proc("abcabc", call, false)) fmt.println(strings.index_proc("xyz", call)) } Output: 0 2 0 1 -1 */ index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> (res: int) { for r, i in s { if p(r) == truth { return i } } return -1 } // Same as `index_proc`, but the procedure p takes a raw pointer for state index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> (res: int) { for r, i in s { if p(state, r) == truth { return i } } return -1 } // Finds the index of the *last* rune in the string s for which the procedure p returns the same value as truth last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> (res: int) { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { r, size := utf8.decode_last_rune_in_string(s[:i]) i -= size if p(r) == truth { return i } } return -1 } // Same as `index_proc_with_state`, runs through the string in reverse last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> (res: int) { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { r, size := utf8.decode_last_rune_in_string(s[:i]) i -= size if p(state, r) == truth { return i } } return -1 } /* Trims the input string `s` from the left until the procedure `p` returns false Inputs: - s: The input string - p: A procedure that takes a rune and returns a boolean Returns: - res: The trimmed string as a slice of the original Example: import "core:fmt" import "core:strings" trim_left_proc_example :: proc() { find :: proc(r: rune) -> bool { return r == 'x' } fmt.println(strings.trim_left_proc("xxxxxxtesting", find)) } Output: testing */ trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> (res: string) { i := index_proc(s, p, false) if i == -1 { return "" } return s[i:] } /* Trims the input string `s` from the left until the procedure `p` with state returns false Inputs: - s: The input string - p: A procedure that takes a raw pointer and a rune and returns a boolean - state: The raw pointer to be passed to the procedure `p` Returns: - res: The trimmed string as a slice of the original */ trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> (res: string) { i := index_proc_with_state(s, p, state, false) if i == -1 { return "" } return s[i:] } /* Trims the input string `s` from the right until the procedure `p` returns `false` Inputs: - s: The input string - p: A procedure that takes a rune and returns a boolean Returns: - res: The trimmed string as a slice of the original Example: import "core:fmt" import "core:strings" trim_right_proc_example :: proc() { find :: proc(r: rune) -> bool { return r != 't' } fmt.println(strings.trim_right_proc("testing", find)) } Output: test */ trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> (res: string) { i := last_index_proc(s, p, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { _, w := utf8.decode_rune_in_string(s[i:]) i += w } else { i += 1 } return s[0:i] } /* Trims the input string `s` from the right until the procedure `p` with state returns `false` Inputs: - s: The input string - p: A procedure that takes a raw pointer and a rune and returns a boolean - state: The raw pointer to be passed to the procedure `p` Returns: - res: The trimmed string as a slice of the original, empty when no match */ trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> (res: string) { i := last_index_proc_with_state(s, p, state, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { _, w := utf8.decode_rune_in_string(s[i:]) i += w } else { i += 1 } return s[0:i] } // Procedure for `trim_*_proc` variants, which has a string rawptr cast + rune comparison is_in_cutset :: proc(state: rawptr, r: rune) -> (res: bool) { if state == nil { return false } cutset := (^string)(state)^ for c in cutset { if r == c { return true } } return false } /* Trims the cutset string from the `s` string Inputs: - s: The input string - cutset: The set of characters to be trimmed from the left of the input string Returns: - res: The trimmed string as a slice of the original */ trim_left :: proc(s: string, cutset: string) -> (res: string) { if s == "" || cutset == "" { return s } state := cutset return trim_left_proc_with_state(s, is_in_cutset, &state) } /* Trims the cutset string from the `s` string from the right Inputs: - s: The input string - cutset: The set of characters to be trimmed from the right of the input string Returns: - res: The trimmed string as a slice of the original */ trim_right :: proc(s: string, cutset: string) -> (res: string) { if s == "" || cutset == "" { return s } state := cutset return trim_right_proc_with_state(s, is_in_cutset, &state) } /* Trims the cutset string from the `s` string, both from left and right Inputs: - s: The input string - cutset: The set of characters to be trimmed from both sides of the input string Returns: - res: The trimmed string as a slice of the original */ trim :: proc(s: string, cutset: string) -> (res: string) { return trim_right(trim_left(s, cutset), cutset) } /* Trims until a valid non-space rune from the left, "\t\txyz\t\t" -> "xyz\t\t" Inputs: - s: The input string Returns: - res: The trimmed string as a slice of the original */ trim_left_space :: proc(s: string) -> (res: string) { return trim_left_proc(s, is_space) } /* Trims from the right until a valid non-space rune, "\t\txyz\t\t" -> "\t\txyz" Inputs: - s: The input string Returns: - res: The trimmed string as a slice of the original */ trim_right_space :: proc(s: string) -> (res: string) { return trim_right_proc(s, is_space) } /* Trims from both sides until a valid non-space rune, "\t\txyz\t\t" -> "xyz" Inputs: - s: The input string Returns: - res: The trimmed string as a slice of the original */ trim_space :: proc(s: string) -> (res: string) { return trim_right_space(trim_left_space(s)) } /* Trims null runes from the left, "\x00\x00testing\x00\x00" -> "testing\x00\x00" Inputs: - s: The input string Returns: - res: The trimmed string as a slice of the original */ trim_left_null :: proc(s: string) -> (res: string) { return trim_left_proc(s, is_null) } /* Trims null runes from the right, "\x00\x00testing\x00\x00" -> "\x00\x00testing" Inputs: - s: The input string Returns: - res: The trimmed string as a slice of the original */ trim_right_null :: proc(s: string) -> (res: string) { return trim_right_proc(s, is_null) } /* Trims null runes from both sides, "\x00\x00testing\x00\x00" -> "testing" Inputs: - s: The input string Returns: - res: The trimmed string as a slice of the original */ trim_null :: proc(s: string) -> (res: string) { return trim_right_null(trim_left_null(s)) } /* Trims a `prefix` string from the start of the `s` string and returns the trimmed string Inputs: - s: The input string - prefix: The prefix string to be removed Returns: - res: The trimmed string as a slice of original, or the input string if no prefix was found Example: import "core:fmt" import "core:strings" trim_prefix_example :: proc() { fmt.println(strings.trim_prefix("testing", "test")) fmt.println(strings.trim_prefix("testing", "abc")) } Output: ing testing */ trim_prefix :: proc(s, prefix: string) -> (res: string) { if has_prefix(s, prefix) { return s[len(prefix):] } return s } /* Trims a `suffix` string from the end of the `s` string and returns the trimmed string Inputs: - s: The input string - suffix: The suffix string to be removed Returns: - res: The trimmed string as a slice of original, or the input string if no suffix was found Example: import "core:fmt" import "core:strings" trim_suffix_example :: proc() { fmt.println(strings.trim_suffix("todo.txt", ".txt")) fmt.println(strings.trim_suffix("todo.doc", ".txt")) } Output: todo todo.doc */ trim_suffix :: proc(s, suffix: string) -> (res: string) { if has_suffix(s, suffix) { return s[:len(s)-len(suffix)] } return s } /* Splits the input string `s` by all possible `substrs` and returns an allocated array of strings *Allocates Using Provided Allocator* Inputs: - s: The input string - substrs: An array of substrings used for splitting - allocator: (default is context.allocator) Returns: - res: An array of strings, or nil on empty substring or no matches - err: An optional allocator error if one occured, `nil` otherwise NOTE: Allocation occurs for the array, the splits are all views of the original string. Example: import "core:fmt" import "core:strings" split_multi_example :: proc() { splits := [?]string { "---", "~~~", ".", "_", "," } res := strings.split_multi("testing,this.out_nice---done~~~last", splits[:]) fmt.println(res) // -> [testing, this, out, nice, done, last] } Output: ["testing", "this", "out", "nice", "done", "last"] */ split_multi :: proc(s: string, substrs: []string, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error #no_bounds_check { if s == "" || len(substrs) <= 0 { return nil, nil } // disallow "" substr for substr in substrs { if len(substr) == 0 { return nil, nil } } // calculate the needed len of `results` n := 1 for it := s; len(it) > 0; { i, w := index_multi(it, substrs) if i < 0 { break } n += 1 it = it[i+w:] } results := make([dynamic]string, 0, n, allocator, loc) or_return { it := s for len(it) > 0 { i, w := index_multi(it, substrs) if i < 0 { break } part := it[:i] append(&results, part) it = it[i+w:] } append(&results, it) } assert(len(results) == n) return results[:], nil } /* Splits the input string `s` by all possible `substrs` in an iterator fashion. The full string is returned if no match. Inputs: - it: A pointer to the input string - substrs: An array of substrings used for splitting Returns: - res: The split string - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end Example: import "core:fmt" import "core:strings" split_multi_iterate_example :: proc() { it := "testing,this.out_nice---done~~~last" splits := [?]string { "---", "~~~", ".", "_", "," } for str in strings.split_multi_iterate(&it, splits[:]) { fmt.println(str) } } Output: testing this out nice done last */ split_multi_iterate :: proc(it: ^string, substrs: []string) -> (res: string, ok: bool) #no_bounds_check { if it == nil || len(it) == 0 || len(substrs) <= 0 { return } // disallow "" substr for substr in substrs { if len(substr) == 0 { return } } // calculate the needed len of `results` i, w := index_multi(it^, substrs) if i >= 0 { res = it[:i] it^ = it[i+w:] } else { // last value res = it^ it^ = it[len(it):] } ok = true return } /* Replaces invalid UTF-8 characters in the input string with a specified replacement string. Adjacent invalid bytes are only replaced once. *Allocates Using Provided Allocator* Inputs: - s: The input string - replacement: The string used to replace invalid UTF-8 characters - allocator: (default is context.allocator) Returns: - res: A new string with invalid UTF-8 characters replaced - err: An optional allocator error if one occured, `nil` otherwise Example: import "core:fmt" import "core:strings" scrub_example :: proc() { text := "Hello\xC0\x80World" fmt.println(strings.scrub(text, "?")) // -> "Hello?World" } Output: Hello? */ scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { str := s b: Builder builder_init(&b, 0, len(s), allocator) or_return has_error := false cursor := 0 origin := str for len(str) > 0 { r, w := utf8.decode_rune_in_string(str) if r == utf8.RUNE_ERROR { if !has_error { has_error = true write_string(&b, origin[:cursor]) } } else if has_error { has_error = false write_string(&b, replacement) origin = origin[cursor:] cursor = 0 } cursor += w str = str[w:] } return to_string(b), nil } /* Reverses the input string `s` *Allocates Using Provided Allocator* Inputs: - s: The input string - allocator: (default is context.allocator) Returns: - res: A reversed version of the input string - err: An optional allocator error if one occured, `nil` otherwise Example: import "core:fmt" import "core:strings" reverse_example :: proc() { a := "abcxyz" b := strings.reverse(a) fmt.println(a, b) } Output: abcxyz zyxcba */ reverse :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { str := s n := len(str) buf := make([]byte, n, allocator, loc) or_return i := n for len(str) > 0 { _, w := utf8.decode_rune_in_string(str) i -= w copy(buf[i:], str[:w]) str = str[w:] } return string(buf), nil } /* Expands the input string by replacing tab characters with spaces to align to a specified tab size *Allocates Using Provided Allocator* Inputs: - s: The input string - tab_size: The number of spaces to use for each tab character - allocator: (default is context.allocator) Returns: - res: A new string with tab characters expanded to the specified tab size - err: An optional allocator error if one occured, `nil` otherwise WARNING: Panics if tab_size <= 0 Example: import "core:fmt" import "core:strings" expand_tabs_example :: proc() { text := "abc1\tabc2\tabc3" fmt.println(strings.expand_tabs(text, 4)) } Output: abc1 abc2 abc3 */ expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { if tab_size <= 0 { panic("tab size must be positive") } if s == "" { return "", nil } b: Builder builder_init(&b, allocator) or_return writer := to_writer(&b) str := s column: int for len(str) > 0 { r, w := utf8.decode_rune_in_string(str) if r == '\t' { expand := tab_size - column%tab_size for i := 0; i < expand; i += 1 { io.write_byte(writer, ' ') } column += expand } else { if r == '\n' { column = 0 } else { column += w } io.write_rune(writer, r) } str = str[w:] } return to_string(b), nil } /* Splits the input string `str` by the separator `sep` string and returns 3 parts. The values are slices of the original string. Inputs: - str: The input string - sep: The separator string Returns: - head: the string before the split - match: the seperator string - tail: the string after the split Example: import "core:fmt" import "core:strings" partition_example :: proc() { text := "testing this out" head, match, tail := strings.partition(text, " this ") // -> head: "testing", match: " this ", tail: "out" fmt.println(head, match, tail) head, match, tail = strings.partition(text, "hi") // -> head: "testing t", match: "hi", tail: "s out" fmt.println(head, match, tail) head, match, tail = strings.partition(text, "xyz") // -> head: "testing this out", match: "", tail: "" fmt.println(head) fmt.println(match == "") fmt.println(tail == "") } Output: testing this out testing t hi s out testing this out true true */ partition :: proc(str, sep: string) -> (head, match, tail: string) { i := index(str, sep) if i == -1 { head = str return } head = str[:i] match = str[i:i+len(sep)] tail = str[i+len(sep):] return } // Alias for centre_justify center_justify :: centre_justify // NOTE(bill): Because Americans exist /* Centers the input string within a field of specified length by adding pad string on both sides, if its length is less than the target length. *Allocates Using Provided Allocator* Inputs: - str: The input string - length: The desired length of the centered string, in runes - pad: The string used for padding on both sides - allocator: (default is context.allocator) Returns: - res: A new string centered within a field of the specified length - err: An optional allocator error if one occured, `nil` otherwise */ centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { n := rune_count(str) if n >= length || pad == "" { return clone(str, allocator) } remains := length-n pad_len := rune_count(pad) b: Builder builder_init(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) or_return w := to_writer(&b) write_pad_string(w, pad, pad_len, remains/2) io.write_string(w, str) write_pad_string(w, pad, pad_len, (remains+1)/2) return to_string(b), nil } /* Left-justifies the input string within a field of specified length by adding pad string on the right side, if its length is less than the target length. *Allocates Using Provided Allocator* Inputs: - str: The input string - length: The desired length of the left-justified string - pad: The string used for padding on the right side - allocator: (default is context.allocator) Returns: - res: A new string left-justified within a field of the specified length - err: An optional allocator error if one occured, `nil` otherwise */ left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { n := rune_count(str) if n >= length || pad == "" { return clone(str, allocator) } remains := length-n pad_len := rune_count(pad) b: Builder builder_init(&b, allocator) builder_init(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) or_return w := to_writer(&b) io.write_string(w, str) write_pad_string(w, pad, pad_len, remains) return to_string(b), nil } /* Right-justifies the input string within a field of specified length by adding pad string on the left side, if its length is less than the target length. *Allocates Using Provided Allocator* Inputs: - str: The input string - length: The desired length of the right-justified string - pad: The string used for padding on the left side - allocator: (default is context.allocator) Returns: - res: A new string right-justified within a field of the specified length - err: An optional allocator error if one occured, `nil` otherwise */ right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error { n := rune_count(str) if n >= length || pad == "" { return clone(str, allocator) } remains := length-n pad_len := rune_count(pad) b: Builder builder_init(&b, allocator) builder_init(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) or_return w := to_writer(&b) write_pad_string(w, pad, pad_len, remains) io.write_string(w, str) return to_string(b), nil } /* Writes a given pad string a specified number of times to an `io.Writer` Inputs: - w: The io.Writer to write the pad string to - pad: The pad string to be written - pad_len: The length of the pad string, in runes - remains: The number of times to write the pad string, in runes */ @private write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) { repeats := remains / pad_len for i := 0; i < repeats; i += 1 { io.write_string(w, pad) } n := remains % pad_len p := pad for i := 0; i < n; i += 1 { r, width := utf8.decode_rune_in_string(p) io.write_rune(w, r) p = p[width:] } } /* Splits a string into a slice of substrings at each instance of one or more consecutive white space characters, as defined by `unicode.is_space` *Allocates Using Provided Allocator* Inputs: - s: The input string - allocator: (default is context.allocator) Returns: - res: A slice of substrings of the input string, or an empty slice if the input string only contains white space - err: An optional allocator error if one occured, `nil` otherwise */ fields :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error #no_bounds_check { n := 0 was_space := 1 set_bits := u8(0) // check to see for i in 0..= utf8.RUNE_SELF { return fields_proc(s, unicode.is_space, allocator) } if n == 0 { return nil, nil } a := make([]string, n, allocator, loc) or_return na := 0 field_start := 0 i := 0 for i < len(s) && _ascii_space[s[i]] { i += 1 } field_start = i for i < len(s) { if !_ascii_space[s[i]] { i += 1 continue } a[na] = s[field_start : i] na += 1 i += 1 for i < len(s) && _ascii_space[s[i]] { i += 1 } field_start = i } if field_start < len(s) { a[na] = s[field_start:] } return a, nil } /* Splits a string into a slice of substrings at each run of unicode code points `r` satisfying the predicate `f(r)` *Allocates Using Provided Allocator* Inputs: - s: The input string - f: A predicate function to determine the split points - allocator: (default is context.allocator) NOTE: fields_proc makes no guarantee about the order in which it calls `f(r)`, it assumes that `f` always returns the same value for a given `r` Returns: - res: A slice of substrings of the input string, or an empty slice if all code points in the input string satisfy the predicate or if the input string is empty - err: An optional allocator error if one occured, `nil` otherwise */ fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error #no_bounds_check { substrings := make([dynamic]string, 0, 32, allocator, loc) or_return start, end := -1, -1 for r, offset in s { end = offset if f(r) { if start >= 0 { append(&substrings, s[start : end]) // -1 could be used, but just speed it up through bitwise not // gotta love 2's complement start = ~start } } else { if start < 0 { start = end } } } if start >= 0 { append(&substrings, s[start : len(s)]) } return substrings[:], nil } /* Retrieves the first non-space substring from a mutable string reference and advances the reference. `s` is advanced from any space after the substring, or be an empty string if the substring was the remaining characters Inputs: - s: A mutable string reference to be iterated Returns: - field: The first non-space substring found - ok: A boolean indicating if a non-space substring was found */ fields_iterator :: proc(s: ^string) -> (field: string, ok: bool) { start, end := -1, -1 for r, offset in s { end = offset if unicode.is_space(r) { if start >= 0 { field = s[start : end] ok = true s^ = s[end:] return } } else { if start < 0 { start = end } } } // if either of these are true, the string did not contain any characters if end < 0 || start < 0 { return "", false } field = s[start:] ok = true s^ = s[len(s):] return } /* Computes the Levenshtein edit distance between two strings *Allocates Using Provided Allocator (deletion occurs internal to proc)* NOTE: Does not perform internal allocation if length of string `b`, in runes, is smaller than 64 Inputs: - a, b: The two strings to compare - allocator: (default is context.allocator) Returns: - res: The Levenshtein edit distance between the two strings - err: An optional allocator error if one occured, `nil` otherwise NOTE: This implementation is a single-row-version of the Wagner–Fischer algorithm, based on C code by Martin Ettl. */ levenshtein_distance :: proc(a, b: string, allocator := context.allocator, loc := #caller_location) -> (res: int, err: mem.Allocator_Error) #optional_allocator_error { LEVENSHTEIN_DEFAULT_COSTS: []int : { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, } m, n := utf8.rune_count_in_string(a), utf8.rune_count_in_string(b) if m == 0 { return n, nil } if n == 0 { return m, nil } costs: []int if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) { costs = make([]int, n + 1, allocator, loc) or_return for k in 0..=n { costs[k] = k } } else { costs = LEVENSHTEIN_DEFAULT_COSTS } defer if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) { delete(costs, allocator) } i: int for c1 in a { costs[0] = i + 1 corner := i j: int for c2 in b { upper := costs[j + 1] if c1 == c2 { costs[j + 1] = corner } else { t := upper if upper < corner else corner costs[j + 1] = (costs[j] if costs[j] < t else t) + 1 } corner = upper j += 1 } i += 1 } return costs[n], nil }